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ABSTRACT
Loop closure detection is essential and important in visual si-
multaneous localization and mapping (SLAM) systems. Most
existing methods typically utilize a separate feature extrac-
tion part and a similarity metric part.Compared to these meth-
ods, an end-to-end network is proposed in this paper to jointly
optimize the two parts in a unified framework for further en-
hancing the interworking between these two parts. First, a
two-branch siamese network is designed to learn respective
features for each scene of an image pair. Then a hierarchi-
cal weighted distance (HWD) layer is proposed to fuse the
multi-scale features of each convolutional module and calcu-
late the distance between the image pair. Finally, by using the
contrastive loss in the training process, the effective feature
representation and similarity metric can be learned simulta-
neously. Experiments on several open datasets illustrate the
superior performance of our approach and demonstrate that
the end-to-end network is feasible to conduct the loop closure
detection in real time and provides an implementable method
for visual SLAM systems.

Index Terms— Simultaneous Localization and Mapping,
Loop Closure Detection, End-to-end Network, Siamese Con-
volutional Neural Network

1. INTRODUCTION

Loop closure detection aims to recognize the places where
a mobile robot has been. It is one of the most significant
requirements for visual simultaneous localization and map-
ping (SLAM) system which is utilized to map an unknown
environment while simultaneously localizing the robot [1].
Correct and efficient loop closure detection can be used for
robot relocation [2] after tracking failure. More importantly,
it can add right constraints to pose graph in a SLAM algo-
rithm and contribute to build a stable map by reducing the
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error and drift that accumulate over time [3]. The image-to-
image methods and image-to-map methods are two main cat-
egories of methods for loop closure detection. It is conclud-
ed that image-to-image (or appearance-based) methods scale
better than image-to-map methods [4] for large environmen-
t. Thus in visual SLAM systems, the basic techniques detect
loop closures through matching the new frame with images in
the database built by the robot online.

Relation to prior work: In image-to-image methods, the
bag-of-words (BoW) model [5] is extensively used in state-
of-the-art traditional algorithms [6–9]. Dorian et al. [8] used
bag of words obtained from FAST+BRIEF features [10, 11]
and built a vocabulary tree to speed up feature matching for
detecting loops in real time. The DBoW open source library
built based on [8] has become the standard baseline regard-
ing loop closure detection because of its significant perfor-
mance in the representative ORB-SLAM system [12]. How-
ever, generally empirically designed by researchers, the hand-
crafted features used by BoW-based traditional methods have
various limitations. Recently, the development of deep learn-
ing [13] brings an alternative way to extract more complex
feature structures in an image. It also provides new thoughts
for loop closure detection problem using convolutional neural
network (CNN) [14–16]. Gao et al. [15] used a well-trained
stacked denoising auto-encoder (SDA) neural network to ex-
tract deep features for similarity metric. Although the CNN-
based method can detect loops with a satisfactory precision,
it cannot satisfy the real time requirement in the SLAM sys-
tem because of the long time cost of feature extraction from
the multi-layer network and the similarity calculation. In this
paper, different from the existing methods which treat the fea-
ture extraction and the similarity metric as two parts, we pro-
pose an end-to-end siamese network to jointly optimize the
two separate parts in a unified framework. The end-to-end
network can measure the similarity of two places from image
pixels directly and speed up the loop detection effectively.

Deep metric learning methods using siamese network
have shown outstanding performance in many similarity met-
ric tasks [17–19]. Motivated by these works, we design the
two-branch siamese network with the contrastive loss to learn
an optimal metric towards the distance indicating whether
two images are captured from the same place. By learning
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Fig. 1. Framework of the proposed end-to-end siamese convolutional neural network.

object features and metric simultaneously, the end-to-end
network can reduce the redundant features and make features
to align the metric better. In addition, a hierarchical weighted
distance (HWD) layer is proposed to fuse multi-scale features
from each convolutional module and enhance the effect of the
two-branch network.

2. PROPOSED METHOD

In this section, we first describe the overview framework of
our method and the corresponding architecture of the two-
branch siamese convolutional neural network. Then, the pro-
posed HWD layer is given in details. Finally, the contrastive
loss is introduced as the cost function.

2.1. Overall Framework
The framework of the proposed end-to-end siamese convolu-
tional neural network is shown in Fig. 1. The network has
two symmetry branch networks connected by a HWD layer
which outputs a distance evaluating the similarity of the fea-
tures from two branches. Let < I, Ip > represents an image
pair sample, and its label is 1 or 0 which depends on whether
the two images in the pair are captured from the same place.
Each image is fed into a branch of convolutional neural net-
work (CNN). Through the network, the image pair is mapped
to a learned feature space, where Xi and Xp

i represent fea-
tures from the i-th intermediate layer (section 2.2). Then the
final distance of the image pair will be calculated by the pro-
posed HWD layer (section 2.3) using the features from each
intermediate layer. The weights in the HWD layer will be
self-learning by the back propagation algorithm. We train the
network using a contrastive loss function which aims to min-
imize the distance of positive scene pairs and maximize the
distance of the negatives independently. Through the training
process, the feature extraction and the similarity metric are
jointly optimized and then we can obtain the well-trained net-
work with image pairs as input and distances as output, in the
end-to-end way.

2.2. Two-branch Convolutional Neural Network
The two symmetry branch networks in this paper are shown
inFig.1 in detail. The two CNN branches share the same struc-
ture and parameters to extract features from two inputs. The

branch networks support other effective structures and we use
the branches set up by ourselves. It is composed of two in-
ception modules [20], one convolutional layer and three fully
connected layers. The two inception modules have the same
structure which consists of 16 convolutional kernels in two
kinds of size and the output feature maps are then concatenat-
ed together followed by a 2×2 MaxPooling layer. The filter
size of the first inception module is 5×5 and 3×3, while the
second is 3×3 and 1×1. In these two inception modules, k-
ernels in different sizes are adopted to capture features with
different resolution. Then another convolutional layer with
16 kernels of 1×1 is employed to reduce the depth of the
feature map, also followed by a 2×2 AveragePooling layer.
There are three fully connected layers and each one connects
to a specific pooling layer. Each fully connected layer gener-
ates a 256 dimensional feature describing the respective infor-
mation of different convolutional modules. And ReLU neu-
ron [21] is used as activation function for each layer. Overall,
through the two sub-networks, each input image is represent-
ed as (X1, X2, X3), where X1 and X3 indicate 256 dimen-
sional features from the first and second inception modules,
X2 indicates features from the whole network, as shown in
Fig. 1. These features are then sent into the HWD layer.

2.3. Hierarchical Weighted Distance Layer

The hierarchical weighted distance (HWD) layer is designed
to fuse the complementary information of different convo-
lutional modules in score level by learning weights for dis-
tance of each feature pair. Then the output is used to form
the metric-cost part together with contrastive loss function in
training process.

Given an image pair < I, Ip > and its corresponding fea-
tures from different intermediate layers, the important nor-
malization step is performed on Xi, though L2-norm, to con-
strain them to live on the 256 dimensional hypersphere:

X̂i =
Xi

‖Xi‖
. (1)

Then the square Euclidean distance of i-th feature between I
and Ip is calculated by:

di = ‖X̂i − X̂p
i ‖

2
2. (2)



After that, the distances di are weighted and combined to pro-
duce the distance between I and Ip :

d =

3∑
i=1

wi‖X̂i − X̂p
i ‖

2
2 =

3∑
i=1

widi

s.t.

3∑
i=1

wi = 1,

(3)

where wi is the weight parameter measuring the importance
of each feature. The contribution of features in different con-
volutional module cannot be predicted and it is infeasible to
tune the weights by grid search or random search due to the
large computation in training process. So we design the HWD
layer to learn wi automatically by standard back propagation
algorithm, just the same way as other parameters in convolu-
tional layer and fully connected layer.

Different convolutional modules can extract different s-
cales and kinds of features. Low-level layers extract more de-
tailed information such as edges and colors, while high-level
layers contain more semantic information such as objects and
backgrounds. The features from different intermediate layers
may have better performance than the feature only from the
last fully connected layers. The HWD layer can take each hi-
erarchical convolutional module into consideration and learn
their importance automatically.
2.4. Contrastive Loss
Contrastive loss[16] is adopted as the cost function due to its
effectiveness for the pair data in siamese network. The func-
tion is defined as:

L = yd2 + (1− y)max(margin− d, 0)2, (4)
where y = 1 for positive pairs, y = 0 for negative ones,
and margin is the threshold. The distance d is calculated by
the proposed HWD layer. Either the distance between the
positive pair is not 0 or the distance of negative pair is less
than margin, there will be a loss. So by minimizing the loss,
the distances between positive samples will be shrunken and
the distances between the negative pairs will be enlarged to
approach margin value.

3. EXPERIMENTS

In the experiments, we evaluate the proposed end-to-end
siamese convolutional neural network on New College dataset
[6], City Centre dataset [6] and TUM open dataset [22]. The
state-of-the-art traditional method DBoW [8] and the CNN-
based method SDA [15] are compared in the experimental
analysis. The methodology we followed to evaluate our al-
gorithm is described in section 3.1. And the experimental
results are presented and analyzed in section 3.2.
3.1. Methodology
Datasets and ground truth: The benchmark City Centre and
New College datasets both published in [6] are widely used in
visual SLAM research, especially in loop closure detection.
The two sequences of the two datasets consist of 2474 and
2146 outdoor urban images respectively collected by a mobile

robot with two cameras on the left and right side. Ground
truth loops which are hand-labeled as a binary matrix are also
available.

The TUM open dataset has many RGB-D sequences
with ground truth trajectories. We choose the indoor office
scene freiburg3 long office household (fr3 office for short)
sequence to experiment. The end of the trajectory is over-
lapped with the beginning so that there is a large loop closure.
The TUM dataset does not provide ground truth loops, so
we generate the true loops using ground truth trajectory by
computing distances between camera poses of image pairs.
That the distance is small enough means the position and
heading of the camera is close, then we mark the image pair
as a ground truth loop.

Correctness measure: The correctness of the loop detec-
tion results is measured with the precision-recall (P-R) curve.
Precision means the ratio between number of correct loop-
s and number of all loops detected, while recall means ratio
between correct detections and total loops in ground truth.

Train and test: To train and test the end-to-end network
properly, one in every five images is selected as a key frame so
that every dataset is separated into 4/5 to train and 1/5 to test.
The vocabulary of one million words used for DBoW method
is generated from all images in train sets and 10k images of an
independent dataset (Bovisa 2008-09-011), for keeping same
with [8] where DBoW is proposed. And equally, we train the
end-to-end network with Bovisa 2008-09-01 first, then fine-
tune with train sets separately. As for testing, image pairs
are composed of every two images in the same test set and
sent to compute distances. A distance threshold is applied
to determine whether the loop closure has occurred, and a
precision and recall pair result can be got after all images in
the dataset are considered. By varying the distance threshold,
we can then produce a P-R curve.

The experiment results of the SDA method are from ref-
erence [15]. The experiments of DBoW method are run by
utilizing the up to date DBoW3 C++ code2 with a i7-6700
3.40GHz CPU and 8G memory and our method is tested on
the same CPU as well as a NVIDIA GeForce GTX 1080 G-
PU.

3.2. Experimental Results
Evaluation of the proposed HWD layer. To evaluate the
effect of fusing features from each hierarchical convolutional
module, the experiments without the HWD layer are conduct-
ed. Without the HWD layer, the feature X2 and Xp

2 (see Fig. 1
and section 2.2) which are only from the last fully connected
layer are adopted to calculate distance of the image pair. The
P-R curves of our method without the HDW layer is shown in
Fig. 2. It can be seen that better performance is achieved with
the usage of the HWD layer. The fusion of features from dif-
ferent hierarchical convolutional modules has a more power-

1https://www.rawseeds.org/rs/datasets
2https://github.com/rmsalinas/DBoW3
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Fig. 2. Precision-recall curve comparison.(a) P-R curve on City Centre dataset. (b) P-R curve on New College dataset. (c) P-R curve on
TUM fr3 office dataset (Best viewed in color).

Fig. 3. The trajectory of fr3 office with detected loops (Best viewed
in color).

ful representation of the scene image. The comparison proves
the effectiveness of our HWD layer.

Comparison with state-of-the-arts. The loop closure
detection results are shown by P-R curve compared with
the state-of-the-art traditional method DBoW, and the CNN-
based SDA method. Fig. 2(a) and Fig. 2(b) show the P-
R curves on the City Centre dataset and the New College
dataset, respectively. For both the two outdoor datasets, D-
BoW has a higher precision at the low recall. However, when
recall rate is larger than 0.45, the precision of DBoW has a
decrease rapidly and our method obtains a much better pre-
cision. Compared to the SDA, our method has a significant
progress on the City Centre dataset. And on the New College
dataset, although the SDA has a better performance at the low
recall, our method gives the similar precision as the recall
rate increasing.

Fig. 2(c) illustrates the P-R curves on fr3 office dataset.
The SDA method has an advantage that the recall rate at
100 % precision achieves 0.9, while compared to the DBoW
method, our method performs better both on recall rate and
precision rate. And our method also has a greater effect on
this indoor dataset than on the two outdoor datasets. The
fr3 office is a stable office scene with ample texture, while
the City Centre and New College datasets are much more
dynamic. Both the changing illumination and the passerby
like the image pair exemplified in Fig. 1 increase the difficulty
of loop detection.

The detected loop closures on the TUM fr3 office
dataset. The trajectory and detected loop closures of fr3 office
are shown in Fig. 3. The blue line shows the trajectory made
up of positions of key frames and the red lines connect frame
pairs considered as loops. It shows that the end of the tra-
jectory is overlapped with the beginning and there is no
false positive loops. The experiment result indicates that our
method is effective enough in stable indoor situation.

Table 1. Comparison of computational time per image pair

Method DBoW SDA Ours
CPU CPU CPU GPU

Time(s) 0.00660 0.16 0.00474 0.00036

Calculation efficiency. The efficiency of descriptor ex-
traction and similarity computation is an important consider-
ation in loop closure task because of the real time requirement
in SLAM systems. We measure the efficiency by the time the
algorithm takes to process the image pair and gain the simi-
larity, except the time loading images and the vocabulary or
the well-trained model.

The average image pair processing times of different
methods are listed in Table 1. It is shown that for the CPU-
based processing, our method is much more efficient than the
CNN-based SDA method and slightly faster than the DBoW
method. When the image pair passes through the end-to-end
network on our GPU, the average time reduces to 0.00036s
per image pair, almost 10 times faster than processing on
CPU. Since there are only five convolutional layers with 16
kernels in each layer in our end-to-end network, it has fewer
parameters and less time consumption than the SDA. Due to
the DBoW method is a typical loop closure detection method
used on the representative real time SLAM system, the same
efficiency with DBoW proves that our method can satisfy the
processing speed requirement of SLAM systems.

4. CONCLUSION
This paper proposes an end-to-end siamese convolutional
neural network for loop closure detection problem in SLAM
system. To the best of our knowledge, it is the first time
that the siamese network-based deep metric learning has
been attempted on the loop closure detection problem, and
to learn a similarity metric of two places from image pixel
directly. Meanwhile, a hierarchical weighted distance layer
is applied to learn weights for features of different convolu-
tion modules. Experimental results on three public datasets
demonstrate that our approach is feasible for the loop closure
detection problem. As a deep learning-based method, the
well-trained end-to-end network still needs to fine-tune to
adapt a new environment when it is applied to a real physical
condition. Our future work will focus on how to make use of
the deep metric learning in physical loop closure detection,
which realize online training and then apply it in the visual
SLAM system.
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