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ABSTRACT

Tracking failure is an inevitable event in real-time monocu-
lar simultaneous localization and mapping (SLAM) system.
Relocalization procedure that focuses on exploring a visited
place to relocalize a camera is usually used to handle this
problem. However, this strategy abandons the poses of the
frames captured after tracking failure, resulting in losing a
part of trajectory with respect to the ground truth. Therefore,
a re-tracking strategy (RTS) is proposed to estimate these a-
bandoned frames. An automatic local initialization is acti-
vated to initialize a new tracking process when tracking fails.
Trajectory correction and fusion are employed when a loop
closure is detected. When the last frame of the sequence is
detected, the trajectories that cannot loop with the original tra-
jectory should be culled by trajectory culling procedure. Ex-
perimental results on two challenging datasets, TUM RGB-D
and NewCollege, indicate that the proposed method achieves
low root mean square error (RMSE) and high trajectory com-
pleteness rate (TCR), especially for rapid moving camera.

Index Terms— Re-tracking strategy, tracking failure,
loop closure, monocular, SLAM

1. INTRODUCTION

Monocular SLAM is a visual motion estimation method
which tracks each frame to simultaneously estimate the state
of a camera and the map of environments using a monoc-
ular camera [1-3]. It has been widely applied in real-time
applications, e.g., cleaning robots [4], micro aerial vehicles
(MAV5s) [5,6] and augment reality (AR) [7, 8].

Various monocular SLAM methods have been developed
in recent years. These methods can be broadly classified in-
to direct methods [9, 10] and feature-based methods [11-13].
Direct methods, e.g., dense tracking and mapping (DTAM)
[14] and large-scale direct monocular SLAM (LSD-SLAM)
[15, 16], use the intensities of all the image pixels to estimate
the trajectory of the camera and a 3D map of the scene. These
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Fig. 1. Maps of the fr3_long_office_household sequence from TUM
RGB-D dataset when down sampling rate is six. Black: ground truth
(GT). Blue: estimated trajectory (ET). (a) and (c) Ground truth and
estimated trajectory. (b) and (d) Corresponding map point clouds.

methods are robust to poor texture, defocus, and motion blur.
However, direct methods demand for fine initialization and
high computing power (e.g., GPUs) [17, 18], which limits
their applications in many fields. In the contrary, feature-
based methods use sparse feature correspondences to com-
pute the relative motion between two frames. The scene is
represented as a set of sparse 3D landmarks. Klein et al. [12]
introduce a dual-thread algorithm, known as parallel track-
ing and mapping (PTAM), which splits tracking and map-
ping into two separate threads. Motivated by PTAM, ORB-
SLAM is proposed by Mur-Artal [13] and achieves unprece-
dented performance. This method separates the system into
three threads: tracking, local mapping, and loop closing. Al-
though significant progress has been achieved, monocular S-
LAM still remains a challenge, since the tracking process is
fragile to fail (i.e., tracking failure) due to rapid moving cam-
era, occlusions, illumination changes and motion blurs. Most
of the existing monocular SLAM systems, including ORB-
SLAM, utilize relocalization procedure to deal with tracking
failure. The frame pose estimation will be suspended until the
camera is correctly relocalized. This implies that the system
will lose a part of trajectory with respect to the ground truth.
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Fig. 2. Flowchart of proposed re-tracking strategy

As shown in Fig.1(a) and Fig.1(b), the tracking process is in-
terrupted due to the fast rotation, thus only a part of camera
trajectory can be estimated by ORB-SLAM.

To tackle this problem, a more active strategy based on
ORB-SLAM, named re-tracking strategy (RTS), is proposed
in this paper. Instead of waiting for relocalization to succeed
and suspending frame pose estimation, the frames abandoned
by forementioned monocular SLAM methods are taken ful-
1 use of by RTS. The main idea of RTS is to automatically
initialize a new tracking process after tracking fails, thus the
poses of abandoned frames can be estimated and a new tra-
jectory is generated. Once a loop closure is detected, the new
trajectory is fused into loop trajectory. As shown in Fig.1(c)
and Fig.1(d), a new trajectory is generated after tracking fails
in no time. The flowchart of our re-tracking strategy is shown
in Fig.2. There are three procedures in our method: local
initialization, trajectory correction and fusion, and trajecto-
ry culling. When the system fails to track the pose of a new
frame, a tracking failure is detected and then the local ini-
tialization is activated to relocalize this frame. If this frame
fails to relocalize, our method will try to initialize a new track
process and generate a new trajectory from current location.
When a loop closure is detected, the trajectory correction and
fusion procedure takes charge of correcting the current trajec-
tory and fusing it into the loop trajectory. If the last frame of
the sequence is detected, the trajectories that cannot loop with
the original trajectory will be culled by trajectory culling.

2. RE-TRACKING STRATEGY

2.1. Local Initialization

An adaptation of automatic map initialization in ORB-SLAM
is used in our algorithm. As shown in Fig.2, the relocalization
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Fig. 3. A toy example of re-tracking strategy. [y is the original tra-
jectory colored in blue; Iy and [ are the trajectories generated by
RTS after twice tracking failures; ¢, j, k& denote three keyframes;
the black dash lines refers to breakages denoted by b, and b2. (a) a
tracking failure is detected at keyframe ¢, and trajectory !, is gener-
ated by RTS. Three trajectories are shown in (b), and a loop closure
is detected between keyframe j and k. (c) trajectory ls is corrected
and fused into trajectory /o, denoted by “llo”.

procedure will be executed to relocalize a new frame when
a tracking failure is detected. If the new frame is correctly
relocalized, the temporary variables generated by local ini-
tialization will be deleted by local reset procedure, and then
the pose of the new frame will be estimated. Otherwise, the
system will try to generate a new trajectory by performing lo-
cal initialization procedure. A toy example is shown in Fig.3
to illustrate the local initialization procedure. As shown in
Fig.3(a), the system fails to relocalize new frames after detect-
ing a tracking failure at keyframe ¢, which results in breakage
denoted by dash line. However, the system correctly initial-
izes a new tracking process soon after tracking failure, and
then a new trajectory /; colored in green is generated. Since
the tracking failure is detected twice in Fig.3(b), there are t-
wo breakages by, by and three trajectories Iy, l1, l2, colored in
blue, green, and brown respectively.

2.2. Trajectory Correction and Fusion

When the scene captured by a camera is the same as visited
place, (i.e., a loop closure is detected), the current trajecto-
ry needs to be corrected and fused into the loop trajectory.
In Fig.3(b), a loop closure is detected between the curren-
t keyframe j and the loop keyframe k. The accumulated error
of current trajectory [ is corrected and fused into loop trajec-
tory ly, as Fig.3(c) shows.

In order to correct trajectory, the similarity transformation
S¢,; from the current keyframe c to the loop keyframe [ is
firstly computed as shown in formula (1), indicating the error
accumulated in the loop:

Seu = { 30’5?071 t;l } € Sim(3), (1)

where s.; € R refers to the scale factor; R.; € SO(3) and
t.; € R? are the rotation and translation parts of keyframe
pose T.., € SE(3) respectively, where SO(3) and SE(3)
are the special orthogonal group and the special Euclidean
group; Sim(3) is the similarity transformation group. Then,
the current keyframe pose T ,, is corrected with S ;:

Ti?':) = Sc,l : Tl,wa (2)
where w stands for the world reference, and T<°" is the cor-

c,w
rected pose. This correction is propagated in two different
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conditions. If the current keyframe c and the loop keyframe [
are located in the same trajectory, the correction will be prop-
agated to all the neighbor keyframes of current keyframe. The
correction method of this condition can be seen from [19].
Otherwise, as shown in Fig.3(c), the correction will propagate
from back to front. Therefore, all the keyframes belonging to
the current trajectory will be corrected. Formulation for this
condition are shown as follows.

The relative transformation AT._,41 .-, from each
keyframe pose T._ 41 to its earlier adjacent keyframe
pose T'._, ., is computed as follows:

AchaJrl,cfo' = chcr+1,w . T71 €)]

c—o,w?

where 0 = (1,2, ...,n — 1); n refers to the keyframe number
of the current trajectory; T;la’w is the inverse of T'._; 4.

Note that the current keyframe has been corrected in
formula(2), the rest of the keyframes belonging to the current

trajectory need to be corrected:

TCO’I"

c—o,w

_ -1 cor
- ATC*U+1,C70 : Tc—a-&-l,w‘ (4)

Finally, the current trajectory label should be modified to
the loop trajectory label. As shown in Fig.3(c), trajectory [,
is fused into trajectory [y and colored in blue. The label “2”
is modified to label “0”, denoted by “l(/)”.

2.3. Trajectory Culling

The trajectory culling procedure works in two case. Case I:
As can be noticed, several trajectories may be generated due
to the frequent tracking failures. However, the monocular S-
LAM systems in generally need to output a single camera tra-
jectory. Therefore, the trajectories that cannot loop with o-
riginal trajectory are considered as redundant. When the last
frame of the sequence is detected, the redundant trajectories
should be culled. As shown in Fig.3(c), the accumulated er-
ror of the trajectory /; cannot be corrected, since it cannot
loop with original trajectory [y, and should be culled when the
last frame is detected. Case II: In order to avoid unnecessary
memory overload, a threshold 7. is set to limit the quantity
of trajectory. If the number of trajectory is greater than 7.,
the trajectory with the oldest label will be culled. With this
strategy, our method only needs to maintain a certain amoun-
t of trajectories, and will output a longer trajectory than the
general monocular SLAM systems.

3. TRAJECTORY COMPLETENESS RATE

Absolute trajectory root mean square error (RMSE) is the
most widely used evaluation metric in monocular SLAM,
which evaluates the accuracy of the estimated trajectory.
However, accuracy and completeness of the trajectory are
both significant metrics in some applications, such as 3D
reconstruction shown in Fig.1. The accuracy of Fig.1(a) is
similar to that of Fig.1(c), however, the estimated trajecto-
ry length of ORB-SLAM is much shorter than that of RTS.

Hence, a new evaluation metric named trajectory complete-
ness rate (TCR) is defined to evaluate trajectory completeness
for monocular SLAM, as follows:

Les
n ==L % 100%, (5)
Lyt

N-1
L= Z pit1 —pill - fi,

P (©6)
07 Zf ‘tl - ti71| > Tmamv

where f; =
f { 1a Zf ‘ti - ti—1| < Tmax~

In formula(5), n is the TCR; L.y and Ly, are the length-
s of estimated trajectory and ground truth respectively. In
formula(6), L refers to the trajectory length; NV is the num-
ber of keyframe; p, and ¢; are the camera location and the
timestamp of the i-th keyframe respectively; || - || is the Eu-
clidean distance; | - | is the absolute value. The adjacent pairs
of which timestamp difference exceeds the threshold T},
are discarded by multiplying an indicator f;, since they are
considered as mismatched pairs due to the breakages in the
estimated trajectory.

4. EXPERIMENTS AND DISSCUSSIONS

A large number of experiments are conducted on two datasets,
NewCollege [20] and TUM RGB-D [21]. To test the validi-
ty of the proposed method for fast moving camera, the TUM
RGB-D sequences are down sampled with a rate of 1, 2, 4,
6 to proportionally speed up camera movement. These pro-
cessed sequences are challenging since the rotation and trans-
lation are faster than the raw sequences, as well as lower field
of view overlap. In our experience, the T;. and T,,,, are set
as 10 and 2 seconds. All experiments are carried out with an
Intel CPU 17-4720HQ (8 cores @2.60GHz) and 8GB RAM.
TUM RGB-D is an excellent dataset to evaluate the accu-
racy of camera localization as it provides several sequences
with accurate ground truth, containing 89 sequences. Fol-
lowing the protocol of [13], we discard those sequences that
contain strong illumination changes, no texture, or no camera
motion, which are considered not suitable for pure monocu-
lar SLAM systems. Ten sequences are selected, and the av-
erage translational velocities of these sequences range from
0.06 m/s to 0.41 m/s. For comparison, we use the novel
keyframe-based ORB-SLAM in the dataset. Table I shows
average performances over five runs on each of ten selected
sequences. The emphasized data shows the outperformance.
Although the down sampling rate increased, the result-
s show that both RTS and ORB-SLAM can process all the
sequences. The absolute trajectory RMSE remains relatively
stable, except for sequence fr2_360_kidnap. This is an in-
dustrial hall scene with few texture, and the camera rotates
horizontally around 360 degrees. The camera is covered with
a hand for a few seconds and then pointed to a different lo-
cation. The view overlap decreases considerably when this
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Table I. Comparisons on the TUM RGB-D dataset [21] with evaluation methodology of TCR and RMSE

ORB-SLAM [13] RTS (ours)
TCR(%)! RMSE(cm)? TCR(%)! RMSE(cm)?

sequence Avg. T. Vel.! 1 2 4 6 1 2 4 6 1 2 4 6 1 2 4 6

fr2_xyz 0.06 20.71 20.31 31.52 31.18 0.27 0.27 0.30 0.27]| 25.65 28.62 2843 28.70 0.30 0.28 0.25 0.28
fr2_desk_person 0.12 72.04 7691 7497 7239 0.73 0.90 093 092] 8242 8029 8223 7841 0.69 0.88 0.98 0.78
fr3_str_tex_near 0.14 99.96 9998 9559 97.04 133 1.19 1.55 1.74|99.59 99.75 9997 96.08 126 133 1.59 1.81
fr3_sit_halfsph 0.18 85.67 86.02 86.55 6393 1.19 141 1.80 1398579 8634 86.74 63.09 1.62 1.51 1.72 1.68
fr3_str_tex_far 0.19 88.99 9277 91.28 8741 1.07 1.07 1.07 096 86.81 9232 91.51 91.01 1.11 097 099 0.93
fr3_walk_halfsph 0.22 68.45 59.17 49.88 26.09 193 1.75 157 1.59]| 76.50 56.43 50.00 26.54 1.66 1.53 1.71 1.85
frl _xyz 0.24 67.37 61.75 4683 3443 094 1.01 1.81 1.36|70.89 63.88 52.11 41.05 1.10 1.03 142 1.06
fr3_long_office 0.25 99.92 99.89 88.38 47.00 1.34 1.82 1.56 1.23]99.91 99.87 99.94 89.73 146 1.52 1.66 1.48
fr2_360_kidnap 0.30 45.02 41.06 37.19 18.68 3.33 4.02 558 6.75]69.79 69.63 7845 3632 8.03 8.36 947 12091
fr1_desk 0.41 9746 67.09 3335 082 154 199 2.17 0.86|97.84 77.52 5547 092 185 1.81 1.88 0.81

! The length of ground truth and average translation velocity (Avg.T.Vel) can be taken from website: http://vision.in.tum.de/data/datasets/rgbd-dataset.

2 The estimated trajectory is aligned with ground truth to get minimal RMSE by adjusting scale factor.

sequence is down sampled. Therefore, it’s hard to accurately
estimate the camera trajectory.

As for trajectory completeness, it can be observed that the
TCR decreases significantly as the down sampling rate in-
creases when performing ORB-SLAM, for the sequences
with average translation velocity over 0.24m/s. While
our method maintains high TCR when tracks these se-
quences. In particularly, when down sampling rate is six,
for fr3_long-of fice_household (fr3_long_office), the com-
pleteness of trajectory estimated by our method is up to
89.73% of the ground truth, while ORB-SLAM achieves
47.00%. As shown in Fig.1, the large camera rotation leads to
tracking failure and breaks the estimated trajectory. Fig.1(c)
shows that RTS generates a new trajectory soon after break-
age, while ORB-SLAM can recover tracking only after the
camera is correctly relocalized.

It is noted that, the TCR of fr1_desk is rather small when
the down sampling rate is six, for both ORB-SLAM and RTS.
This is a cramped office scene containing several sweeps over
four desks. The view changes fast and it takes a long time
to initialize and then fails tracking quickly. It’s quite hard
to successfully perform local initialization. In the rest of the
sequences, our method exhibits similar performance to ORB-
SLAM, due to the low translation velocity and bare tracking
failure.

NewCollege is a 2.2 kilometres, outdoor, dynamic long
term sequence containing several loops and fast rotations,
which is quite challenging for monocular SLAM. The im-
ages are on average taken by a stereo camera equipped on
a robot at 20 fps, 1.5 m/s average speed, and a resolution
of 512 x 382. ORB-SLAM is the first monocular system
which successfully processes this whole sequence at frame
rate. However, when the sequence is down sampled with a
rate of three, ORB-SLAM fails to estimate the trajectory of
the parkland (the bigger loop on the right), shown as Fig.4(a).
The tracking failure is caused by the fast rotation at the junc-
tion of parkland and campus. ORB-SLAM cannot recover
tracking in the parkland until the robot returns to the campus.

Fig. 4(b) indicates that the trajectory of the parkland can

, ,.-’ {
(a) Map created by ORB-SLAM [13]

Junction

Campus
Parkland

(b) Map created by our proposed RTS
Fig. 4. Maps of NewCollege when down sampling rate is three. The
trajectory is drawn in blue; the local map for the tracking at the junc-
tion is colored in red. The bigger loop on the right is the “Parkland”,
the rest is the "Campus”.

be estimated completely when the robot moves clockwise by
RTS. A loop closure can be detected when the robot moves
back to the campus after moving around the parkland. The
parkland trajectory is corrected and fused into campus trajec-
tory. However, the final big anticlockwise loop of the park-
land is unable to be corrected due to no visual loop closure
being found. This anticlockwise loop is culled when the last
frame is detected.

5. CONCLUSIONS

In this work, a new method called re-tracking strategy (RTS)
is proposed to deal with tracking failure problem in real-time
monocular SLAM. Different from most existing methods uti-
lizing relocalization strategy to recover tracking, RTS devotes
to automatically initialize a new tracking process after track-
ing fails. Additionally, a new evaluation metric named trajec-
tory completeness rate (TCR) is introduced to reflect the com-
pleteness of the estimated trajectory. Experimental results
on two datasets prove that RTS can achieve longer trajectory
than traditional monocular SLAM methods, while maintain-
ing high accuracy, since the frames abandoned by traditional
methods are taken full use of.
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