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Abstract
Various time‐frequency (T‐F) masks are being applied to sound source localization
tasks. Moreover, deep learning has dramatically advanced T‐F mask estimation. How-
ever, existing masks are usually designed for speech separation tasks and are suitable
only for single‐channel signals. A novel complex‐valued T‐F mask is proposed that
reserves the head‐related transfer function (HRTF), customized for binaural sound
source localization. In addition, because the convolutional neural network that is
exploited to estimate the proposed mask takes binaural spectral information as the
input and output, accurate binaural cues can be preserved. Compared with conven-
tional T‐F masks that emphasize single speech source–dominated T‐F units, HRTF‐
reserved masks eliminate the speech component while keeping the direct propagation
path. Thus, the estimated HRTF is capable of extracting more reliable localization
features for the final direction of arrival estimation. Hence, binaural sound source
localization guided by the proposed T‐F mask is robust under noisy and reverberant
acoustic environments. The experimental results demonstrate that the new T‐F mask is
superior to conventional T‐F masks and lead to the better performance of sound
source localization in adverse environments.

1 | INTRODUCTION

Binaural sound source localization (SSL) aims to determine the
azimuth, elevation or distance between the sound source and
the center of the microphone array, which uses binaural mi-
crophones mounted on the left and right sides of the robot
head. SSL is valuable for research and a variety of applications,
such as speech enhancement, speech separation, speech
recognition, human–robot interaction, teleconferencing, and
hearing aids [1–5].

Plenty of approaches have been proposed to estimate the
direction of arrival (DOA), most of which are composed of
two steps. In the first step, the localization features are
extracted from the received waveform signals or spectral in-
formation. For binaural SSL, binaural cues in a biomimetic way
are commonly used, including interaural time difference (ITD),
interaural phase difference (IPD) and interaural level difference
(ILD). In detail, ITD describes the time difference of a sound

source arriving at binaural microphones, whereas IPD refers to
the phase difference of a sound wave reaching each ear.
Moreover, ILD represents the level difference of a sound
source between binaural signals. In the second stage, the DOA
is estimated according to the mapping relationship between
input features and DOA. During that stage, many methods can
be used to establish this mapping relationship, such as peak
searching [6] and template matching [7,8]. In addition, proba-
bilistic statistic models can be established using some methods
such as gaussian mixture models [9] and deep learning–based
models [10].

Based on an auditory front end, the complex interaction
of ITDs and ILDs is built by a probabilistic model trained
under various acoustic conditions [11]. In the meantime,
DNNs are used to structure the relationship between the
source azimuth and binaural cues, including the complete
cross‐correlation function(CCF) and ILDs [10]. Most pre-
vious methods tried to exploit information in the binaural
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cue pairs and capture the complicated mapping relationship.
However, the performance of traditional localization feature
extraction approaches may seriously degrade in the presence
of reverberation and noise. Therefore, it is necessary to add
an extra step (weighting or enhancing the localization fea-
tures) before the estimation of the DOA. With the coop-
eration of binaural coherence [12], the coherence test [13], a
time‐frequency(T‐F) mask [14,15], and so on, the features
are finally obtained from more reliable T‐F units. In addi-
tion, accurate binaural cues can be directly extracted from
the received waveform signals or spectrum [16,17].

Because of the eminent learning ability of deep neural
networks, T‐F masks are capable of guiding the SSL to focus
on single source–dominated T‐F units [14,18]. Various T‐F
masks designed manually are listed in Wand and Chen [19]. A
ideal binary mask(IBM) and ideal ratio mask(IRM) are two
popular masks for speech separation. The value of IBM is
either 1 or 0, depending on whether the signal‐to‐noise ratio
(SNR) is low enough in the specific two‐dimensional T‐F
representation. The IRM is a soft mask that is similar to the
IBM. It evaluates the ratio between the speech energy and the
summation of the clean speech energy and noise energy. Ac-
cording to the definition of the IRM, it can weigh the target
speech signal well only when additive noise exists in the
acoustic environment. However, IRM may not suitable for T‐F
units full of reverberation, which can be regarded as uncor-
related interference.

Two main issues exist in real‐valued T‐F mask‐guided SSL:
(1) most T‐F masks are designed for a monoaural signal; and
(2) T‐F mask definitions usually involve only the spectral
amplitude, signal power, or SNR. For the first issue, because a
monoaural mask usually does not consider the difference be-
tween multichannel signals , the binaural cues may be destroyed
during T‐F unit selection. The localization information
extracted from the binaural cues is incomplete or even pro-
miscuous, which leads to inaccurate sound source results. In
terms of the second issue, owing to the deficiency of the phase
information, which is more significant than the amplitude in-
formation for the SSL task, the weight of T‐F units may be
measured ambiguously. Consequently, the mis‐selected T‐F
units will also generate an inaccurate localization feature,
leading to the degradation of performance.

To solve these confusing issues, several methods [18,20]
based on the simultaneous processing of binaural signals
exhibiting the ability to preserve binaural cues have been
proposed. A phase‐sensitive mask, including a measure of
phase [21]; the complex IRM, employed for both magnitude
and phase spectra [22] and the dereverberation mask [23] are
proposed to yield a better estimation of clean speech. How-
ever, these T‐F masks are elaborately designed for speech
separation. If we apply these T‐F masks directly to SSL, they
eliminate the influence of the early and late reverberations to
some extent, but still circuitously.

Motivated by these studies, we propose a novel complex T‐
F mask‐guided binaural SSL approach. This work mainly makes
three contributions. First, different from previous monoaural

T‐F masks used in speech separation, the proposed mask is
customized for binaural SSL. It is dedicated to highlighting the
optimal T‐F units while resisting the disturbances of noise and
reverberation. Second, this complex mask is designed to reserve
the direct path component of the head‐related transfer function
(HRTF) from mixed binaural spectra, the HRTF‐reserved
mask. Third, the experiments demonstrate that the ITD and
ILD, calculated from an estimation of HRTF, can lead to lower
localization error compared with features extracted from the
received binaural signals.

Section 2 formulates the binaural signal model and related
works. The definition of the HRTF‐reserved mask and system
overview are described in Section 3. Section 4 describes the
experimental setup and exhibits experimental results with
different acoustic environments. Finally, conclusions are given
in Section 5.

2 | RELATED WORK

2.1 | Binaural signal model

The received binaural signals xi(n) in the time domain can be
formulated as:

xi
�
n
�
¼ s
�
n
�

⊗ hi
�
n
�
þ vi

�
n
�
; ∀i¼ l; r; ð1Þ

where ⊗ denotes the convolution operation, n is the time
index and s(n) and vi(n) represent the clean sound signal
and additive noise signal, respectively. l and r refer to the
index of the left and right channels. The hi(n) denotes the
impulse response between the source and ear, consisting of
an indoor acoustic property and head‐related impulse
response [7].

After applying short‐time Fourier transform (STFT), the
binaural signal in the time domain is transformed to the time‐
frequency domain, which can be modeled as:

Xiðt; f Þ ¼ Sðt; f ÞHiðf ; θÞ þ V iðt; f Þ; ð2Þ

where Xi(t, f ), S(t, f ) and Vi(t, f ) represent the spectra of the
received binaural signal, clean speech and noise signal,
respectively. Hi( f, θ ) is the frequency‐domain version of the
binaural room impulse response (BRIR), in which the propa-
gation path contains the direct path, early reflections and late
reverberation. θ denotes the corresponding azimuth and t and f
denote the index of time frame and frequency bin, respectively.

In conventional approaches, physical localization cues such
as ITD (or IPD) and ILD are directly extracted from the
received signals for each time frequency pair [24].
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IPD and ILD of the binaural signals in Equation (2) can be
respectively extracted as:

bϕðt; f Þ ¼ ∠
Xrðt; f Þ
Xlðt; f Þ

; ð3Þ

bλðt; f Þ ¼ 20 log10
|Xrðt; f Þ|
|Xlðt; f Þ|

; ð4Þ

where bϕðt; f Þ denotes the IPD at the t − th time frame and
f − th frequency bin, and bλðt; f Þ denotes the ILD at the t − th
time frame and f − th frequency bin.

As mentioned, the additive noise and reverberation
component will disturb the localization features in the specific
T‐F units. The features calculated from the single source–
dominated T‐F pairs, which involve only direct path propa-
gation, can lead to better performance.

2.2 | Direction of arrival estimation via
template matching

We exploit the template matching method [7] to estimate the
sound source. First, the offline template establishment is
conducted by:

λT ð f ; θÞ ¼ 20 log10

�
�
�
�
HRTFrðf ; θÞ
HRTFlðf ; θÞ

�
�
�
�; ð5Þ

where T represents the template, HRTFr( f, θ ) and HRTFl( f,
θ ) denote the T‐F domain (time t is omitted) HRTFs on the
right and left ears for azimuth θ, respectively. Similarly, ITD
templates TTp ð f ; θÞ can be established by:

ϕT ð f ; θÞ ¼
1
f

∠
HRTFrðf ; θÞ
HRTFlðf ; θÞ

: ð6Þ

Because the azimuths are known in the template establish
stage, we can calculate the theoretical ITD.

Second, both the ITD and ILD are considered for SSL.
Their estimation can be respectively calculated as:

bλð f ; θÞ ¼ 20 log10

�
�
�
�

Hrdpðf ; θÞ

Hldpðf ; θÞ

�
�
�
�; ð7Þ

bϕð f ; θÞ ¼
1
f

∠
Hrdpðf ; θÞ

Hldpðf ; θÞ
: ð8Þ

Finally, the DOA estimation is obtained by minimizing the
hybrid distances, which can be formulated as:

bθ ¼ argmin
θj

∑
f
DT f ; θj
� �

⋅DI f ; θj
� �� �

; ð9Þ

where j is the azimuth index, DT f ; θj
� �

denotes the dis-
tance between ITD estimation and ITD templates, and

DI f ; θj
� �

denotes the distance between ILD estimation and
ITD templates.

3 | CONVOLUTIONAL NEURAL
NETWORK–BASED HEAD‐RELATED
TRANSFER FUNCTION–RESERVED
MASK ESTIMATION

The schematic diagram of the proposed binaural SSL is illus-
trated in Figure 1. In the binaural signal simulation phase, the
binaural signals are generated by convolving the BRIR with the
clean speech signal. Moreover, because different kind of noises
with various SNRs always exist in real scenarios, we generated
noisy binaural signals by adding a noise signal to the clean
binaural signals. During training, the STFT is performed on the
received signals. After that, the data block, which is composed
of the imaginary and real parts of T‐F units, is fed to a con-
volutional neural networkm (CNN). The ITD and ILD
calculated directly by HRTF are regarded as feature templates
for the DOA estimation. In the test stage, the HRTFs are
estimated by multiplying the T‐F units of binaural signals with
the HRTF‐reserved mask predicted from the trained CNN.
With regard to template matching, we measure the distance
between the templates and the binaural cues extracted from the
estimated HRTFs. The azimuth corresponding to the mini-
mum distance is determined as the final DOA [7].

3.1 | Head‐related transfer function–
reserved time‐frequency mask

For T‐F mask‐guided SSL, several T‐F masks are available [19].
The complex‐valued mask is considered owing to its ability to
restore the STFT coefficient. The typical complex IRM that
suppresses the contribution of the T‐F unit, including the noise
signal and reverberation, is defined as:

cIRMðt; f Þ ¼
Sðt; f ÞHdpðf ; θÞ

Xðt; f Þ
; ð10Þ

where Hdp(f, θ ) denotes the direct‐path HRTF1 corresponding
to azimuth θ at frequency f. The microphone index is omitted
for the sake of simplicity. The STFT coefficient of the direct‐
path signal Xdp(t, f ) is obtained after multiplying the received
signal X(t, f ) and the cIRM(t, f ). This process can be
formulated as:

Xdpðt; f Þ ¼ cIRMðt; f ÞXðt; f Þ ¼ Sðt; f ÞHdpðf ; θÞ: ð11Þ

To reserve the HRTF from the direct‐path speech signal,
we define a novel T‐F mask as:

1
In this paper, we relax the HRTF definition and use the term HRTF to describe the
frequency response from a target source to binaural microphones.
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cIRMreðt; f Þ ¼
1

Sðt; f Þ
: ð12Þ

According to Equations (11) and (12), cIRMre is a de‐
speech operation. Therefore, the desired HRTF can be ob-
tained by:

Hdpðf ; θÞ ¼ cIRMreðt; f ÞXdpðt; f Þ: ð13Þ

Combining cIRM(t, f ) with cIRMre(t, f ), a fused mask
cIRMfu(t, f ) can directly extract the HRTF from the received
signal:

cIRMf uðt; f Þ ¼ cIRMðt; f ÞcIRMreðt; f Þ; ð14Þ

Hdpðf ; θÞ ¼ cIRMf uðt; f ÞXðt; f Þ: ð15Þ

Unlike previous manually designed T‐F masks, we first
emphasize the T‐F units containing the direct‐path signal.
Then, the proposed T‐F mask directly eliminates the speech
component from the direct‐path speech signal while preser-
ving the HRTF of the sound source.

With regard to neural network training, mask estimation
networks are trained using two strategies: separately (cIRM and
cIRMre) or in an integrated way (cIRMfu).

3.2 | Convolutional neural network–based
mask estimation

Different from monoaural T‐F masking, the STFT coefficient
of both left and right channels are stacked together as the input
data, as shown in Figure 2. On the one hand, both phase and
magnitude components, the complete information of the

single‐channel signal in the T‐F domain, are simultaneously
considered in a straightforward way. On the other hand, the
full spatial information implied in binaural signals can be well‐
preserved. The input matrix is formulated as:

x¼ xlreal; x
l
img; x

r
real; x

r
img

h i
ð16Þ

xik ¼

Xikð1; 1Þ Xikð1; 2Þ ⋯ Xikð1; FÞ

Xikð2; 1Þ Xikð2; 2Þ ⋯ Xikð2; FÞ

⋮ ⋮ ⋱ ⋮

XikðT ; 1Þ XikðT ; 2Þ ⋯ XikðT ; FÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;

∀ k¼ real; img;

ð17Þ

where real refers to the real part of the complex‐value, whereas
img refers to the imagination component andT and F denote the
number of time frames and frequency units, respectively.
Binaural signals with a sampling rate of 44.1 kHz are processed
by STFT with a Hanning window. The window length is 20 ms
(882 samples) with a hop length of 10 ms. Seven frames with
frequency bins ranging from 80 to 8000 Hz (159 samples) are
packed into a data block. The size of the input data is 7� 159� 4
(frame � frequency � channel).

The architecture of the T‐F mask estimation network is
depicted in Figure 2. We employ a simple CNN with four two‐
dimensional convolutional layers to predict the T‐F mask [18].
The kernel size of each layer is 3 � 3 with the stride keeping
output the same size as input data. The number of filters of each
layer is four, corresponding to the imaginary and real parts of the
left and right channels. Because the network processes the
binaural signals simultaneously, the direct‐path propagation
from the sound source to microphones can be captured and the
binaural cues between T‐F pairs can also be preserved. As a

F I GURE 1 Schematic diagram of proposed head‐related transfer function–reserved mask‐guided sound source localization method. The upper part is the
training phase constructing a convolutional neural network–based mask estimator and the binaural feature templates. The lower part is the test phase to estimate
the azimuth through template matching and time‐frequency masking.
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result, the accurate localization feature of the direct‐path
component can be extracted directly from the bHdpðf ; θÞ.

According to the definition of the HRTF‐reserved mask in
Equations (10), (12) and (14), the network output is similar to
the input matrix:

y¼ ylreal; y
l
img; y

r
real; y

r
img

h i
ð18Þ

yik ¼

yikð1; 1Þ yikð1; 2Þ ⋯ yikð1; FÞ

yikð2; 1Þ yikð2; 2Þ ⋯ yikð2; FÞ
⋮ ⋮ ⋱ ⋮

yikðT ; 1Þ yikðT ; 2Þ ⋯ yikðT ; FÞ

2

6
6
6
6
4

3

7
7
7
7
5
; ð19Þ

where the yik could be cIRM, cIRMre or cIRMfu. Each CNN
corresponding to a specific T‐F mask is trained separately and
independently.

The training configurations for three training targets are
the same. All networks are conducted with the Pytorch with
one NVIDIA GeForce Titan XP GPU. The batch size is set to
16. An Adam optimizer [25] is used to optimize the network
parameters by minimizing the mean absolute error(MAE). The
initial learning rate is set to 0.003. Then it is divided by 3 every
10 epochs until the performance of validation set no longer
improves.

4 | EXPERIMENTS AND ANALYSIS

4.1 | Experimental setup

For the binaural simulation, the HRTFs from the CIPIC
HRTF database [26], audio signals from the TIMIT database
[27] and noise signal from the Noisex‐92 database [28] are
exploited to synthesize the received signals.

There are 45 different subjects in the CIPICHRTFdatabase.
Each has 25 azimuths and 50 elevations. The sources are placed
at 0 degrees elevation and all azimuths range from [−80 degrees,
−60 degrees, −55 degrees, −45 degrees: 5 : 45 degrees, 55 de-
grees, 65 degrees, 80 degrees], in which 0 degrees is located at the
middle front of the head. Subject 21 (i.e., Kemar head) is selected
to simulate an acoustic environment for the T‐Fmask estimation
in the following experiments. All subjects are used to build ITD
and ILD offline templates, as proposed in Pang et al. [7].

In the experiments, 25, seven, and seven utterances are
selected randomly from the TIMIT to generate training, vali-
dation and a test set for T‐Fmasking, respectively. Furthermore,
to simulate the noisy acoustic environment, babble noise with
various SNR, [0:10:30] dB for a training and validation set and [–
5:10:25] dB for a test set are added to the noise‐free binaural
speech signals. The spectrum of the babble noise signal is similar
to that of the speech signal and the SNRs are unmatched between
the training, validation set and test set, which can increase the
credibility of the following experiments of the method.

To evaluate the robustness of the proposed binaural
localization method, room impulse responses are also simu-
lated through the Roomsim toolbox [29]. Table 1 shows the
room configurations including room size (W, L and H denote
the width, length and height of the room, respectively), the
distance between the head and source (R), and the head
location and reverberation time (RT60). Figure 3 illustrates the
simulated acoustic environments for room1 in Table 1.

In total, there are 4500, 1576 and 936 utterances in the
training set, validation set and test set, respectively.

4.2 | Results

To evaluate the performance of the proposed T‐F mask, we
directly measure the MAE of template matching with

F I GURE 2 Architecture of time‐frequency masking network. The shape of input composed of time, frequency and channel (7, 159 and 4) is the same as
each layer output
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different types of masks or without a mask. For the DOA
estimation stage in the third step of the framework, we use
joint ITD and ILD template matching [7], denoted as TM in
Table 2. Moreover, HRTFM denotes the proposed HRTF‐
reserved masks including integrated training (fuse) in
Equation (14) and independent training (separation, sepa) of
two masks in Equations (12) and (10). The comparison of
TM‐HRTFM with TM can be considered ablation experi-
ments. The bold number in Table 2 means that the corre-
sponding method performs the best under specific acoustic
environment.

The comparison of the azimuth localization performance is
shown in Table 2. The HRTF‐reserved mask reduces locali-
zation error compared with the SSL method without a mask or
with complex IRM. This demonstrates that the design of the
HRTFM is able to realize a de‐speech operation and reserve
the HRTF corresponding to the direct‐path speech signal. In
addition, the proposed mask leads to more effective and ac-
curate binaural SSL results compared with no masks or with
the complex IRM.

The performance of TM‐HRTFM (sepa) is worse than that
of TM‐HRTFM (fuse). This is because exploiting a single

TABLE 1 Room configuration for
training and test dataset

Dataset Room W (m) L (m) H (m) R (m) Center of head (m) RT60 (s)

Training, validation Room1 10 6 3 1 (5, 3, 1.5) 0.2, 0.4, 0.6

Room2 6 5 4.5 1 (3, 2.5, 1.2) 0.2, 0.4, 0.6

Room3 6 4 3 1 (2, 2, 1.2) 0.2, 0.4, 0.6

Test Room4 5.5 8 4 1 (3.5, 1.5, 1.2) 0.2, 0.4, 0.6, 0.8

F I GURE 3 Simulated scene and parameters of acoustic environments for room1

TABLE 2 The MAE of DOA estimation
(degrees) for models trained in
multiconditional environment

Signal‐to‐noise ratio (dB) RT60 (s)

‐5 5 15 25 0.2 0.4 0.6 0.8 Average

TM [7] 41.45 39.72 28.72 14.19 15.80 24.46 29.47 33.53 28.42

TM‐complex IRM 11.60 11.54 11.32 9.93 8.27 12.12 15.59 14.87 11.90

TM‐HRTFM(sepa) 13.71 12.22 10.36 9.44 10.57 11.10 13.29 15.21 11.98

TM‐HRTFM(fuse) 13.00 11.85 9.85 8.07 9.20 10.54 12.63 14.41 11.19

Abbreviations: DOA, direction of arrival; HRTFM, Fuse, networt trained in integrated or fuse way; head‐related transfer
function–reserved mask; IRM, ideal ratio mask; MAE, mean absolute error; RT, reverberation time; Sepa, networt trained
in independant way; SNR, signal‐to‐noise ratio; TM, template matching.
The MAE values of method that performs best under the corresponding acoustic conditions are represented in bold.

6 - LIU ET AL.



network to estimate the fused mask directly can avoid intro-
ducing a non‐negligible accumulated error.

The TM‐HRTF (fuse) does not perform as well as
TM‐complex IRM in the low‐SNR environment, whereas
TM‐HRTF (fuse) performs better in high‐reverberant envi-
ronments. The main reason is that background noise with no
specific direction obscures the directional information of the
sound source whereas HRTFM is more suitable for reverber-
ation acoustic environments that contain sufficient directional
information.

5 | CONCLUSION

A T‐F mask is proposed to reserve the HRTF directly
from received signals and lead to the extraction of robust
binaural cues in the presence of reverberation and noise.
A simple CNN is exploited to estimate the HRTF‐
reserved mask. The HRTF containing the direct‐path
propagation from the source to the head is available after
multiplying the mask with binaural signals in the T‐F
domain. Then the ITD and ILD can be extracted effi-
ciently from the HRTFs. Thus, experimental results
demonstrate that the performance of template matching–
based, probability model‐based and other two‐stage SSL
methods can be promoted, especially in a reverberant
environment.

Compared with previous handcrafted monoaural T‐F
masks, the proposed T‐F mask is robustly superior to
binaural SSL. The contribution of T‐F units dominated by
the direct‐path speech signal can be precisely evaluated.
Furthermore, the direct path component of the HRTF is
able to be reserved from a mixture of binaural spectra.
Thus, SSL guided by the proposed mask adapts to unknown
and adverse acoustic environments, especially in the pres-
ence of reverberation.
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