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Abstract: Binaural source localization is a popular 

technique in various applications, such as hearing aids, 

mobile robot, video conference, etc. However, robust 

binaural cues estimate and suitable localization strategy 

are always limiting its performance. In this paper, a new 

algorithm for binaural sound source localization is 

presented, which is a two-layer model. In the first layer, a 

spectral weighting generalized cross correlation–phase 

transformation (GCC-PHAT) method is presented for 

robust time-delay estimation, by which the probabilistic 

azimuths of sound source are obtained. In the second 

layer, an improved algorithm is introduced, which is 

named Compensated Interaural Intensity Difference 

(CIID). Based on the probabilistic azimuth localization 

results and CIID features, spatial grid matching (SGM) is 

presented to provide a Bayesian model for localizing 

azimuth and elevation. Compared with three other 

algorithms, experimental results show that the proposed 

method has a robust result even in noisy environments. 

Keywords: Sound source localization, Compensated 

interaural intensity difference, Spatial grid matching 

1  Introduction  

Binaural sound source localization (SSL) is an important 

technique in various fields such as speech capture, 

enhancement, hearing aids, hands free telephone devices, 

video conference, intelligent human-robot interactions 

(HRI), etc., for its easy-implementation with only two 

microphones. There are two significant binaural 

(interaural) cues based on differences in time and level of 

the sound arriving at two ears called interaural time 

difference (ITDs) and interaural intensity differences 

(IIDs). Last decades, Since “Duplex Theory” [1] and 

cochlear model [2] were proposed, a large amount of 

binaural localization algorithms have been developed in 

various experimental environments [3-5].  

Actually, in many traditional methods, new obtained 

feature vector must match with each template to assure 

the direction of source. However, higher resolution needs 

more templates, and more time will be consumed for 

overall searching. In addition, most of them seldom 

consider the relationship between ITDs and IIDs. In fact, 

with the influence of ITD, the signals received by two 

ears have different starting points versus sound source, 

which will affect the extraction of IIDs. In general, the 

difference between starting points means time-delay. 

As with these, this paper proposes a new sound source 

localization method based on time-delay compensation 

and spatial grid matching. In the first layer, the spectral 

weighting GCC-PHAT method is presented to estimate 

time-delay [8][9][11]. However, measuring error and 

surrounding interference induce the obtained time-delay 

incompletely reliable, that is, what can be made sure is 

the possible crude area the sound source located. By this 

method, candidate azimuths are prepared for the 

following operations and the matching times will drop 

dramatically. 

In the second layer, a new algorithm named CIID is 

introduced, which is an improved algorithm of IID based 

on time-delay compensation and inspired by the 

algorithm used in [12][15]. With this algorithm, a Spatial 

Grid Matching (SGM) algorithm is utilized to refine 

azimuths and elevations. Since ITD offsets the influence 

of IIDs, it will be more effective than traditional IID. 

Relation to prior works: This work has focused on the 

formulation of the CIID and SGM algorithm with 

two-layer model, which uses ITD's information to 

compensate IID. The work by Willert et al.[10] considers 

ITD's influence on IID in sub- frequency bands, but it 

needs larger storage space and has a worse result in noisy 

environment. The works by Li et al. [12] and Finger et al. 

[6] present multilevel models to reduce computational 

complexity, but they neglect the impact of ITD on IID. In 

[12], the binaural sound localization was based on a 

hierarchical framework, in which ITD, IID and spectral 

cues were utilized to make sure direction candidates, 

respectively. [6] had a similar consideration calibrating 

the localization space by binaural cues hierarchically. 

While CIID is related to recent approaches, using ITD to 

compensate IID was not involved in these earlier studies. 

SGM was proposed in [9], which divided the ambient 

environment into various grids so as to improve the 

localization resolution, yet minor grid means high 

computational expense. In addition, the interaural 

matching filter in [16] also provides a vital reference. 

The rest of this paper is organized as follows: Sect.2 gives 
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the detailed binaural localization model in this paper 

including the spectral weighting GCC-PHAT for 

time-delay estimate, time-delay compensation and 

spatial grid matching algorithm. Experiments and 

analysis are shown in Sect.3. At last, some conclusions 

are drawn in Sect.4, respectively. 

2  Binaural Localization Model 

In this section, we will fully introduce our binaural 

localization model, including the spectral weighting 

GCC-PHAT for time-delay estimate, a new cue name 

CIID and the spatial grid matching algorithm to save 

time comsuption. 

2.1 Spectral Weighting GCC-PHAT 

In this subsection, the spectral weighting GCC-PHAT 

method is presented to find the average time-delay. The 

GCC-PHAT can be formulated as: 
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where R(n) is the generalized cross correlation function 

of signals between two ears.  lX   and  rX   are the 

Discrete Fourier Transforms (DFT) of the signals 

received by two ears.  

The spectral weighting GCC-PHAT is to amplify peak of 

R(n) by designing a weighting function. Firstly, the power 

spectrum of noise can be estimated from forepart of 

signal: 
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where  n   denotes the spectrum of the n
th

 noise 

frame. N represents the number of noise frame. In 

addition, the power of current noisy signal frame is: 

   
2
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Then posterior signal-to-noise ratio (SNR) versus 

frequency is given by: 
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Therefore, for two signals  lx n  and  rx n , the 

posterior SNR  l  and  r  can be obtained. 

When    XE E   holds, Eq.(3) is a unbiased 

estimation of SNRs, and not vice versa, but is still valid 

for high noise levels. Hereby, silence/noise detection 

before evaluation is based on the voice activity detector 

(VAD) of the AMR-WB speech codec [14]. Then the 

proposed spectral weighting function is drawn as: 

( ) (( ( )) ,( ( )) )r lmin log log 

      
 

where  can be adjusted in different environments to 

keep the weight reasonable. The greater overall SNR 

value is, the greater  will be. Similarly,   is also 

adjustable, which controls the divergence of weighting 

coefficient. The greater   is, the greater divergence 

will be. Finally, the spectral weighting GCC-PHAT 

function can be written as: 
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Therefore, the time-delay can be achieved by detecting 

the peak of GCC-PHAT function formulated as: 

 nargmax R n 
 

Since    is changed with SNR for acute peak of 

GCC-PHAT function,   can be obtained accurately 

even in noisy environments. As to localization, all 

possible azimuths for each    are trained offline, and 

the probability of each direction for the  is stored as 

templates. When a new time-delay is obtained, all 

possible directions will be checked, and the most possible 

directions will be chosen and prepared for the second 

layer. For example, when  is calculated as in -65
o
 the 

real direction may vary from -55
o
, -65

o
 to -80

o
 as Fig.1 

shows. The error tolerance of lags for every azimuth is 

shown in Fig.2. Thus, the probability of direction G 

where the sound comes can be trained when   is 

obtained as  : 
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which means the proportion between the number of 

sound source from direction G and from trained 

templates. 

 

Fig. 1. All directions in the CIPIC database. The red area 

is the area of all possible directions 

2.2 Time-Delay Compensation 

In the second layer, the direction will be refined for both 

azimuth and elevation. Thereby, the performance of SSL 

relies heavily on the accuracy of the extraction of IIDs. 

CIID is to weaken the influence of ITD on IID, by which 

the time difference between binaural signals in the same 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Fig. 2. The error tolerance of lags for every azimuth. 

frame will be compensated.  

After a k channels band-pass filtering, the sound signal is 

decomposed into k different signal components. In the m
th

  

frequency channel, CIID can be achieved as: 

( ) ( )m m

l m rW x n W x n    
 

where W , m ,   denote Square window function, 

real CIID in m
th

 channel and disparity of noises received 

by two ears. denotes an element-wise multiplication. 

From the standpoint of noise, Eq.(8) can be rewritten as: 

( ) ( )m m

l m rW x n W x n     
 

where   can be thought as a zero-mean Gaussian 

noise. Since the task of CIID is to eliminate the difference 

between binaural signals as much as possible,   will 

achieve the minimum value. Therefore, m  can be 

estimated by maximum likelihood estimate method using 

Minimum Mean Square Error criterion as: 
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m  can be obtained by partially differentiating versus 

m . Assume this partial derivative be zero, then the result 

will be resolved as: 
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where N denotes the length of the window. In order to 

restrict m to a proper range, the logarithmic operation is 

imposed to CIID. As a result, when the candidate azimuth 

i  is acquired in first layer, CIID can be described as: 

10( , ) | 20 |
i imCIID m log   

 

2.3 Spatial Grid Matching 

After Eq.(12), a k dimension vector CIID will be obtained. 

Moreover, the vectors of adjacent sound sources will 

yield a pair of similar feature vectors. As Fig.1 shows,        

 

Fig. 3. The grid for candidate area when azimuth is 

calculated as  -65
o
  in the first layer. 

sphere surface can be divided into many grids with a 

certain size. Those sound sources in a same grid are 

regarded as adjacent, whose feature vectors resemble to 

each other. On the contrary, when the geometrical 

distance between two different grids is farther, the 

corresponding feature vectors will be more different. 

In this work, spatial grids are divided as follows: The 

resolution of azimuth is the same as the CIPIC database 

[7], which means different azimuth must be divided into 

different grids. Then five different adjacent elevations 

with same azimuth will be set in a same grid. As Fig.3  

shows, the red area identified in the left figure is thought 

as in a same grid as the red area did in the right figure. 

Besides, a Gaussian Mixture Model (GMM) is 

constructed as template for each grid based on CIID 

vector during the training period. For an arbitrary grid, its 

azimuth distributes from 1  to 2 , and its elevation 

distributes from 1  to 2  (see Fig.3 ). The GMM of 

this grid is trained offline. 

As to localization, the problem will be simplified to find 

which grid the sound source is most matching. Let G 

denotes a grid and SSL can be mathematically formulated 

as: 

( | , )
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where gG denotes the grid located. The useful 

probabilities  |P G  and  |P CIID G are obtained in 

the previous layers, respectively. 

Once the grid of sound source is assured, a further 

extraction operation should be done. The best direction 

should be refined from the five directions in the same grid, 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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that is: 

( ) ( | ( )) [1,2,3,4,5]S g iG argmax P S g i i 
 

where SG  is the direction finally found for SSL and 

 g i  denotes the 
thi  direction in G. The azimuth and 

elevation are described as: 

1 2 2 1

1
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where
1 2 1
, ,g g g    and 

2g compose the boundary of 

G. 

3  Experiment and analysis 

The CIPIC database of head-related impulse responses 

(HRIRs) [5] is applied in our experiments based on 20 

groups of real sound signals for training grid templates. 

100 groups of real sound signals (50 for human voice and 

50 for music) are considered for each direction. The 

duration of each signal is 2 seconds. The sampling 

frequency is 44.1kHz. The result will be compared with 

the methods of Probabilistic Model [10], Hierarchical 

System [12] and Online Calibration [6]. The algorithm 

applied in this paper is CIID for short. 

Here, two different experimental environments are 

considered, one for ideal condition without noise, the 

other for the condition with SNR 20dB (the additive 

white Gaussian noise environment). The result is 

obtained with different error tolerance according to the 

resolution of CIPIC. 

 

Fig. 4. The localization accuracy of azimuth in two 

different experimental environments 

 

In Fig.4 and Fig.5, the localization accuracy in two 

different experimental environments are shown. It can be 

found that under ideal conditions, there are little 

difference of performance among these four methods, and 

CIID has not achieved the best or the worst one. Strictly 

speaking, PM is the best. However, in noisy environment, 

our algorithm is the most robust one for both azimuth and 

elevation. The reasons lie in: 

 

Fig. 5. The localization accuracy of elevation in two 

different experimental environments 

 

 Apart from ITD and IID, spectral cues are also used 

in Hierarchical System, which are not effective 

enough in noisy environment. 

 In Probabilistic Model, although ITD and IID are 

processed as a whole and the effects of ITD on IID 

are taken into account, it does not have robust 

scheme for time-delay estimation in quite noisy 

environment. 

 The Online Calibration has not considered the 

influence of IID on ITD resulting in a worst 

performance than other methods. 

 As to CIID, the improved GCC-PHAT algorithm 

can effectively deal with noise, therefore an accurate 

azimuth result can be achieved. Furthermore, CIID 

combines ITD with IID well. Also SGM has taken 

advantage of a searching way resembling decision 

tree for localization, which can save time 

complexity. As a result, CIID algorithm has the best 

performance. 

4  Conclusions 

In this paper, a new improved two-layer binaural sound 

localization model based on CIID and Spatial Grid 

Matching is presented. The whole circumstance is 

divided into spatial grids and different size means 

different resolution. In the first layer, spectral weighting 

GCC-PHAT is presented for acquiring all possible 

azimuths, which can extract more accurate time-delays in 

noisy environment. CIID is built upon the relation 

between ITD and IID. Under practical conditions, this 

method can achieve the accuracy over 90%. Accordingly, 

this two-layer model can effectively be well used for real 

human-computer interactions without increasing extra 

expense. 
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