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Abstract 

In this paper a novel tracking method based on 3D Spatial-
Temporal Markov Random Field (3D S-T MRF) is 
proposed. By taking temporal axis into account the 
traditional spatial MRF is extended to 3-D.  Object tracking 
can be regarded as a labeling problem, i.e. assigning every 
pixel a label 0 or 1, of which 1 stands for tracking region 
and vice versa. Through defining proper 3D MRF structure, 
such as the nodes, neighbor system, data energy and 
smooth energy function, color cue and motion cue can be 
fused naturally. The labeling problem comes down to an 
energy minimization problem. Considering the simplicity 
and efficiency, Iterated Conditional Method (ICM) 
algorithm is used to minimize the energy function. The 
experiments show that this method can get promising 
results in challenging background and to some extent is 
robust against occlusions owing to the fusion of motion and 
color information through energy function.  
 

1 Introduction 

An efficient objects tracking algorithm in complex 
environments is a challenging task. Recent years much 
progress has been made in this domain and various 
algorithms have been proposed. Generally speaking, two 
major kinds of methods can be concluded, i.e. deterministic 
and probabilistic approaches. As the deterministic approach, 
Comaniciu et al. [2] proposed the mean-shift method which 
estimates the non-parametric density gradient based on 
color histogram. This method is quite effective and can 
handle partial occlusions. But it is hard to continue if 
complete occlusion occurs. As the probabilistic approach, 
Isard et al. [5] proposed CONDENSATION algorithm, also 
called particle filtering or bootstrap filtering. As multi-
modal feature based tracking, Liu et al. [4] presents a 
Bayesian network based multi-modal fusion method for 
robust and real-time face tracking.  
 
At present, object tracking under occlusions or clutter 
environments is still a challenging problem. In Mean Shift 
algorithm, if the object is totally occluded in two 
consecutive frames, the algorithm has difficulties in keep 

tracking. Moreover, because it presents the object using 
only kernel estimate of color distribution, when in clutter 
environments or there are similar objects around, it will be 
influenced greatly. A common way to handle occlusion is 
to fuse the information of object motion under Mean Shift 
framework. 
 
Markov Random Field model in computer vision 
applications was first interpreted and used by Geman[8]. 
After that, MRF model has been employed successfully and 
widely in image applications such as restoration and 
segmentation [3,6]. In this paper the traditional MRF is 
extended to 3D Spatial-Temporal by taking time axes into 
account, a similar idea was proposed at [9]. Shunsuke 
KAMIJO used this model to track vehicle by referring to 
local motion vectors, texture and labelling correlations. 
However they don’t use the color information and the 
model is only suitable for rigid object such as vehicle. In 
our paper the color and motion cues are fused through 
energy function and can be used for non-rigid object 
tracking such as human body.  
 
The rest of this paper is organized as follows. In section 2 
we give a precise description of the 3D MRF model and 
derive the energy minimization problem. Section 3 shows 
the experimental results of our proposed method. 
Conclusions are made in section 4. 

2 Tracking Algorithm 

2.1 3D Spatial-Temporal MRF Model 

As well known, markov chain is defined in time domain to 
process sequential data such as speech signal. Take the 
Hidden Markov Model (HMM) for example, this model 
consists of a finite set of states, each of which is associated 
with a probability distribution. Generally speaking, it can 
be called 1-D MRF. 
 
As to 2D MRF which is most common in image 
applications, it’s defined in space domain, namely, (i, j) 
lattice of an image. Given observation O and some 
constraints, it’s required to obtain scene S to make the 
posterior probability maximum. 
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The data energy is defined as follows, According to Bayesian and Hammersley-C1ifford theorem 
the follow equation can be derived: 
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Usually, U(s) is called smooth energy and U(o|s) data 
energy. Then solving the MRF model will come down to an 
energy minimization problem.  
 
Note that video is a series of image sequence, by adding 
time axes 2D MRF is extended naturally to 3D MRF 
defined in (x, y, t) space. Consequently tracking one object 
in an image sequences is equivalent to inferring the label of 
each pixel according to its observation, i.e. inferring label 
field L from observation field O.  
 
In current frame, the coordinates of each pixel p can be 
written as p = (i, j, t), which associates a corresponding 
hidden state node s(i, j, t) or called the label and the data 
node d(i, j, t) i.e. the observation. Each pixel interacts with 
in spatial domain (i±1, j, t) and (i, j±1, t), and in time 
domain (i, j, t-1) which is the counterpart in the previous 
frame t-1. In sum, each pixel has four spatial neighbors and 
one temporal neighbor and the decision of its label receives 
influence from the five neighbors through potential 
functions (also called energy function). The total energy is 
the sum of the two following terms: 

( , ) ( ) ( , )E l o E l E o lλ= +  
The first term denotes the smooth energy representing the 
prior constraints between neighboring pixels, while E(o,l)  
denotes data energy representing the likelihood of the label 
given observation. λ is the constant to control the weight of 
data energy.  

2.2 Definition of Energy Functions  

The energy function includes two terms, data energy and 
smooth energy. The smooth energy is define as 
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Here li and lj are the neighbouring pixel in a clique, and 
Vc(li,lj) is the smooth energy associated with every clique c. 
In order to impose the smooth constrains to the neighbor 
and remove the isolated points caused by noise, the energy 
function is defined as Potts model, 
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This term is the smooth constraint which makes the labels 
of neighboring pixels tend to be the same. The parameter β 
can be different for spatial neighbor and temporal 
neighbors. 
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ixel p(i,j) its likelihood p(o|l) is computed as follows. 

then stored. 
Usually the kernel function is the Guass kernel: 

∈∈ . 

For each pixel, pi(o|l) represents the probability that 
observation o belongs to tracking region and lnpi(o|l) is the 
log likelihood. To integrate motion cue and color cue,

(6) 
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Assume that the background and the camera is static, which 
is common in really world applications. At first the 
probability density function (PDF) of the background and 
the target region are estimated. Owing to the static 
background and aims of reducing the computing 
complexity, the estimate of background probability density 
is only computed once using kernel method and 
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follows[1], 
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different bandwidth σ
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gion and smaller weight for samples from the boundary. 

region is selected 
anually as a rectangle in initial step. 

 pcolor_1 can be expressed as p0(yi,j) and 
(y ) respectively. 

nt. With the 
me going, the background model is updated.  

The probability that one pixel belongs to background is 

j. Usually a weighted version can be 
used in which bigger weight is given to samples inside the

(8) 
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For the target region p1(y), it should be evaluated each 
frame because the object may be non-rigid and the 
appearance changes over time. Therefore the simple 
histogram method is adopted instead of the expensive 
kernel estimate. The initial target 
m
 
For each pixel, back project the color observation which is 
represented by vector yi,j(H,S,V) to the background density 
p0(y) and the object density p1(y), and hence the color 
likelihood pcolor_0 and

(4) 

p0 i,j
 
Background subtraction method is adopted as the motion 
cue to detect the rough body area on which the accurate 
area is estimated. For the aim of computing simply, single 
Guass model is used. The gray level of each pixel is 
represented by Guassian distribution N(y;μ,σ2). The 
parameter μ and σ is estimated according to the first several 
frames in which the tracked foreground is abse
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Equivalently, the probability of belonging to the tracking 
object is 
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It is defined as the motion likelihood.  
 
The minimum method is used to integrate the two cues: 
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Hence the log likelihood and the data energy can be 
obtained. 

2.3 Improved Neighbour Definition in Occlusion 

To resolve occlusion necessarily need to model the object 
motion because the observation data is incomplete in these 
circumstances. Look back the definition of neighbor system, 
it can be found that the temporal neighbor is not suitable in 
occlusion situation. Therefore, it’s reasonable to make use 
of the estimated motion vector to redefine the temporal 
neighbor. Assume that in frame t occlusion happens, the 
motion vector V=(vx, vy) can be estimated according to the 
locations tracked in former N frames. The temporal 
neighbor of pixel (i, j) is the one shifted backward in the 
amount of the motion vector V=(vx, vy) in previous frame.  
 
The algorithm will judge whether the tracked target is 
occluded by computing the number of labels assigned to the 
target which is denoted as N. Set the threshold Th in 
advance and then compare N with it. If in one frame the 
number of labels satisfies N-Th<0, the color distribution of 
the target p(y) in that frame will be kept and the new 
neighbor definition based on motion vector works, which is 
described in Fig. 1:  
 

 
Fig.1. The new definition of temporal neighbor works 

when occlusion is detected 

2.4 ICM Solution 

Solving the MRF model comes down to an optimization 
problem. Iterated Conditional Modes (ICM) [7] uses a 
deterministic greedy strategy to find a local minimum. It 
initializes with an estimate of the labeling, and then for 
each pixel, selects the label whose energy function is the 
lowest. This process is repeated until convergence. 
However, the ICM method is extremely sensitive to the 
initial estimate. Generally it is initialized by assigning each 
pixel the label with the lowest data cost i.e. the larger 

likelihood probability and it is proper demonstrated by the 
result. Generally the diagram of this method is depicted as 
Fig.2. 

 
Fig.2. the diagram of MRF based tracking algorithm. 

3 Experimental results 

This method is implemented on 6 video sequences captured 
at the rate of 12 frames/second in an indoor laboratory 
environment. HSV color space is used considering that 
RGB space is sensitive to illuminative variations. When 
pixels’ color has a small saturation near zero, hue is 
sensitive and inaccurate, which results in inaccuracy and 
noise in the back projection image. In view of this, low 
limits are set for saturation and value. 

 
Totally, objects in 86% frames can be tracked successfully. 
As to the reasons for failure, one is that the color 
distributions of background and objects are too similar, 
another is that the object may go out of the view and the 
algorithm will fail. The performances on one typical video 
are shown in Fig.3 and Fig.4 compared with mean-shift 
method. The tracked object is the girl in red coat. At the 
same time, one boy in similar color comes near. As 
demonstrated in Fig.3, the result rectangle tends to transfer 
and fails because mean shift algorithm only takes into 
account the color information. Fig4 is the results produced 
by 3D MRF algorithm, which considers not only the 
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appearance and color cues but also the motion and spatial 
information through energy function. Consequently, this 
algorithm is robust to occlusion to some extent. 

       
(a)frame55                                       (b)frame59 

       
(c)frame61                                    (d)frame63 

        
          (e)frame71                                    (f)frame73 

Fig.3.results of mean shift algorithm 
 

     
             (a)frame55                                         (b)frame59 

     
                 (c)frame61                                           (d)frame63 

     
(e)frame71                                          (f)frame73 

Fig.4. results of the algorithm proposed in this paper 
There are yet several aspects that can be improved and 
advanced. For example, given that the tracker is applied to 
human, we can put the prior shape and edge constraints on 
the data energy and can expect better performance. 

4 Conclusions    

In this paper, a 3D spatial-temporal MRF method is 
proposed for visual tracking. Tracking can be expressed 
elegantly as a labeling problem under this method. The 
total energy is the function of the label field and solving the 
labels comes down to an energy minimization problem. 3D 
MRF model can integrate appearance and motion cues 
naturally. What’s more, it considers not only the spatial 
constraints through proper smooth energy but also the 
temporal constraints imposed by the neighbor frame 
through data energy. The experimental results show that 
this method can obtain robust performance in occlusion 
situation.  
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