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ABSTRACT 
Keyword 1  spotting (KWS) deals with the identification of 
keywords in speech utterances. A two-stage approach is often 
used for the flexibility and high efficiency. The two stages are 
keyword hypotheses detection stage and hit or false-alarm 
verification stage in sequence. How to reduce the false-alarms is 
a key and difficult problem in the verification stage, which is 
formatted as the confidence measure (CM) problem. In this paper, 
a novel keyword-filler hidden Markov model (HMM) based 
method is proposed based on two improved approaches. On one 
hand, for more effective confidence measure, a hypothesis 
boundary realignment method is used to gain more precise 
hypothesized segments for possible keyword. Then an overlap 
ratio criterion is defined to evaluate this process. On the other 
hand, a state-level confidence weighting method is proposed to 
improve the posterior probability based CM. Experiments show 
that either improvement is effective, and the proposed method 
based on the two processes gives the best performance. 
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1 INTRODUCTION 

Keyword spotting [1, 2] is to detect the occurrences of 
predefined keywords in continuous speech stream. There are 
kinds of applications using this technology, such as speech 
surveillance [3], spoken document retrieval [4], voice interaction 
[5, 6], etc. 

In the past decades, many methods have been proposed for 
KWS, which can be clustered to two groups. One is the large 
vocabulary continuous speech recognition (LVCSR) based KWS, 
which commonly assumes offline processing of audio stream to 
generate word lattices [7-10] or sub-word lattices [9, 10]. It is 
usually used to search audio documents which are indexed based 
on the generated lattices. This kind of systems often require a 
large amount of training data, which is only available for 
resource-rich languages, but a new trend in KWS is to build an 
efficient system for resource-limited languages [11]. Besides, due 
to the restricted vocabulary, handling out-of-vocabulary (OOV) 
words is a difficult problem [12]. On the other hand, the 
keyword-filler HMM based KWS [1, 2] requires little or no 
training data, and has the flexibility of selecting keywords set. 
This kind of systems use a vocabulary which contains the 
keywords to be spotted and the fillers to absorb the non-
keyword speech [13, 14]. For example, phone-loop filler is often 
a simple and efficient filler model. 

However, phone-loop based keyword-filler KWS has a major 
problem of high false-alarm rate. In fact, due to the use of the 
same phone models in the keyword part and filler part, the filler 
model can potentially model a phoneme sequence corresponding 
to any word. After generating enough keyword hypotheses in 
the initial detection stage, a verification stage is necessary to 
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reduce the false-alarms. For each keyword hypothesis, a 
confidence score is given to estimate the probability of 
occurrence of the corresponding keyword. Confidence measure 
is the key problem in the verification stage. Traditional 
likelihood ratio (LR) [15], which means the ratio of hypothesized 
segment’s likelihood for the keyword to likelihood for the non-
keyword, is often used. Though many methods have been 
proposed for the non-keyword modelling, such as online 
dynamic filler model [16] and anti-subword model [17], the non-
keyword modelling is still a difficult problem. However, non-
keyword model is not necessary for the later frame-level 
posterior probability based confidence measure [18], which even 
gives a better performance than LR-based methods. 

In this paper, a novel method based on hypothesis boundary 
realignment and state-level confidence weighting is proposed to 
improve the performance of confidence measure. On one hand, 
the hypothesis boundary realignment network is proposed to 
obtain more precise keyword boundary. For performance 
evaluation purpose, the overlap ratio between cross duration and 
the total duration of a hypothesis and its reference is defined as 
the matching criterion. On the other hand, as an improved 
posterior probability based CM, the state-level confidence 
weighting approach is proposed to estimate the reliability of 
each keyword hypothesis. Combination of the two approaches is 
natural and effective, which can achieve better KWS 
performance. The framework of the proposed KWS system is 
shown in Fig. 1, which mainly includes detection and verification 
stages. 

 

Figure 1: The framework of the proposed KWS system. 

Overview: The KWS result data is produced by the keyword-
filler HMM based detector. From the decoding sequence, 
multiple hypotheses for each keyword are generated. Then each 
hypothesis is processed by the proposed boundary realignment 
method. Based on the hypothesis with more precise boundaries, 
a confidence score is then calculated by the state-level weighting 
based CM method. At last, based on the list of keyword 
hypotheses with corresponding confidence scores, overall 
performance of the KWS system is evaluated on the MTWV 
metric. The TIMIT corpus [19] is used for evaluation, which 
contains 6300 English sentences. The HTK toolkit [20] is used in 
the extraction of acoustic features, training of HMM models and 
Viterbi decoding.  

 

 

2 BASELINE KWS SYSTEM 

2.1 Keyword-Filler HMM based Keyword 
Detection 

The keyword-filler HMM based detector is adopted in the KWS 
system. The filler model is the phone-loop HMM. The posterior 
probability-based CM is the baseline in the verification stage. 

The framework of keyword-filler HMM [2] is shown in Fig. 2. 
The keyword model is constructed as the connected phones of 
the keyword pronunciation. The filler model is used to absorb all 
non-keyword speech or silence segments. There are several 
choices, such as phone-loop network (i.e. parallel connection of 
phones), LVCSR network without the current keyword. However, 
the LVCSR-based approach requires a higher computational cost 
and a larger memory requirement. In this paper, the phone-loop 
based filler model is used. 

 

Figure 2: The framework of keyword-filler HMM for 
keyword detection. 

During the detection stage, Viterbi decoding is used to select 
the best path, which gives the keyword and filler model 
sequence. By backtracking the decoding path, hypothesized 
keyword segments are produced. A keyword hypothesis is a 
positive sample, or hit, if the start and end times of hypothesis 
lie either side of the mid-point of an identical label in the 
reference; otherwise it is a negative sample, or false-alarm. The 
trade-off between detection rate and false-alarm rate is achieved 
by adjusting the parameter β, which is the filler-to-keyword 
transition probability. To achieve a high detection rate, a large 
enough value of β is necessary. 

2.2 Posterior Probability based Confidence 
Measure 

For each keyword hypothesis, a posterior probability based 
confidence score is calculated. The procedure is conducted at 
three levels, namely frame level, phone level and word level. At 
the frame level, the posterior probability of state s given the 
observation 𝑜𝑡 at frame 𝑡, is calculated by 

𝑝ሺ 𝑠 ∣∣ 𝑜௧ ሻ =
൫𝑜௧∣∣𝑠 ൯ሺ௦ሻ

∑ ൫𝑜௧∣∣𝑠 ൯ሺ௦ሻ
ಿೞ
=1

                       (1) 

where  p(𝑜𝑡|𝑠𝑖) is the likelihood of observation  𝑜𝑡 at state 𝑠𝑖, 
p(𝑠𝑖) is the prior probability of state si, which is assumed to be 
equal with each other, and 𝑁𝑠 is the number of all states. 
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For the phone-level and word-level confidence measures, the 
confidence score is estimated as some kind of average value of 
the confidence scores in previous level respectively. The 
confidence score of the phone ph with aligned observations from 
frame a to frame b is calculated by 

𝐶𝑀ሺ𝑝ℎሻ =
1

−+1
∑ 𝑙𝑜𝑔൫𝑝ሺ 𝑠௧ ∣∣ 𝑜௧ ሻ൯

௧=               (2) 

where 𝑠𝑡 denotes the aligned state at frame t. 
Though several phone-level confidence weighting methods 

[21-23] are proposed to calculate the word-level confidence, they 
mainly depend on both the spotted keywords and the speech 
utterances database. The arithmetic average of phone 
confidences is adopted in the experiments. The confidence score 
of word 𝑤 based on the hypothesized speech segment aligned 
with phone sequence {𝑝ℎ1,𝑝ℎ2, … , 𝑝ℎ𝑁𝑝ℎ

𝑤 } is 

𝐶𝑀(𝑤) =
1

ேℎ
ೢ ∑ 𝐶𝑀(𝑝ℎ)

ேℎ
ೢ

=1                         (3) 

where 𝑁𝑝ℎ
𝑤  is the phone number of pronunciation for word w. 

3 HYPOTHESIS BOUNDARY REALIGNMENT 

Due to the high transition probability β, many negative 
hypotheses, i.e. false alarms, are usually made in the detection 
stage. It should be noted that the positive hypotheses, i.e. hits, 
usually have longer durations than that of the transcription 
reference. It is the non-keyword deletion problem from the non-

keyword’s view. The problem was caused by the similar reason 
as the phone deletion error in phone recognition, which is the 
insertion penalty inter models. However, in the keyword-filler 
HMM network, these non-keyword segments happen to be 
absorbed by the keyword HMM, causing longer hypothesis 
duration than the ground truth. With the biased hypothesis 
boundaries, confidence measure cannot be reliably achieved. To 
solve the problem, the hypothesis boundary realignment is 
proposed to extract the true or more precise keyword boundaries. 
The network of hypothesis boundary realignment is shown in 
Fig. 3. 

 

Figure 3: The network of hypothesis boundary 
realignment. 

Two alternative phone-loop filler components are connected 
with the keyword HMM in the beginning and ending positions. 
In the Viterbi decoding stage, the hypothesized speech segment 
is passed through the realignment network, producing a 
realigned keyword hypothesis with more compact boundaries. 
For example, the processing result of a positive sample for 
keyword ‘always’ is shown in Fig. 4. 

 

Figure 4: Example of boundary realignment. The phonetic transcriptions with time spans are schematically depicted in the 
figure. The width of the unit is proportional to the duration. 

To validate the effectiveness of the proposed method, the 
matching degree between the hypothesis and the reference is 
defined as the overlap ratio: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑡𝑖𝑜(𝑟𝑒𝑓, ℎ𝑦𝑝) =
௦௦௨௧(,ℎ௬)

்௧௨௧(,ℎ௬)
      (4) 

with 
𝐶𝑟𝑜𝑠𝑠𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛ሺ𝑟𝑒𝑓, ℎ𝑦𝑝ሻ = 𝑚𝑖𝑛(𝐸(𝑟𝑒𝑓),𝐸(ℎ𝑦𝑝)) −

𝑚𝑎𝑥(𝑆(𝑟𝑒𝑓), 𝑆(ℎ𝑦𝑝)) + 1                                (5) 

𝑇𝑜𝑡𝑎𝑙𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛ሺ𝑟𝑒𝑓, ℎ𝑦𝑝ሻ = 𝑚𝑎𝑥(𝐸(𝑟𝑒𝑓),𝐸(ℎ𝑦𝑝)) −
𝑚𝑖𝑛(𝑆(𝑟𝑒𝑓), 𝑆(ℎ𝑦𝑝)) + 1                              (6) 

where S(•) and E(•) mean the indexes of the beginning frame and 
ending frame respectively. The higher overlap ratio for a 
hypothesis means the more precise boundaries. Through 
realigning the hypothesis, the boundaries will become more 
precise, as shown in the experiment section. With the more 

precise hypothesis boundary, the CM in the proposed method 
works more reliably. 

4 STATE-LEVEL CONFIDENCE WEIGHTING 

Though the phone-level confidence measure is directly derived 
from frame-level local posterior probability, Eq. (2) can be 
rewritten as duration weighted state-level confidences. 

𝐶𝑀′(𝑝ℎ) =
∑ 𝐶𝑀(𝑠𝑖)𝑇(𝑠𝑖)
𝑁𝑠
𝑝ℎ

𝑖=1

∑ 𝑇(𝑠𝑖)
𝑁𝑠
𝑝ℎ

𝑖=1

                           (7) 

where 𝑁𝑠
𝑝ℎ is the number of states in HMM model of phone ph, 

which is set to 3 for all phones in the experiments, 𝑇(𝑠) is the 
frame number for state 𝑠𝑖, and 𝐶𝑀(𝑠) denotes the confidence 
score for state 𝑠𝑖, aligned from frame 𝑎𝑖 to frame 𝑏𝑖: 
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𝐶𝑀ሺ𝑠ሻ =
1

−+1
∑ log൫𝑝ሺ 𝑠 ∣∣ 𝑜௧ ሻ൯

௧=

=

                            
1

 ்(௦)
∑ log൫𝑝ሺ 𝑠 ∣∣ 𝑜௧ ሻ൯

௧=

                                   

(8) 

The Eq. (7) shows that the baseline method only takes the 
state duration as weight in the derivation of the phone-level 
confidence. Assuming that each state contributes to the phone 
confidence in different degrees, apart from the duration, a 
weight coefficient is added to each state: 

𝐼𝐶𝑀(𝑝ℎ) =
∑ ெ(௦)்(௦)௪
ಿೞ
ℎ

=1

∑ ்(௦)
ಿೞ
ℎ

=1

                         (9) 

where 𝑤𝑖 is the contribution weight of state 𝑠𝑖. If each weight 𝑤𝑖 
is assigned to 1, the proposed method becomes the baseline form 
as shown in Eq. (2). 

The advantage of this kind of weighting is that it works at 
state level, for each phone, so no further adjustment is needed 
for the new keywords to be spotted. This method works well for 
both phone verification and keyword verification, which are 
validated in the experiment section, respectively. 

To obtain the weights, Viterbi algorithm is used for phone-
loop decoding on the training set. Then, for each phone ph, the 
positive hypotheses set 𝐻𝑝ℎ

+  and negative hypotheses set 𝐻𝑝ℎ
−  are 

collected by checking the decoding sequence and the phone-level 
transcription. Based on that, the optimization target is to 
maximize the area under curve (AUC) of receiver operating 
characteristics (ROC) curve. The AUC for a phone ph can be 
approximated as Wilcoxon-Mann-Whitney statistic [24]  

�̂�⎝
⎛𝑝ℎ) =

θ𝑚𝑎𝑥⎝
⎛𝑝ℎ)

|𝐻𝑝ℎ
+ ||𝐻𝑝ℎ

− |
∑ ∑ 𝑆

⎝
⎜
⎛
𝐼𝐶𝑀⎝

⎛𝑢) − 𝐼𝐶𝑀⎝
⎛𝑣))𝑣∈𝐻𝑝ℎ

−𝑢∈𝐻𝑝ℎ
+    (10) 

where | • | means the cardinality of a set, θ𝑚𝑎𝑥(𝑝ℎ) is the callback 
rate for the phone ph, ICM(u) denotes the confidence for the 
phone given hypothesis u, 𝑆(•)is the sigmoid function. The 
objective function is optimized by the generalized probabilistic 
descent algorithm. The vector 𝑤∗corresponding to the optimal 
target gives the learned weights for the current phone. 

5 EXPERIMENTAL RESULTS 

5.1 Experimental Setup 
TIMIT contains 6300 English sentences. Since this database only 
includes training and test sets, it is redivided into training, 
development and test sets. A small part of the original training 
set is used as the development set (400 utterances, 0.34 hours). 
The left part of the original training set is the training set (3296 
utterances, 2.79 hours). The original test set is taken as the test 
set (1344 utterances, 1.14 hours). The dialect utterances (the SA 
sentences) are not used. 

The acoustic features are 12-dimension mel-frequency 
cepstrum coefficients (MFCCs) plus energy and their first and 
second time derivatives. The training set is used to train the 
monophone HMMs. There are three states per phone, and 40 
Gaussians per states after the optimization on the development 

set. The CMU/MIT phone set [25], which contains 39 phonemes, 
is used for HMM models training, and these phones are used in 
keyword model and phone-loop based filler model. 

5.2 Evaluation Metric 
Fifteen words in the TIMIT vocabulary are selected as the 
keywords, which are shown in Table 1. 

Table 1: Keywords Set Used in KWS Experiments 

after always before these 
without please money also 
began dirty forces morning 
only overalls small - 

KWS performance measure is based on Term-Weighted Value 
(TWV) [26, 27], which is a linear combination of the probability 
of missed detections and the probability of false alarms: 
𝑇𝑊𝑉ሺ𝜃ሻ = 1 − ሾ𝑃ெ௦௦ሺ𝜃ሻ + 𝛽 ∙ 𝑃ிሺ𝜃ሻሿ          (11) 
where β is a constant set to 999.9, and θ is the threshold to 
determine a hit or a miss. TWVs for each keyword are averaged 
to yield actual TWV (ATWV). Maximum TWV (MTWV) is the 
best TWV after a search over all possible thresholds.  

5.3 Hypothesis Boundary Realignment 
Fig. 5 shows the evaluation of the realignment procedure by the 
overlap ratio criterion which is defined in Eq. (4). For the words 
‘forces’ and ‘overalls’, the overlap ratio becomes lower. By 
investigating the samples, the main reason is that the last phone 
‘z’ is mistaken as ‘s’ in non-ignorable amount of the hits, which 
are taken as pronunciation error in this paper (Maybe seen 
pronunciation variation problem in other research, but not here.). 
Though lower overlap ratio after the realignment procedure, the 
realigned hypotheses match better with the standard 
pronunciation so that a higher confidence can be produced. For 
the word ‘small’, the overlap ratio change is negligible, because 
of the consonants in the starting and ending position, the 
hypotheses boundaries directly from the detection stage are 
fairly precise. And the proposed method improves the overlap 
ratio of the hits for each other keyword. Overall, the proposed 
boundary realignment method solves the boundary bias problem 
and obtains better performance. 

 

Figure 5: Overlap ratio of the total duration. 
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5.4 State-Level Confidence Weighting based Phone Verification 

Table 2: Performance Comparison for Phone Confidence Measure 

Phone Verification Performance (AUC, %) 

Baseline 
CM 

State-level confidence weighting based CM Improvement 

aa 75.04 75.43 0.39 
ae 73.16 73.35 0.19 
ah 64.68 64.75 0.07 
aw 80.66 81.60 0.94 
ay 78.48 78.89 0.41 
b 70.08 71.43 1.35 
ch 80.90 82.37 1.47 
d 74.38 75.39 1.01 

dh 71.69 72.66 0.97 
dx 80.95 81.13 0.18 
eh 68.20 68.46 0.26 
er 74.22 74.50 0.28 
ey 75.42 75.51 0.09 
f 83.34 83.35 0.01 
g 78.69 78.89 0.20 

hh 80.79 80.88 0.09 
ih 68.22 68.30 0.08 
iy 74.05 75.08 1.03 
jh 83.75 84.66 0.91 
k 79.95 80.59 0.64 
l 72.49 72.49 0.00 

m 78.32 78.47 0.15 
n 76.30 76.69 0.39 
ng 80.00 80.54 0.54 
ow 76.12 76.32 0.20 
oy 88.44 89.13 0.69 
p 79.35 79.93 0.58 
r 72.12 72.62 0.50 
s 72.08 72.93 0.85 

sh 85.64 86.41 0.77 
t 78.92 80.00 1.08 

th 77.46 78.03 0.57 
uh 80.36 81.91 1.55 
uw 74.82 75.40 0.58 
v 77.57 77.87 0.30 
w 76.56 76.93 0.37 
y 77.09 77.30 0.21 
z 77.41 78.50 1.09 

Average 76.78 77.33 0.55 
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Phone recognition is often used to build sub-word based speech 
database index. The verification for each phone is independent, 
which is more appropriate to evaluate the state-level confidence 
weighting method. In this experiment, the speech data of test set 
is used for phone recognition. After the recognition stage, all the 
phones are evaluated respectively. For the hypotheses of one 
phone, each one is given a confidence score. And each 
hypothesis can be labelled as hit or false-alarm based on the 
reference. 

For each phone, the posterior probability and the proposed 
state-level confidence weighting based CM methods are 
compared. The results for the test set are shown in Table 2. From 
the results, it can be seen that the proposed CM method 
performs better for each phone, and the averaged AUC 
improvement is 0.55%. Though the averaged improvement is not 
huge, it should be noted that the phone speech unit is short, 
which means fewer cues available for reliable confidence 
estimation and higher confusable possibility with each other. 
Moreover, a phoneme is the basic unit of a word or phrase. The 
improvement on the basic unit commonly means more 
advancement can be accumulated in a higher level unit, as will 
be shown in the following KWS experiment. 

5.5 KWS Performance 
In addition to the baseline system, the two proposed methods are 
also evaluated. In fact, the proposed two approaches above is not 
conflicting, they can be composed by first hypothesis boundary 
realignment to reach more precise keyword position and 
followed state-level confidence weighting based CM to achieve 
better verification performance. 

Table 3: Performance Comparison of The Baseline And 
The Proposed Kws Systems at Different Optimization 

Levels 

KWS Systems Overall 
Performance (MTWV) 

Baseline 0.3814 
Baseline + (Hypothesis 
boundary realignment) 

P1 

0.4010 

Baseline + (State-level 
confidence weighting) P2 

0.3960 

Proposed Method 
(Baseline + P1 + P2) 

0.4066 

The comparison results of the three above methods are 
shown in Table 3. In the baseline system, the posterior 
probability based CM is used. With the boundary realignment 
procedure (P1) applied, the MTWV is improved by 0.0196. On the 
other hand, the state-level confidence weighting method (P2) is 
effective solely, without P1. Compared to the baseline system, 
0.0146 improvement is achieved. The last system uses both the 

approaches, P1 and P2, and its performance is the best, with 
0.0252 improvement on MTWV. 

6 CONCLUSIONS 

A novel keyword-filler KWS system based on two improvement 
approaches is proposed. The hypothesis boundary realignment is 
first used to extract more precise keyword position from an 
initial hypothesis. The overlap ratio criterion is defined to 
estimate the matching degree between a keyword hypothesis 
with the corresponding reference. Besides, the state-level 
confidence weighting is proposed to improve the confidence 
measure, which not only produces better performance on the 
phone verification, but also brings a significant improvement for 
the KWS system. The keyword-filler HMM based keyword 
spotting system is promising for its flexibility and effectiveness 
properties. In the future work, how to make use of more speech 
context or other prior knowledge in either keyword detection or 
verification stage is worth exploring. 
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