SDM-BSM: A FUSING DEPTH SCHEME FOR HUMAN ACTION RECOGNITION
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ABSTRACT

Depth map has shown promising capability in human action
recognition, however it always be auxiliary of RGB features
in previous work. As to sufficiently exploring depth map, we
propose an innovative descriptor for human action recogni-
tion using solo depth data. First, Salient Depth Map (SDM)
is calculated between two consecutive depth frames, which
is superior for action description as it is located on salient
moving objects. Moreover, Binary Shape Map (BSM) is pro-
posed to depict the silhouettes induced by the lateral compo-
nent of the scene action parallel to the image plane. Then,
for implementation, a new framework as Bag-of-Map-Words
is employed after concatenating SDM and BSM feature vec-
tors. Experiments on NHA database demonstrate the supe-
riority and high efficiency of the proposed method. We also
give detailed comparisons with other features and analysis for
parameters as a guidance of further applications.

Index Terms— Human action recognition, Bag of Words,
salient feature, solo depth information

1. INTRODUCTION

Activity recognition has been widely applied in a number of
real-world applications, e.g., video surveillance, human com-
puter interaction, sign language recognition, and health-care.
In the past, plenty of RBG data based methods have been
developed to tackle with the human action recognition prob-
lem. The local space-time descriptors such as STIPs proposed
by [1] developed spatio-temporal interest points for action de-
scription. Dollar et al. [2] focused on sparse spatio-temporal
feature to characterize the cuboids of spatio-temporally win-
dowed data surrounding a feature point. Davis et al. [3] ap-
plied MHI and MEI to represent motion energy and occur-
rence locations. However, the inherent limitation of the tradi-
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tional data source includes its sensitivity of occlusions, color
and illumination changes, and background clutters. Although
considerable progress has been made using traditional data
source, the task of action recognition still remains challenges.
Inrecent years, depth sensors such as Kinect have gathered in-
terests for the following advantages. They provide additional
body shape which can be utilized to recover 3D information
in depth map, and it makes the problem of human segmenta-
tion much easier. The skeleton-based method was applied to
estimate human skeletons from depth sequences [4], but the
estimation is either not reliable or ineffective when the per-
son is not in an upright position. The spatio-temporal based
representation [5] had been dedicated to depict cuboid sim-
ilarity features for action analysis. A simplex-based orienta-
tion decomposition (SOD) descriptor was proposed to simpli-
fy 3D visual cues into three angles [6]. Spatio-temporal based
method can overcome the interferences brought by moving
camera, but has low performance for high similarity actions
with high computational cost. The descriptors in traditional
color sequences might be unsuited to represent depth maps.
Therefore, it is meaningful and necessary to discover the pro-
ficiency of depth information according to the specific char-
acteristics of depth data.

In this paper, we preclude color information and design a
novel descriptor to describe the dynamic and the appearance
information from depth data by using the depth value descrip-
tor Salient Depth Map (SDM) and the spacial plane descriptor
Binary Shape Map (BSM). The SDM and BSM can be ef-
fectively used to recognize activities without the dependence
on skeletal tracking, thus they offer greater flexibility. The
contributions are as follows: first, we utilize contiguous two
frames to extract the salient motion regions of depth map SD-
M towards every video sequence. Besides, the SDM inhibit-
s to noise which commonly caused by illumination change.
Second, in order to depict the conspicuous shape change on
lateral motion patterns, BSM is extracted to depict the human
action shape variation. Then, the vectors of all visual words
SDM; and BS M, for each frame are in the end concatenated
as one feature histogram of the Bag-of-Map-Words (BoM W)
to present the whole training data.

ICIP 2015



SALIENT DEPTH MAP

. ¥
‘ Vegny %1 :
Sub SDM of Each Column -
| “ Vi :1x 1 =

INPUT

s
1
|

Depth Video V

PRE PROCESSING : BINARY(BS:'G)PE MAP

Sub BSM of Each Row

Nomalized V

Descriptor of Salient Depth
T ¢

u l ﬁ--gl:b.gs-ﬁ;f-g;c;e;ﬂl}nn :

BoMW MODEL

clustered

M},

N2
N
(L35
Concatenating
SDM and BSM

h”x“x_lxj.d %Y—‘

BoMW Model

BM, =V Vi)
Ix(m+n)

Fig. 1. Flowchart of extracting Salient Depth Map and Binary Shape Map to form Bag-of-Map-Words model.

2. THE FORMULATION OF BOMW FRAMEWORK

Prior to feature extraction, we pre-process the original depth
video sequences by first crop the human-containing region,
yielding to a resolution of m x n pixels, and the only human
body contained pixels are extract by subtracting the depth val-
ue between human body and depth sensor. The depth value in
each frame F} is normalized as formula.1, where maz is the
maximum of human body in relative depth value, min(F})
and maxz(F}) is the minimum and maximum depth value in
absolute depth value,see Fig.2.

= [min(Fy) max(F)]
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Fig. 2. Pre-processing of an original depth frame.

2.1. Salient Depth Map

Points in depth images essentially represent 3D positions in
the real world, thus depth image sequences essentially repre-
sent the variation of these positions. Under the precondition
of smooth motion, there exists a considerable depth difference
while the position changes from one object to another. Nat-
urally, we use the interest regions that exhibit salient depth
changes between two consecutive frames F;_; and F;. Ac-
cordingly, SDM is proposed as shown in Fig.1. The ideal
nature of SDM is that they all locate on salient moving ob-
jects, thus allowing us to describe and analyze motion cues
meanwhile it can surmount background noise by the thresh-
old 7. The specific SDM is defined as:

Fo1(x))}
SDM,; > .

SDM,; = {x|F,(x) —
SDM =

@)
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For a given coordinate x, F;(x) is the pixel value of the cur-

rent depth map F} at time t. SD M is the difference between
two consecutive frames and 7 is the threshold of SDM in-
dicating whether there is a salient depth change in x. And 7
is set to define the level of depth change and to remove the
depth change of unstable regions [7]. In terms of a SDM
gained from two consecutive frames, two sub descriptors for
each frame as Vsg,,y and Vg, x are obtained by separately
sum the depth value of each row and column. Consequently,
Viamy and Vg, x are concatenated as S DM, with the size
of 1 x (m +n), where SDM; ,_1) is defined as:

SDM; = [Veamx Vigmy ]

{nmng@gj@mmjmg] )

Vsamy = [1(:, 1), IA(:7 2), ...y f(:,m)]

where [ is the extracted original map SDM; ;1. Vsamy
is obtained by calculating the depth value of each row of
SDM; ;1 with m x 1 size. Similarly, V4, x derived by cal-
culating each column depth value of SDM,;_; with size of
1 x n. For exploiting the hidden thematic structure in SDM,
BoW [8,9] is applied to model each video sequence V' and re-
gard each SD M as a single word S D M;. Each vector SD M;
is clustered by K-means [10] algorithm. Then a S D M-Words
is formed as SD M, which defined as follow:

SDM = |:F51dm(2,1)7 ey Fj Fs]\/dIm(N,N—l) “)

sdm(t,t—1)7 "

in the above equation we suppose there are N frames in
each video sequence and M video sequences in the train-
ing data, then, F”, m(tt—1) indicates the SDM descriptor be-
tween frame ¢ and t — 1 in jth video sequence V. The SDM
descriptor is the dominant strategy when human body shape
has little profitable information.

For instance, as shown in Fig.3, the SD M of action ‘fron-
t_clap’ shows an obvious motion pattern subtle transformation
on BSM. This example implies that by using SDM, the
distinguished depth change turns to be more discriminant for
subtle lateral motion patterns.
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Fig. 3. By using SDM, the distinguished depth change con-
tributes to be more discriminant for subtle lateral motion pat-
terns like action Front-clap.

2.2. Binary Shape Map

The BSM descriptor takes priority to the SDM descrip-
tor when there is rare depth variation but conspicuous shape
change for a certain action. As shown in Fig.4, the whole
processing of action ‘bend’ proceed at almost the same depth
level. In this case, SDM is somewhat cast into shade com-
pared with BSM. The BSM descriptor here can provide
instrumental shape change information for better representa-
tion.

In order to reveal the spatial plane characteristic, see
Fig.4, we employ binarization on each frame in video se-
quence V. For each input frame F}, two sub descriptors
Vosmx and Vigny are calculated separately with the size
of 1 x n and m x 1 to describe the shape feature of each
column and row in F;. As a result, BSM; with the size
of 1 x (m +n) is defined as: BSM; = [Vosmx ViL,.y]-
Where Vjs,y is a column vector calculating each row depth
value of BSM; with size of m x 1. Similarly, V3, x is a row
vector calculating each column depth value of BSM; with
size of 1 X n.

Likewise, BoW [8,9] is applied to model each video se-
quence V and regard each BSM as a single word BSM,;.
Each word vector BSM; is clustered by K-means [10] al-
gorithm. Then the BSM-Words vocabulary is formed as a
BSM-Words vector VAL, ,, which is defined as follow:

BSM; = |:Fblsm(2,1)a ceny ngm(tytfl)a ey Flf\s/[m(N,Nfl)] (5)

where N is the frame number in each video sequence and

M is the number of video sequences in the training data.

lfsm,( ti—1) indicates the BSM descriptor between frame ¢
and t — 1 in jth video sequence.

2.3. Bag-of-Map-Words

To combine SDM and BSM, we propose a Bag-of-Map-
Words model for the whole trainirj\l/ig video sequence Vjy,
which is denoted as V' = {V,,}~_,. Then the action-
word vocabulary M; is employed to serve as action feature
which created from BoMW . The definition of M, is as:
M,; = [SDM; BSM;], which SDM; and BSM; are con-
catenated after first extracting them from each frame. Then
clustered to K labels. The BoM W is designed to represent a
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Fig. 4. For action Bend, SDM is somewhat cast into shade
compared with BSM. The BSM descriptor here can provide
instrumental shape change information for better recognition
accuracy.

variety of motion properties. Respectively, BSM is capable
of deriving the dynamics of a sequence of moving human
silhouettes, but it can only depict the lateral component of
the scene motion parallel to the image plane. With the assis-
tance of SD M, expressing shape difference in human motion
region can bring about additional discrimination.

Algorithm 1: The proposed BoM W framework

Input: A video sequence V with each frame of F;
Output: BoMW histogram
where L; = Label of clustered M;.
Cropped F; = regionyrop(Fs).
Normalize Fj to be the size of m X n.
size(F;) =m X n.
extract SDM and BSM.
for i = 2to N do
BSM = Binary(F;).
8 5—5]/\/[1 = FZ — H—l .

o | SDM;=S8DM > .
11 end

B I T O R

12 {M api}f.\’:2 is a M ap histogram for each video sequence
with N frames.

13 Map; is clustered to K Labels L;.

14 BoMW = Hist (L;).

3. EXPERIMENTS AND ANALYSIS

We evaluate the proposed descriptor BoM W for action clas-
sification on NHA database [11]. NHA contains 483 videos
of 21 actors performing 23 different actions. The challenge in
this database, like inter-class ambiguity, are quite large.

We respectively extract SDM and BSM feature SDM;
and BSM; to form the final feature vector of BoM W from
each video V. The visual words are generated by using K-
means clustering algorithm. Then a non-linear SVM classifi-
er with a homogenous kernel [12] is trained for the obtained
feature vectors.

To test the generalization capability of the method, Leave-
One-Subject-Out (LOSO) scheme [13] is employed for algo-



rithmic evaluations. Experiment results are appraised by clas-
sification average accuracy.

Furthermore, there are two parameters as the cluster num-
ber K and the SDM threshold T, which are considered to
have notable impact on the performance. Comparison of the
classification accuracies (%) for SDM, BSM and BoMW
with 7' = 70 under different value of K are shown in Fig.5.
It can be observed that SDM performs better than BSM.
Moreover, The accuracies are improved consistently to reach
89.23% by fusing BSM with SDM. We also clarify the ac-
curacies of SDM under various value of 7" at the setting of
K = 800. Here, max(D;) is the relative depth value range
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Fig. 5. (a) Recognition accuracies (%) for SDM, BSM and
SDM-BSM under different settings of K, (b) Recognition ac-
curacies (%) for SDM under different settings of T .

for each frame, eliminating the redundancy of the absolute
depth value.

Table 1 presents the classification rates of our method
compared to some state-of-art methods on the NHA database.
Our classification rate is better than [11] which only utilized
solo depth samples like ours. Although performances of [14,
15] are superior to ours, they exploited multi-modality infor-
mation [14] and RGB-D features [15] therefore their methods
have higher computational expenses and are unsuitable to be
effectively applied for real-time recognitions. Furthermore,
the NHA database experimented in [15] only contains 357
videos of 17 actions which is incomparable with our method
on 483 samples.

Table 1. Comparison to state-of-the-art on NHA.

Approaches Accuracy (%)
D-STV /ASM [11] 86.8
DSHI-Gist /SVM [14] 85.0
RDSHI-Gist /SVM [14] 89.0
DSHI-Gist-RDSHI-Gist / SVM [14] 92.0
DSHI-Gist /CRC [14] 86.0
RDSHI-Gist / CRC [14] 88.0
DSHI-Gist-RDSHI-Gist / CRC [14] 89.9
Ours 89.5

The comparison of different action using the proposed
methods are illustrated in Table 2. From the bold fonts, it is
clear that by adding the two depth descriptors induced salient
motion region and silhouette variation. The complementarity
of each component benefits each other. Furthermore, we can
see that the action rod-swing is quite easily confused with the
actions pitch and golf-swing due to their similar lateral motion

4677

patterns; however by fusing SDM and B.SM, the distinctive
depth changing provided by SDM eliminated the ambiguities
among similar lateral motion patterns.

Table 2. Classification performance rate (%) of D-STV [11]
and the proposed methods: SDM, BSM and BoM W, at the
setting of K = 800, T' = 70.

Action Class D-STV | SDM | BSM | BoMW
bend [11, 15] 100 100 100 86.8
jack [11,15] 100 95.2 95.2 86.8
jump [14] 95.0 89.0 90.5 85.0
pjump [14] 100 100 76.2 89.0
run [14] 71.0 90.5 71.4 92.0
side [14] 100 90.5 95.2 86.0
skip [14] 33.0 85.7 71.4 88.0
walk [14] 95.0 85.7 95.2 89.9

onehand-wave [15] 100 90.5 90.5 95.9
twohands-wave [15] 76.0 90.5 95.2 95.9

front-clap [15] 90.0 71.4 333 95.9
arm-swing [15] 95.0 90.5 57.1 95.9
leg-kick [15] 100 71.4 71.4 95.9
rod-swing [15] - 71.4 47.6 95.9
side-box [15] - 81.0 90.5 95.9
side-clap [15] - 714 57.1 95.9
arm-curl [15] - 90.5 23.8 95.9
leg-curl [15] - 85.7 52.4 95.9
golf-swing [15] 67.0 66.7 76.2 95.9
front-box [15] 95.0 61.9 52.4 95.9
taichi [15] 90.0 81.00 100 95.9
pitch [15] 71.0 52.4 57.1 95.9
kick [15] - 66.7 85.7 95.9

Mean Classification 86.8 81.0 73.3 89.5

As illustrated in Table 2, the local descriptor D-STV eas-
ily confused action ‘skip’ and ‘jump’ since those two are ac-
tions has inner-variability. Comparatively, our method out-
perform the local spacial-temporal descriptor for it makes the
spacial descriptor SDM and depth value descriptor BSM
complement with each other. Thus, the proposed method
BoMW also achieves promising performance for ambiguous
actions than previous work by using solo depth information.

4. CONCLUSIONS

In order to exploit the potential of depth data, we propose a
novel feature representation method called BoM W without
the assistance of RGB features. In this paper, the presented
method BoMW sufficiently depict the human shape varia-
tion feature on lateral motion patterns, as well as the salient
change on depth map. Consequently, SDM can eliminate the
ambiguities among similar lateral motion plane and BSM is
profitable when rare depth variation existed but conspicuous
shape change happened for a certain action. In future work,
collaborative representation(CR) [16] will be utilized to opti-
mize the classification performance of our method since CR
is the dominance of sparse coding.
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