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ABSTRACT

Human action recognition using skeleton data has lots of po-
tential applications in content-based action retrieval and in-
telligent surveillance, with wide usage of depth sensors and
robust skeleton estimation algorithms. Previous methods de-
scribe spatial temporal skeleton joints as a compact color im-
age and then use Convolutional Neural Network (CNN) to
extract more discriminative deep features. However, these
methods ignore the effect of speed variation, which is a com-
mon phenomenon and can bring severe intra-varieties to same
types of actions. To solve this problem, this paper presents a
novel hierarchical dropped CNN architecture, which is con-
structed in two stages. Dropped CNN (d-CNN) is firstly de-
veloped to extract deep features from a probabilistic speed
insensitive color image. This image expresses both spatial
distributions and temporal evolutions of skeleton joints mean-
while avoids the effect of speed variations. To enhance the
temporal discriminative power, we extend d-CNN to a hi-
erarchical structure (h-CNN), where multiple scales of tem-
poral information are encoded. Extensive experiments on
benchmark MSRC-12 dataset and the largest NTU RGB+D
dataset verify the effectiveness and robustness of the proposed
method.

Index Terms— Human action recognition, Skeleton, C-
NN, Dropout

1. INTRODUCTION

Human action recognition has been widely explored, bringing
applications to many fields, such as content-based action re-
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trieval [1], intelligent surveillance [2], gaming [3] and so on.
The first attempt of this task uses RGB data, since RGB sensor
is cheap and has been used in various scenarios. Since RGB
sensor cannot capture depth information, it is rather difficult
for algorithms to detect human bodies from cluttered back-
ground. Moreover, the lost of depth data brings ambiguities
for distinguishing similar actions. With the progress of depth
sensor, i.e., Microsoft Kinect, researchers begin using depth
data for human action recognition. Compared with RGB data,
human bodies can be segmented from backgrounds more eas-
ily, since the complex and confusing textures or illuminations
are ignored by depth sensor. More importantly, additional in-
formation from depth data provides a new view to distinguish
actions whose appearances are similar from the view of X-Y
plane but different in the depth (Z axis) direction. The draw-
backs of depth data are mainly two folds. First, the depth data
contains jumping noises. Second, depth data is usually redun-
dant for mapping a complex depth sequence to a simple action
label. Recently, robust skeleton estimation algorithms can ex-
tract skeleton joints from depth data in realtime, which opens
a new way for understanding human actions using 3D skele-
ton data. Compared with depth data, skeleton joints estimated
by any robust algorithm [4] is more compact and suffers less
from jumping noise.

It is still a challenging problem to describe spatial tempo-
ral skeleton joints. Inspired by the impressive achievements
of Convolutional Neural Network (CNN) in the field of im-
age classification, recent work [5] describes spatial temporal
skeleton joints as a compact color image and use CNN to ex-
tract more discriminative deep features. As CNN is originally
designed for encoding spatial information, the key issue is to
express skeleton sequences as images. Specifically, 3D coor-
dinates of skeleton joints are divided into three channels (X,
Y, Z). For each channel, the coordinates of each frame are
arranged as a column vector. Then, all vectors are concate-
nated as a matrix according to the temporal order. Finally,
three matrices respectively denote three channels of a color
image. Based on the obtained color image, pre-trained CN-
N models, such as AlexNet, ResNet, VGGNet, can be used
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to extract deep features, which implicitly encode both spatial
and temporal information of skeleton joints.

Above pipeline provides a simple yet efficient way to rep-
resent skeleton sequences. However, it ignores the effect of
speed variation, which is a common phenomenon and can
bring severe intra-varieties to same types of actions. Different
habits of humans induce the speed variations. Even the same
person may use different speeds when repeating same type of
action. Regardless of speed variations, two person who are
waving hands with different frequencies should naturally be
treated as perform the same action “waving”.

In this paper, we propose a hierarchical dropped CNN
method, which eliminates the effect of speed variations. Fig.
1 shows the proposed pipeline. After encoding a skeleton se-
quence as a color image, we further use dropout layer to ob-
tain a probabilistic speed insensitive image. Note that dropout
layer is usually used after full connected layer. Here, we try
the dropout layer for feature extraction. In the training stage,
the dropout layer generates a set of images, each of which
is according to a specific speed. In this way, the trained C-
NN model can adapt to actions with different speed varia-
tions. Here, we call the image generated by dropout layer
as probabilistic speed insensitive image for the reason that
the image is unbiased to any specific speed in the training
stage. Above trained CNN model is called as Dropped CNN
(d-CNN), which is robust to speed variations but has limited
temporal discriminative power since only fixed scale of tem-
poral information is considered. To this end, d-CNN extend-
ed to a hierarchical structure (h-CNN), where multiple scales
of temporal information are encoded. We pre-define a set of
temporal scales and then train corresponding d-CNN models
in an end-to-end manner. The decision-level fused deep fea-
tures encode the multiple scale information.

We summarize main contributions of this paper as three-
fold. First, we propose an end-to-end hierarchical dropped
CNN model to extract distinctive and speed insensitive deep
features for skeleton-based human action recognition. De-
tailed structures of d-CNN and hd-CNN are implemented to
efficiently encode both spatial and temporal relations of skele-
ton joints. Second, we analyze the potential usage of d-CNN
and hd-CNN for tackling data with variable length. Third,
we evaluate our method on the skeleton-based action recog-
nition task and achieve state-of-the-art recognition accuracies
on MSRC-12 and the largest NTU RGB+D dataset.

2. RELATED WORK

Estimating skeleton joints from depth images discussed in
[4] provides a more intuitive way to perceive human action-
s. Skeleton based approaches utilize the high-level skeleton
information extracted from depth video sequences. In [6],
skeleton joint locations were placed into 3D spatial bins to
build histograms of 3D joint locations (HOJ3D) as features
for action recognition. Yang et al. [7] adopted the differ-
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Fig. 1. Dropped CNN structure

ences of joints in temporal and spatial domains to encode the
dynamics of joints and then obtain the EigenJoints by apply-
ing Principal Component Analysis (PCA) to joint differences.
The EigenJoints contain less redundancy and noises, com-
pared with original joints. Zanfir et al. [8] provided a non-
parametric Moving Pose (MP) framework, which considers
more features like position, speed and acceleration of joints.
In [9], an evolutionary algorithm was used to select the opti-
mal subset of skeleton joints based on the topological struc-
ture of a skeleton leading to improved recognition rates. In
[10], human actions were modeled by a spatio-temporal hier-
archy of bio-inspired 3D skeletal features. Linear dynamical
systems were employed to learn the dynamics of these fea-
tures. Kerola et al. [11] constructed a spatial temporal graph
by linking joints in consecutive skeletons, where edge weight-
s are calculated by distances. A spectral graph wavelet trans-
form (SGWT) was applied on the 3D skeleton graph to create
an overcomplete representation. In [12], Cai et al. developed
a novel action attribute mining method, where an attribute s-
pace was built by the geometry transformation between body
parts. In [13], a body part-based skeleton representation was
proposed to model the relative geometry between body part-
s. Then, human actions were modeled as curves using a Lie
group SE(3)× ...× SE(3), which explicitly models the 3D
geometric relationships among human body parts. In [14], the
skeleton was divided into five parts, which were used as input-
s for five bidirectional recurrent neural networks (BRNNs).
Then, the representations from the subnets were fused in a
hierarchical way to be the inputs to higher layers. Since re-
current neural network (RNN) can model the long-term con-
textual information of temporal sequences, the proposed end-
to-end hierarchical RNN achieved high performances on the
task of skeleton-based action recognition. Although some of
the skeleton-based approaches obtain high recognition perfor-
mance, skeleton-based methods are not applicable for appli-
cations where skeleton information is not available.

3. HIERARCHICAL DROPPED CONVOLUTIONAL
NEURAL NETWORK FOR ACTION RECOGNITION

3.1. Color Image

Let {{(xtn, ytn, ztn)}Nn=1}Tt=1 be a skeleton sequence with T
frames. Each frame contains N skeleton joints. N is deter-
mined by skeleton estimation algorithm and varies from d-



ifferent datasets. For example, in the currently largest NTU
RGB+D dataset, N is equal to 25. The coordinates of skele-
ton joints depend on a global coordinate system. The transla-
tion among different skeleton sequences is not directly related
to actions. Therefore, we remove the translation by moving
the origin of global coordinate system to the central of each
skeleton. When recording skeleton sequences, the distances
between human bodies and the depth sensor are not strictly
the same. In other words, different skeleton sequences have
specific scales, which bring intra-varieties to same types of
actions. To this end, we normalize the coordinates. Specifi-
cally, {{xtn}}Nn=1}Tt=1, {{ytn}}Nn=1}Tt=1 and {{ztn}}Nn=1}Tt=1

are restricted to change from 0 to 1.
Let [R,G,B] be the color image which represents the pre-

processed skeleton sequence. Here, R, G, B denote three ma-
trices, which contain N rows and T columns. For the n-th
row and the t-th column, values on R, G and B are equal
to xtn, ytn and ztn, respectively. To facilitating the usage of
pre-trained CNN models, such VGG-19, we further resize the
color image to the size of [224, 224]. Fig. 2 (a) is a skele-
ton sequence. We use non-linear sampling to generate two
sequences from original sequence. These two sequences in-
dicate same type of action performed with different speeds.
Fig. 2 (b) and (c) are the corresponding color image features.
Fig. 2 (d) is the absolute different between two color images.
We draw two observations from Fig. 2. First, color image is a
compact feature shows spatial temporal discriminative power
to represent action. Second, color image is sensitive to the
speed variations.

3.2. Dropped CNN

Dropout layer Deep networks usually need large amount of
data for training. However, in most cases, training data is lim-
ited, which induces the overfitting of deep network. To solve
this problem, dropout layer is proposed to randomly ignore
some neurons in each training epoch. Though this scheme is
simple, it forces different neurons to learn different aspect-
s of training data. In this way, the overfitting phenomenon
is suppressed. One parameter r is used to control the igno-
rance rate. When r is too large, the deep network will trend
to overfitting. When r is too small, the deep network will be
hard to converge. Therefore, a proper value of r to ensure the
performance of the dropout layer.

Dropped CNN Traditionally, the dropout layer is used a-
mong different layers of deep networks. The effect of dropout
layer on feature processing is usually ignored. To eliminate
the effect of speed variations on color image feature, we use
dropout layer for feature conversion. The corresponding pro-
posed dropped CNN (d-CNN) is shown in Fig. 1, where the
dropout layer is used to convert the color image to a proba-
bilistic speed insensitive color image. To simplify the case, a
skeleton sequence in Fig. 1 is supposed to contain five frames,
which are colored in red, green, blue, yellow and pink. Let
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Fig. 2. Sensitivity of color image feature to speed variations

the parameter r equal to 0.2. The dropout layer randomly ig-
nores 20 percent (0.2) of all frames. In this case, the frame
colored in green is ignored and other four frames are concate-
nated according to original order. Since the column number
of the generated color image is changed, we further resize it
to [224, 224] for the input of VGG-19 network.

Relation to data augmentation Despite using dropout
layer between different layers, data augmentation method is
also a popular way to alleviate the overfitting. Traditional data
augmentation includes random cropping, horizontal flipping,
adding gaussian noise and so on. The generated color images
using dropout layer in our method can be treated as a new
type of data augmentation method. Random cropping is not
suitable for our task, since the horizontal information of color
image has strict structure, namely the order of skeleton joints.
Another difference is that random cropping will crop a patch
of continuous region from color image. In other words, the
cropped patch is according to the same specific speed of orig-
inal action. While, our method can generate new color image
features according to various speed variations. Generally, our
method is specifically designed for augmenting actions with
various speeds, which has not been researched yet.

Tackling data with variable length Previous works usu-
ally use RNN/LSTM to tacking data with variable length. Re-
cently, some works directly resize data to fixed length and
then use CNN to extract deep features. We argue that CN-
N may perform better than RNN/LSTM if we properly ar-
range data with variable length as suitable inputs for CNN.
Our d-CNN model has two merits to tacking data with vari-
able length. First, different lengthes of inputs are sampled to
fixed sizes, therefore facilitates the usage of CNN. Second,
in different training epoch, different data are sampled, which
avoid the loss of input data.

3.3. Hierarchical CNN

Let parameter rm be the ignorance rate of the dropout layer.
For skeleton sequence {{(xtn, ytn, ztn)}Nn=1}Tt=1, the generat-
ed probabilistic speed insensitive color image will hasN rows
and dT ∗ (1− rm)e columns. The number of columns reflects
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the scale of temporal domain. Single scale will limit the dis-
criminative power of extracted deep feature. To this end, we
set the ignorance rate to {rm}Mm=1, and train an end to end
hierarchical CNN model, which is shown in Fig. 3. Note that
we use pre-trained parameters for VGG-19 network except
for the last full connection layer.

For an input sequence Ik, we obtain a series of color im-
ages: {Ikm}Mm=1. Mean removal is adopted for all input im-
ages to improve the convergence speed. Then, each color
image is processed by a CNN. For the image Ikm, the output
Υm of the last fully-connected (fc) layer is normalized by the
softmax function to obtain the posterior probability:

prob(l | Ikm) =
eΥl

m∑L
j=1 e

Υj
m

, (1)

which indicates the probability of image Ikm belonging to the
l-th action class. L is the number of total action classes.

The objective function of our model is to minimize the
maximum-likelihood loss function:

L(Im) = −
K∑

k=1

ln
L∑

l=1

δ(l − sk) prob(l | Ikm), (2)

where function δ equals one if l = sk and equals zero oth-
erwise, sk is the real label of Ikm, K is the batch size. For
sequence I, its class score is formulated as:

score(l | I) =
1

M

M∑
m=1

prob(l | Im), (3)

where score(l | I) is the average of the outputs from all ten
CNN and prob(l|Im) is the probability of image Im belonging
to the l-th action class.

4. EXPERIMENTS

4.1. Datasets and Settings

NTU RGB+D dataset [15] contains 60 actions performed by
40 subjects from various views (Fig. 4 (a)), generating 56880
skeleton sequences. This dataset also contains noisy skeleton
joints (see Fig. 4 (b)), which bring extra challenge for recog-
nition. Following the cross subject protocol in [15], we split
the 40 subjects into training and testing groups. Each group
contains samples captured from different views performed by
20 subjects. For this evaluation, the training and testing sets

(a) view variations (b) noisy joints

Fig. 4. Snaps from NTU RGB+D dataset

Table 1. Evaluation on MSRC-12 dataset

Method Accuracy
CNN 91.07%

CNN+Random Cropping 87.84%
d-CNN (r=0.1) (ours) 89.78%
d-CNN (r=0.2) (ours) 91.02%
d-CNN (r=0.3) (ours) 89.28%
d-CNN (r=0.4) (ours) 90.99%

h-CNN 93.79%
hd-CNN (ours) 94.59%

have 40320 and 16560 samples, respectively. Following the
cross view protocol in [15], we use all the samples of camer-
a 1 for testing and samples of cameras 2 and 3 for training.
The training and testing sets have 37920 and 18960 samples,
respectively.

MSRC-12 dataset [16] contains 594 sequences, i.e.
719359 frames (approx. 6 hour 40 minutes), collected from
30 people performing 12 gestures. This is a single view
dataset, i.e., action samples are captured from a single view.
Therefore, the sequence-based transform method is not used
to implement our method on this dataset. Following the cross-
subject protocol in [17], we use sequences performed by odd
subjects for training and even subjects for testing.

Implementing details In our model, each CNN contains
five convolutional layers and three fc layers. The first and
second fc layers contain 4096 neurons, and the number of
neurons in the third one is equal to the total number of action
classes. Filter sizes are set to 11 × 11, 5 × 5, 3 × 3, 3 × 3,
3×3. Local Response Normalisation (LRN), max pooling and
ReLU neuron are adopted and the dropout regularisation ratio
is set to 0.5. The network weights are learned using the mini-
batch stochastic gradient descent with the momentum value
set to 0.9 and weight decay set to 0.00004. Initial learning rate
is set to 0.001 and then divided by 10 every 20 epoches. The
maximum training cycle is set to 80. In each cycle, a mini-
batch of 128 samples is constructed by randomly sampling
128 images from training set. The implementation is based
on pyTorch with one TITAN X card and 16G RAM.



Table 2. Evaluation on NTU RGB+D dataset

Method Cross Subject Cross View
CNN 81.77% 90.00%

CNN+Random Cropping 79.41% 87.65%
d-CNN (r=0.1) (ours) 82.23% 90.40%
d-CNN (r=0.2) (ours) 81.38% 90.13%
d-CNN (r=0.3) (ours) 81.40% 90.05%
d-CNN (r=0.4) (ours) 81.44% 89.99%

h-CNN 83.21% 91.15%
hd-CNN (ours) 84.33% 92.21%

Table 3. Comparisons on MSRC-12 dataset

Method Accuracy
ELC-KSVD [18] 90.22%

Cov3DJ [19] 91.70%
ConvNets [5] 84.46%

JTM [17] 93.12%
hd-CNN (ours) 94.59%

4.2. Effectiveness of the Proposed Method

To simplify analysis, we use following abbreviations. CN-
N denotes using color image feature to represent a skele-
ton sequence and using a pre-trained VGG-19 network for
extracting deep features. CNN+Random Cropping denotes
applying random cropping method to do data augmentation.
d-CNN (r=0.1) denotes using our d-CNN network with pa-
rameter r = 0.1. h-CNN denotes using h-CNN network
which fuses four different CNN networks, hd-CNN denotes
using our hd-CNN network which fuses d-CNN networks
with r = 0.1, 0.2, 0.3, 0.4.

Parameter evaluation As shown in Table 1 and 2, the gap
between the d-CNN and the CNN is not obvious, for example,
only in the case of r = 0.1, the performance of the d-CNN
is slightly better than the CNN. It probably can be explained
that with the increases of r, the more temporal information
is discarded. It infers that the d-CNN can barely learn detail
features over each time slot. Even so, the performance of d-
CNN is still very close to the CNN.

d-CNN versus hd-CNN The performance of the hd-CNN
is better than the d-CNN, for example, the accuracy of the h-
CNN increases to 2.21% on NTU RGB+D dataset with cross
view. It means the accuracy of our method can be improved
when multiple scales of temporal information are considered.

h-CNN versus hd-CNN The performance of the hd-CNN
is better than the h-CNN, It verifies that considering the speed
invariance is necessary for human action recognition.

Data augmentation The CNN is better than the CN-
N+Random Cropping in terms of accuracy. This means that
the data augmentation using random cropping is not suitable
for skeleton sequence color image. It can be explained that
when the skeleton sequence color image is cropped with con-
tinuous region, the temporal of human action will be lost.

Table 4. Comparisons on NTU RGB+D dataset

Method Cross Subject Cross View
SNV [20] 31.82% 13.61%

HOG2 [21] 32.24% 22.27%
Dynamic Skeletons [22] 60.23% 65.22%

HBRNN-L [14] 59.07% 63.97%
Deep RNN [15] 56.29% 64.09%

Deep LSTM [15] 60.69% 67.29%
Part-aware LSTM [15] 62.93% 70.27%

ST-LSTM [23] 61.70% 75.50%
ST-LSTM+TG [23] 69.20% 77.70%

View-invariant CNN [24] 80.03% 87.21%
Two-Stream RNN/CNN [25] 83.74% 93.65%

hd-CNN (ours) 84.33% 92.21%

4.3. Comparisons to the State-of-the-Art Methods

Table 3 and 4 shows the performances of various methods
on MRSC-12 and NTU RGB+D dataset. As shown in Table 3
and 4, The performance of the h-CNN are better than other al-
gorithms. It is worth noting that the View-invariant CNN [20]
in Table 4 is most related to our visualization method. Al-
though view variations on spatio-temporal locations of skele-
ton joints is effectively eliminated in the View-invariant C-
NN, the h-CNN is still better than the View-invariant C-
NN. It probably can be explained that compared with the
View-invariant CNN [24], the h-CNN not only can leaning
spatial-invariant features automatically, but also can learning
temporal-invariant features effectively.

5. CONCLUSION

In this paper, we demonstrate the effect of speed variation
on skeleton sequence color image. To address the problem,
we propose a novel hierarchical dropped CNN architecture.
Dropped CNN (d-CNN) is firstly developed to extract deep
features from a probabilistic speed insensitive color image.
This image expresses both spatial distributions and tempo-
ral evolutions of skeleton joints meanwhile avoids the effect
of speed variations. Then, we extend d-CNN to a hierarchi-
cal structure (h-CNN) to encoding multiple scales of temporal
information. Extensive experiments on benchmark MSRC-12
dataset and the currently largest NTU RGB+D dataset verify
the effectiveness and robustness of our proposed method. In
the future, we will encode multi-scale information via one C-
NN network.
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