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Abstract 

This paper proposes a robust method of tracking human 

head poses from a sequence of monocular images. First we 

estimate the head pose parameters in the first frame by an 

affine correspondence based method developed in our lab. 

Then both the linear brightness and depth constraint equations 

derived from the small interframe rigid motion assumption are 

used to implement the fast tracking of the head poses. We also 

take advantage of geometry information of the features on the 

face surface to weight the brightness and depth constraint 

equations to get more accurate results. Finally, in order to 

diminish the effects of gradual illumination changes and 

occlusions, we estimate the reliability of the features frame by 

frame and dynamically update the reliable feature set. 

Experiments show the proposed method can robustly track the 

head poses especially for the types of motions which make 

obvious depth variation. 

1. Introduction
Many researchers have proposed different approaches on 

face pose tracking in the past decade. Most of them can be 

classified into two categories: face property-based methods 

[3,9] and model-based methods [4,5,10,11]. In essence, the 

pose estimation problem based on 2D-3D feature 

correspondences is a nonlinear one and quite difficult to find a 

closed form solution. Some researchers [1,7] proposed direct 

and linear methods for the pose estimation. Harville et al [2] 

take advantage of the vedio-depth information provided by a 

stereo camera system and presented a linear method combining 

brightness and depth constraints to estimate the head poses. 

In this paper, we present a robust approach using a 3D head 

model and weighted depth and brightness constraint equations 

to estimate head poses. There are three main improvements 

which contribute to the robustness in our approach. First, we 

use an affine correspondence based method which does not 

rely on the initial pose of the real face to estimate initial pose 

parameters as the starting point of pose tracking. Second, we 

take advantage of geometry information of the 3D face model 

to calculate the weights for each feature for scaling the 

brightness and depth constraints. Third, we evaluate the 

reliability of each feature and update the reliable feature set 

frame by frame. This technique can effectively diminish the 

error accumulations caused by gradual changes of illumination 

or self-occlusion. The performance of our approach was tested 

on several model head image sequences (the ground truth for 

motion parameters are known) and some real head image 

sequences. Experiments show our method can reliably and 

robustly track head poses in a wide range of head motion. 

Fig.1 shows the block diagram of our system. We have 

available 3D head models which are generated with a FastScan

laser scanner. The head images are captured by a Mintron 

64G-1K camera which is calibrated beforehand by using a 

self-calibration method [6]. 

Fig.1 System work flow diagram 

2. Motion Parameter Estimation
We have developed an affine correspondence based method 

[5] to estimate head poses in a single image. It is based on the 

observation that some features on the face (e.g. eyes and mouth 

corners) satisfy the condition of affine transformation. The 

method does not rely on the initial pose of the first frame in the 

image sequence. After the initial pose estimation, we generate a 

certain number of features on the face in the input image using 

the well-known KLT criteria [8] and backproject them to the 

3D head model. KLT method ensures that the selected features 

are located in the region with rich texture in the face and can be 

tracked reliably. Based on rigid and small motion assumption 

between consecutive frames, we can simplify the nonlinear 

pose estimation problem to a linear constraint problem which 

can be solved reliably by some linear optimization methods.  

2.1 Brightness and Depth Constraint Equations 
It’s well-known that the brightness constraint is based on 

the similarity of the intensity of features between adjacent 

frames. Harville et al [2] expand the idea to the depth field and 

derive the linear depth constraint. The head motion parameters 

and the variation of brightness and depth can be related by the 

perspective projection model. Let us denote the coordinates of 

a 3D feature as TZYX ),,(=X and its 2D counterpart 

as Tyx ),(=x , f the focal length of camera. Then the linear 

brightness constraint can be expressed by  
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where
xI ,

y
I  and 

tI are the image intensity gradients with 

respect to x , y and t , is the motion parameter vector, 

and Q  is a matrix relative to the coordinates of a 3D feature. 
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Using the same idea, we can derive the linear depth 

constraint equation in a similar form to (1): 
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where xZ , yZ  and tZ  are the depth gradients with respect to 

x , y and t . Provided the feature number N, we can stack the 

brightness and depth constraints for all features in matrix form. 

Calculating the pose parameters then equals to solving the 

following optimization problem 

min
2

)( HbW − .            (3) 

Here W  is an N N diagonal weight matrix to describe the 

contribution of each feature. Provided N>6, the pose parameter 

vector  can be solved by a weighted linear least square 

method. We will discuss how to determine the weights in the 
next section. 

Generally speaking, the intensity is not very stable and easy 

to be affected by the illumination changes, self-occlusion and 

other subtle factors. The depth of a feature, on the contrary, is 

stable enough to provide reliable constraint for the pose 

estimation. Therefore, we can expect that the combination of 
the brightness and depth constraints produces more accurate 

results. 

2.2 Determination of Feature Weights  
The existence of image noises, illumination changes and 

self-occlusion will cause non-uniform intensity distribution in 

the image and should be represented quantitatively by the 

weights.  

The first aspect to be considered is that the features located 
on the side of face surface should have small weights because 

they are easier to straddle the boundary or to be occluded. Fig.2 

shows a 3D feature X  and its 2D projection x . O  is the 

focus of camera and θ  is the angle between the surface 

normal at X  and the line connecting O  and X .

We define the expression for calculating the weight for 

side as 

ππθω /2)2/,min(1 ⋅−=s  .         (4) 

When 2/πθ ≥ , sω equals to 0, which means X  is invisible. 

When 2/πθ < , the weight varies with respect to θ  linearly 

with smaller θ  yielding larger weight.  

Fig.2 Determination of the weight by the angle θ between the 

surface normal and the direction from the feature to the focus.

Actually, the Taylor expansion used in the derivation of 

constraint equations assumes linear approximation to the 

variation of intensity/depth in the temporal and spatial field. 

When the interval between consecutive frames is small enough, 

the linearity in temporal field can be assured, but the linearity 

in spatial field depends on the surface curvature of the face. 

Smaller curvature part on the face surface means better 

linearity and should contribute more to the estimation of head 

poses. Therefore we calculate the weight for curvature by 

T
TC f
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where fC  is the Gauss curvature at the feature and T  is a 

predefined threshold. When TC f ≥ , 0=cω , which means the 

curvature is too large to satisfy the linear assumption. When 

TC f < , smaller fC  yields larger cω , as Fig.3 shows. 

Taking both aspects into account, we get the total weight 

for each feature as 

                csC ωωω = ,            (6) 

where C  is a scalar constant. 

Fig.3 Features on the surface of a 3D model with different 

curvatures. 

2.3 Inerframe Motion Estimation
In eq. (2), the depth gradients with respect to x  and y  is 

very easy to calculate if we have a 3D head model. So the 

problem is how to compute the depth gradient with respect to t .

Some researchers use the video-rate depth information [2] to 

calculate the depth gradient with respect to t and combine the 

linear brightness and depth constraint eq.(1) and (2) to build a 

single linear system. Because the video-rate depth information 

is not available in our system, we use the brightness and depth 

constraints in a different way. The main steps are described as 

follows: 

1) Assume the set of all features generated after the initial pose 

estimation is { }N

iipP
1== . Form feature group set { }M

jjGG
1=

= ,

with each group { } NnpG
n

igij <=
=

,
1

 and Ppgi ∈ ,

gip being randomly selected from P .

2) Use the brightness constraint eq.(1) to estimate the head 

pose parameters jΦ for each feature group jG . The set of all 

pose parameter groups is { }M

jj 1=
Φ=Φ .

3) For each pose parameter group Φ∈Φ j , calculate the 

median of the errors between the 2D features and the 2D 

projections of all 3D features. Then sort Φ  in ascending 

order according to the median errors and select first M ′
groups to form a new set { }M

jj
′

=
Φ=Φ′

1
, MM <′ .

4) Calculate the depth at time t+1 for each pose parameter 

group in Φ′ . Then use the technique to be described in section 

4 to determine reliable pose parameter groups and calculate the 

mean of depths for each feature in P .

5) Use the depth mean to calculate the depth gradient with 

respect to time t. Then compute the final pose parameters by 

the depth constraint eq.(2).   

We iterate above steps to realize the temporal head pose 

tracking.   

3. Dynamic Feature Updating 
Because of the inevitable presence of errors while tracking, 

some features may not be reliable any more. Although we have 

put smaller weights to the features which may be unreliable, a 

better way is to discard them when the projection errors are too 

large to be accepted. We update reliable feature set used in the 
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calculation of pose parameters frame by frame. The main steps 

are explained as follows: 

1) At each frame (except the first frame), after the estimation of 

pose parameters, calculate the errors between 2D features and 

2D projections of all 3D features and build an error set 

{ }N

iiE
1== ε , which is sorted in ascending order.  

2) Give an initial guess (for example, 0.9) for the ratio r of 

reliable tracked features. Build a set of reliable 

features R which contains the first rNN r ×=  elements in 

E  and a set of unreliable features U which contains rNN −
elements. 

3) Compute the mean m  and standard deviation σ  of the 

elements in R .

4) Search in E  for elements which satisfy the condition 

σε 5.2>− mi , assume the number is uN .

i) if NNN ur =+ , then go to V , current R  is the 

reliable feature set.  

ii) if ru NNN −> , then 1−= rr NN , move the last 

element of R to the first position of  U , then go to step 3.  

iii) if ru NNN −< , then 1+= rr NN , move the first 

element of U to the last position of R , then go to step 3. 

5) We remove unreliable features in U  and use the KLT 

criteria [8] to generate the same number of features in the face 

to complement the reliable feature set R .

After the updating operation, we use the new feature set to 

estimate the next interframe motion parameters.  

4. Experimental Results  
We designed two experiments to examine the effectiveness 

of our approach. The first one aims to test the accuracy. We put 

a model head on a turntable which can rotate with known 

angles and simulate rotations of the face around X-, Y-, and 

Z-axes respectively, as Fig.4 shows. 

Three image sequences are used in the first experiment. 
They were captured frame by frame, which ensures the rotation 

angles between adjacent frames are known. The first sequence 

begins with the front position towards the camera. Then the 

head makes 70− , 70+ , 70− and 70+ rotations (1 degree 

per frame, total 280 frames) around the Y-axis and return to the 

starting position. The second and third sequences also begin 
with the front position and rotate around X- and Z-axes, 

respectively. The rotation angle ranges from 45− to 45+ (1

degree per frame, total 180 frames). 

Fig.4 Model head image sequences. Left: the intensity image of the 

model head and its 3D data. Middle-left: two extrema and the 

initial position for the first sequence. The Middle-right: two 

extrema and the initial position for the second sequence. Right: 

two extrema and the initial position for the third sequence.   

We demonstrate four sets of results for the following 

methods: 1) The Brightness Constraint (BC) based method only, 
2) Both BC and Depth Constraint(DC) based method, 3) 

Weighted BC and DC and 4) Weighted BC, DC and Dynamic 

Feature Updating (DFU) based method, as Fig.5 shows. The 

estimated results only using BC are quite inaccurate for all 

three kinds of rotations because it only uses the intensity 

information in 2D images and is easily affected by noises, 

illumination changes and occlusions. The method combining 

BC and DC can remarkably improve the performance except 
for the rotations around Z-axis because there is no obvious 

depth variation there. Weighted BC and DC can reduce errors 

especially when the face reaches to the extrema of rotations 

where the occlusions and unreliable feature tracking may occur. 

The most notable effect of DFU is diminishing the 

accumulative errors for the long-term tracking.  
We also recorded three real face image sequences (each has 

190 frames, about 8 seconds) include rotation about X- and 

Y-axes and a freewill rotation. Figure 6 shows some selected 

frames from the image sequences and the estimated results. We 

can see obvious errors in the fourth image. It is a good proof 

that DFU can effectively diminish the accumulative errors. 

5. Conclusions
We have presented a model based method of head pose 

tracking from a monocular image sequence. We weight the 

depth and brightness constraints and use a dynamic feature 

updating technique to achieve long-term and reliable pose 
tracking. A generic head model can be used in future work, In 

addition, an affine motion assumption in 2D images also can be 

considered to make better constraint condition. 
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Fig. 5 Comparison of ground truth (solid line) with the computed rotation angles (in radians) around Y-axis (first row), X-axis

(second row), and Z-axis (third row) separately. At each row, Left: BC only. Middle-left: BC and DC. Middle-right: Weighted BC 

and DC. Right: Weighted BC, DC and DFU. (BC: Brightness Constraint. DC: Depth Constraint. DFU: Dynamic Feature 

Updating.) 

Fig.6 Left upper row: Frame 90 in sequence 1, frame 145 in sequence 2, frame 187 in sequence 3, 

frame 122 in sequence 3. Left bottom row: Corresponding pose estimated results of the images in 

first row. The three images from the left are estimated by our method, the fourth by BC and DC. 

Right: Computed rotation angles for three image sequences with rotation around Y-axis, X-axis 

and the free will rotation (from left to right). 
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