1. A Fast and Accurate Super-Resolution Network Using Progressive Residual Learning

Accession number: 20203309040590
Authors: Liu, Hong (1); Lu, Zhisheng (1); Shi, Wei (1); Tu, Juanhui (2)
Author affiliation: (1) Peking University, Shenzhen Graduate School, Key Laboratory of Machine Perception, China; (2) Tencent Media Lab
Source title: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Abbreviated source title: ICASSP IEEE Int Conf Acoust Speech Signal Process Proc
Volume: 2020-May
Part number: 1 of 1
Issue title: 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
Issue date: May 2020
Publication year: 2020
Pages: 1818-1822
Article number: 9053890
Language: English
ISSN: 15206149
CODEN: IPRODJ
ISBN-13: 9781509066315
Document type: Conference article (CA)
Conference name: 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Conference date: May 4, 2020 - May 8, 2020
Conference location: Barcelona, Spain
Conference code: 161907
Sponsor: The Institute of Electrical and Electronics Engineers, Signal Processing Society
Publisher: Institute of Electrical and Electronics Engineers Inc., United States

Abstract: Single-image super-resolution (SISR) task has witnessed great strides in the past few years with the development of deep learning. However, most existing studies concentrate on exploiting much deeper super-resolution networks, which are not friendly to the constrained computation resources. In this work, a lightweight network using progressive residual learning for SISR (PRLSR) is proposed to address this issue. Specifically, a progressive residual block (PRB) is designed to progressively downsample deep features for reducing the redundancy and obtaining refined features. Simultaneously, a high-frequency preserving module is proposed to lower the detail loss caused by resolution reduction in PRB. Furthermore, a residual learning-based architecture with learnable weights is utilized to extract multilevel features and adaptively adjust the contribution of residual mapping and identity mapping in residual structure to accelerate convergence. Experimental results on four benchmarks show that our PRLSR achieves superior performance over state-of-the-art methods with a significantly decreased computational cost. © 2020 IEEE.

Number of references: 27
DOI: 10.1109/ICASSP40776.2020.9053890
Funding Details: Number: 61673030, U1613209, Acronym: NSFC, Sponsor: National Natural Science Foundation of China; Number: -, Acronym: NSFC, Sponsor: National Natural Science Foundation of China;
Funding text: This work is supported by National Natural Science Foundation of China (NSFC U1613209, No.61673030).
Compendex references: YES
Database: Compendex
Compilation and indexing terms, Copyright 2020 Elsevier Inc.