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ABSTRACT

It remains a challenge to extract spatial-temporal information
from skeleton sequences for 3D human action recognition.
Although most recent action recognition methods based on
Recurrent Neural Networks (RNN) have achieved outstand-
ing performance, one of the shortcomings of these method-
s is the tendency to overemphasize the temporal informa-
tion. Since 3D Convolutional Neural Networks(3D CNN) can
simultaneously learn features from both spatial and tempo-
ral dimensions through capturing correlations among three-
dimensional signals, this paper proposes a novel two-stream
model using 3D CNN. To our best knowledge, this is the
first attempt to use 3D CNN in the field of skeleton-based ac-
tion recognition. Our method consists of three stages. First,
skeleton joints are mapped into a 3D coordinate space to en-
code the spatial and temporal information. Second, 3D CNN
models are separately employed to extract deep features from
both spatial and temporal stream. Third, to enhance the abil-
ity of discriminative features to capture global relationships,
we extend each stream into multi-temporal version. Exten-
sive experiments on the large-scale NTU RGB-D dataset and
the public SmartHome dataset demonstrate that our method
outperforms most of RNN-based methods, which verify the
complementary property between spatial and temporal infor-
mation and the robustness to noise.

Index Terms— 3D Human Action Recognition, Skeleton
Sequences, 3D Convolutional Neural Networks

1. INTRODUCTION

Human action recognition has been widely applied in vari-
ous applications, including intelligent surveillance, human-
computer interaction and video analysis [1, 2, 3, 4]. 3D repre-
sentation of human action provides more comprehensive and
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discriminative information than 2D RGB videos. During re-
cent years, the skeleton-based 3D action recognition has been
attracting increasing attention due to its high level represen-
tation and robustness to appearances and surrounding distrac-
tions.

Recurrent Neural Networks (RNN) [5], [6] have been
used to model temporal evolutions of skeleton sequences [7].
These RNN-based methods tend to overstress the temporal in-
formation [8]. However, for a given skeleton sequence, there
are two important factors to recognize action classes: one is
the description of the spatial structure of skeleton joints, and
the other is to extract temporal information among multiple
frames of the sequence. Hence, the combination of spatial
and temporal information is the most effective representa-
tion. Considering that 3D Convolutional Neural Networks
can extract correlations among high-dimensional signals by
performing 3D convolutions [9], we present a two-stream 3D
CNN model for skeleton-based action recognition.

To extract correlations by 3D convolutions, the well-
designed spatial-temporal encodings of skeleton joints
through mapping into a 3D coordinate space to encoded into
volume as input. Therefore, the spatial and temporal informa-
tion can be effectively learned by 3D CNN simultaneously.
In addition, the two-stream consists of spatial and temporal
streams, which compensate for each other to enhance the rep-
resentation of spatial and temporal information.

2. RELATED WORK

2.1. RNN-based Methods

Most recent action recognition methods are based on Re-
current Neural Networks. Du et al. [7] proposed an end-
to-end hierarchical RNN to encode the relative motion be-
tween skeleton joints. Skeletons were split into anatomically-
relevant parts, which were fed into each independent subnet
to extract local features. Since LSTM can learn long-term and
short-term dependencies in the input sequences using special
gating schemes, many works chose LSTM to learn features.
Shahroudy et al. [10] proposed a part-aware LSTM which
has part-based memory sub-cells and a new gating mechanis-
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Fig. 1: Overall pipeline of the proposed two-stream 3D CNN

m, showing that LSTM outperforms some hand-crafted fea-
tures and RNN. However, RNN-based methods tend to focus
on the representation of temporal information [8].

2.2. 3D CNN-based Methods

3D CNN has been established as a natural and suitable choice
for action recognition, object recognition [11], vehicle de-
tection [12] and human pose estimation [13] to receive a 3-
dimensional input. It was proposed for RGB sequence-based
action recognition [9], [14] for the first time. 3D convolu-
tional layer takes a volume as input and outputs a volume.
Both spatial information and temporal information are ab-
stracted layer by layer from the low-level features to high-
level features. Tran et al. [15] proposed a simple, yet ef-
fective approach to spatial-temporal feature learning using
3-dimensional convolutional neural network, which verified
that 3D CNN achieves faster and higher accuracy. Especially,
the features used in [15] have four properties for an effective
video descriptor: generic, compact, efficient and simple. Cao
et al. [16] provided a more effective and robust joints-pooled
3D deep convolutional descriptor (JDD), generating promis-
ing results on real-world datasets. In general, 3D CNN can
capture correlations among three-dimensional signals there-
by exploring distinctive spatial-temporal information.

Our main contribution lies in three aspects: (1) Well-
designed spatial-temporal encodings of skeleton sequences
are quite effective for 3D CNN to learn. (2) We originally
propose a novel two-stream 3D CNN model, which is mutu-
ally compensated and robust to noise. Especially, it can effec-
tively avoids overfitting. (3) To the best of our knowledge,
this is the first attempt to use 3D CNN for skeleton-based
action recognition, which achieves competitive performances
on challenging datasets.

3. TWO-STREAM 3D CNN

This section illustrates the pipeline (see Fig. 1) of the pro-
posed two-stream 3D CNN for skeleton-based action recog-
nition. First, a sequence-based transform method is used,
which eliminates the effect of view variations. Second, the
spatial information and temporal information among multi-
ple frames are encoded into spatial volume and temporal vol-

ume respectively, which capture the spatial structure of body
and emphasize the chronological order. Third, the 3D CN-
N is capable to learn spatial and temporal features. In con-
trast, RNN-based methods provide good temporal modeling
but lack the combination of spatial-temporal. Finally, original
skeleton sequences are convert into multi-temporal sequences
to capture large scale of temporal information.

3.1. Spatial and Temporal Volume

Since different views impact the appearance of skeletons, a
spatial transform proposed by Liu et al. [17] is adopted as
a preprocessing step to solve the problem of viewpoint vari-
ations. Assuming there are F frames in an action and each
skeleton consists of M joints, the m-th skeleton joint on the
f-th frame is formulated as p/, (xf yl, 20 )T, where
fe@,...F),me (1,...,M). For there are limited marked
joints in each action sequence, the interpolation operation be-
tween the consecutive joints is applied to enrich joint infor-
mation. Next, skeleton joints from each action sequence are
mapped into a 3D coordinate space .S and then encoded in-
to spatial volume and temporal volume separately. Particu-
larly, it is not only effective for 3D CNN to capture correla-
tions but also to solve the problem of inconsistent frames for
each skeleton sequence to retain complete moving informa-
tion. Let Fi(x],,yl 2/ ) be spatial value in spatial volume
indicating regions of motion, which represents the encoded
spatial information.
-1

Considering that it is difficult to recognize two actions
with similar motion regions but reverse chronological order,
such as actions “standing up” and “sitting down”. There-
fore, let Fy(zf,,vy7,, 2/ ) represent time value by adding cor-
responding frame number of action to time volume. For
Fy(2],,yl,, 21, reflects the order of time, it can distinguish
them successfully. For the results presented here, a simple

replacement for use is defined as:

Fy(al, yl,, 2], = norm(f), )

where function norm indicates that Fy(xf  yl zf) is

normalized to [0,1]. Compared with F,(zf , v/, 27),

m?»JIm’ “m

1, ifpl, €S
0, otherwise

F (:L‘f y,’;w z,f;

m>

ey

fe(1,2,..,F)



Fig. 2: Illustration of spatial volume (upper) and temporal volume
(lower) of action “hand waving” from three orthogonal planes

Fy(zf,,yf , 2] encodes temporal information of action se-
quences. As shown in Fig. 2, it illustrates the difference
between spatial encoding and temporal encoding of action
“hand waving”. It can be seen that temporal encoding cap-
tures the temporal variations. The deeper the color, the more
backward the time sequence. Importantly, the adoption of fus-
ing the spatial and temporal features reinforces each other to
achieve better performance.

3.2. Two-Stream 3D CNN Model

A simple yet effective network for 3D convnet proposed in
this paper. As shown in Fig. 1, to compare the performance
of spatial encoding and temporal encoding, the architecture
of spatial stream is the same as that of temporal stream to be
consistent. For individual stream, the 3D CNN network is
comprised of four layers of 3D convolution, each followed by
a max-pooling and two fully connected layers. As same as
[18], the filter numbers for each convolution layer are 3, 8, 32
and 64, respectively and 512, 256 neurons for fully connected
layers separately. And the kernel size of filters are 7 X 7 X 5,
95X b x3,5x5x3,3 x5 x 3respectively for convolutional
layers. Particularly, to reduce overfitting and improve the gen-
eralization of classifier, dropout layer [19] is added between
the convolution layer and the max-pooling layer to eliminate
overfitting. In addition, the padding is used after the first three
convolution layer in order to make sure that the input size is
equal to the output size of the convolution operation to guar-
antee the number of convolution layer. Most importantly, the
full model only has 910K parameters.

The spatial stream and temporal stream are trained sep-
arately and fused during the forward propagation stage for
decision making. For each network, with weight parameters
W and W respectively, the class-membership probabilities
for classes C' given the action’s observation x are represented
as (P(C|x,Wg), P(C|x,Wr)). To compute the final class-
membership probabilities for the action recognition classier,
the class-membership probabilities are multiplied element-
wisely from the two-stream network:

P(C|z) = P(Clz,Ws) *x P(C|z, Wr) 3)

Then,
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Fig. 3: Multi-Temporal structure for action "hand waving”

argmaz P(C|x). All classification outputs are softmax lay-
er as Eq.(4) and trained with cross-entropy loss as Eq.(5).
Furthermore, for activation functions, all the layers in the
networks use the rectified linear unit(ReLU), represented as

f(z) = maz(0, z).
R @
where z, is the output of the neuron k.
|D]
LW.D) =~ 155> Zylog P(CO1® W) -
®)

y)log(1 — P(C)|z®, W)

where D represents the trained dataset and y indicates the true
class label of each action sequence.

3.3. Multi-Temporal Structure

The method of implementing 3D CNN model with different
scale of convolutional filters can extract more discriminative
information and capture large scale of temporal information.
However, this way adds complexity of the 3D CNN model.
This paper converts original skeleton sequences into multi-
temporal sequences, and then uses two-stream 3D CNN mod-
el to extract deep features, respectively. As shown in Fig.
3, 3D volume represents the volume of encoding spatial and
temporal information. Then multi-temporal 3D volumes are
trained by the two-stream 3D CNN model respectively and
fused to get final the result. Specifically, given a skeleton se-
quence with F' frames, “Level 0” represents the entire skele-
ton sequences; “Level 1” represents the subsequence from the
beginning to the | F//2| — th frame; “Level 2” represents the
subsequence from | F'//4] — th frame to |3F/4] — th frame;
“Level 3” represents the subsequence from | F'/2] — th frame
to the end. 3D volumes extracted from different temporal lev-
els not only capture the multi-scale specific local patterns, but
also enhance the global relationships.

4. EXPERIMENTS AND ANALYSIS

The proposed method is evaluated on two public benchmark
datasets: NTU RGB+D Dataset and SmartHome Dataset. Ex-



(a) Reverse time series action pairs (b) Noisy skeletons

Fig. 4: Snaps from the NTU RGB+D dataset [10]
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Fig. 5: Skeletons of action “wave” in SmartHome dataset [17]

periments are conducted to evaluate the effectiveness of the
two-stream 3D CNN model.

4.1. Datasets and Settings

NTU RGB+D dataset contains 56880 sequences of 60 classes
performed by 40 subjects and captured by three cameras. It is
a very challenging dataset due to different sequence length,
reverse time series action pairs and noisy skeleton joints.
Some snaps are shown in Fig. 4. To ensure a fair compar-
ison, we follow the two standard protocols used in the [10].
In cross-subject evaluation, the 40 subjects are split into train-
ing and testing groups. Each group contains 20 subjects. For
cross-view evaluation, all samples of camera 1 are picked for
testing and samples of cameras 2 and 3 are picked for train-
ing. SmartHome dataset' [17] is collected by our lab, which
contains six types of actions: “box”, “high wave”, “horizontal
wave”, “curl”, “circle”, “hand up”. Each action is performed
6 times (three times for each hand) by 9 subjects in 5 situa-
tions: “sit”, “stand”, “with a pillow”, “with a laptop”, “with a
person”, generating 1620 depth sequences. Skeleton joints in
SmartHome dataset contain much noises, due to the effect of
occlusions and the unconstrained poses of action performers.
Skeletons of action “wave” are shown in Fig. 5. For evalua-
tion, subjects #1, 3, 5, 7, 9 are used for training and subjects
#2, 4, 6, 8 are used for testing.

Normalization step applied on the joint coordinates by
translating them to a body centered coordinate system with
the ”"middle of the hip” joint as the origin. For the mapped
3D coordinate space S, the width height is set to be 50. The
network weights are learned using the mini-batch stochastic
gradient descent with learning rate set to 0.0005, momentum
value set to 0.9 and weight decay set to 1.0e-6. The size of
minibatches is 32 and the probability of dropout is 0.3. We

! 1t is provided in https:/github.com/NewDataset/dataset.git.
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randomly sample 10% of the initial training set as a valida-
tion set for hyper-parameter optimization.

4.2. Evaluation of Two-Stream 3D CNN

Fig. 6 shows the convergence curves on the NTU RGB+D
dataset for spatial stream and temporal stream, where the er-
ror rate tends to converge when the training epoch grows to
250. The result verifies the effectiveness of the 3D CNN
architecture. Table I evaluates two-stream 3D CNN model
method. By fusing the spatial stream and temporal stream, it
has no obvious effect on SmartHome dataset for cross sub-
ject evaluation. Because SmartHome dataset does not con-
tain similar action pairs that has opposite chronological order.
On the contray, two-stream 3D CNN respectively achieves
5.46% and 5.90% higher than individual stream on NTU RG-
B+D dataset for cross-view evaluation. These improvements
verify that the two-stream can mutually reinforce. Further-
more, three pairs of representative actionss confusion matrix
as shown in Fig. 7. Like action pairs “sitting down” and “s-
tanding up”, for spatial stream, the probability of classifying
sitting down to standing up is 0.25. While for two-stream, the
probability drops to 0.02. It can be seen that the error rates of
mutual recognition has a reduction relatively.



Table 1: Evaluation of two-stream 3D CNN model

Method Dataset
SmartHome NTURGB+D NTU RGB+D
(CS)(%) (CS)(%) (CV)(%)
Spatial Stream 78.61 56.06 62.41
Temporal Stream 71.32 56.22 61.97
Two-Stream 79.38 62.13 67.87

Table 2: Results of multi-temporal scheme on NTU RGB+D dataset

Method CS(%) CV(%)
Level 0 62.13 67.87
Level 1 52.30 56.53
Level 2 53.42 58.49
Level 3 52.87 57.68
Level 0+14+2+3  66.85 72.58

4.3. Evaluation of Multi-Temporal Structure

The level [ of our two-stream 3D CNN model is considered
to have notable impact on the performance. Table II show the
recognition accuracies with different values of [ from O to 3.
It can be observed that our method achieves the best perfor-
mance on the NTU RGB+D dataset when fusing all levels.

Compared to state-of-the-art methods on the NTU RG-
B+D dataset for cross-subject and cross-view evaluation, the
results are reported in Table III. Since this dataset provides
rich samples for training deep models, e.g., HBRNN-L [7],
achieved higher accuracy than most of hand-crafted based
methods. It verifies the effectiveness of the RNN-based meth-
ods. Besides, our method performs better than methods such
as “Deep RNN” [10], “Deep LSTM” [10], Part-aware LSTM
[10] for both cross-subject and cross-view protocols. And it
also outperforms the ST-LSTM [20] for cross-subject evalua-
tion and obtains competitive results for cross-view evaluation.

Compared to other methods on the SmartHome dataset, as
shown in Table IV, the proposed two-stream 3D CNN model
achieves the best performance, with the accuracy of 79.38%,
which is better than Synthesized+Pre-trained [17]. Compared
to ConvNets [25] and JTM [8], the improvements are 8.27%
and 12.16% respectively. These improvements verify that our
method can work well against noisy data.

Our method outperforms these methods mainly due to the
following reasons. First, 3D convolutional neural network
can sufficiently capture correlations , thereby learning spa-
tial and temporal information simultaneously. Particularly,
the well-designed form of spatial volume and temporal vol-
ume is useful for 3D CNN to represent information; Second,
the network of two-stream enhances the spatial-temporal in-
formation and compensates for each other; Third, the multi-
temporal structure learns multi-scale information including
local patterns and global relationships.

Table 3: Comparisons on the NTU RGB+D dataset

Methods Year CS(%) CV(%)
HOG2 [21] 2013  32.24 22.27
Lie Group [22] 2014 50.08 52.76
Skeletal Quads [23] 2014  38.62 41.36
FTP Dynamic Skeletons [24] 2015  60.23 65.22
HBRNN-L [7] 2015 59.07 63.97
Deep RNN [10] 2016  56.29 56.29
Deep LSTM [10] 2016  60.69 67.29
Part-aware LSTM [10] 2016 62.93 70.27
ST-LSTM [20] 2016  61.70 75.50
Multi-temporal 3D CNN(ours) 2017  66.85 72.58

Table 4: Comparisons on the SmartHome dataset

Methods Year Cross Subject(%)
ConvNets [25] 2015 67.22
JTM [8] 2016 71.11
SM+MM [26] 2017 77.92
Skeleton Visualization [17] 2017 78.61
Two-stream 3D CNN(ours) 2017 79.38

5. CONCLUSION AND FUTURE WORK

This paper proposes a novel two-stream 3D CNN model for
action recognition based on skeleton sequences. The pro-
posed spatial-temporal stream can learn more motion details
of local and global by individual stream’s mutual enhance-
ment. Meanwhile, the simple yet effective 3D CNN architec-
ture overcomes the overfitting problem. Experimental result-
s show that our method outperforms most of state-of-the-art
RNN-based approaches and verify the effectiveness of using
3D CNN learn the processed skeleton data. And the multi-
temporal version do increase the ability of 3D CNN model to
capture multi-scale information. In the future, in order to train
3D CNN more effectively, we will focus on different ways of
encoding skeleton data.
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