
Online Initialization and Automatic Camera-IMU Extrinsic Calibration
for Monocular Visual-Inertial SLAM

Weibo Huang, Hong Liu

Abstract— Most of the existing monocular visual-inertial
SLAM techniques assume that the camera-IMU extrinsic pa-
rameters are known, therefore these methods merely estimate
the initial values of velocity, visual scale, gravity, biases of
gyroscope and accelerometer in the initialization stage. How-
ever, it’s usually a professional work to carefully calibrate
the extrinsic parameters, and it is required to repeat this
work once the mechanical configuration of the sensor suite
changes slightly. To tackle this problem, we propose an online
initialization method to automatically estimate the initial values
and the extrinsic parameters without knowing the mechanical
configuration. The biases of gyroscope and accelerometer are
considered in our method, and a convergence criteria for both
orientation and translation calibration is introduced to identify
the convergence and to terminate the initialization procedure.
In the three processes of our method, an iterative strategy
is firstly introduced to iteratively estimate the gyroscope bias
and the extrinsic orientation. Secondly, the scale factor, gravity,
and extrinsic translation are approximately estimated without
considering the accelerometer bias. Finally, these values are
further optimized by a refinement algorithm in which the
accelerometer bias and the gravitational magnitude are taken
into account. Extensive experimental results show that our
method achieves competitive accuracy compared with the state-
of-the-art with less calculation.

I. INTRODUCTION

Monocular visual-inertial SLAM is a technique which

aims to track the incremental motion of a mobile platform

and to simultaneously build a representative map for an

environment using the measurements from a single on-board

camera and an IMU sensor. Visual camera and inertial mea-

surement unit (IMU) are ideal choice for SLAM techniques

since the two sensor modalities are miniaturized size, cheap,

low power consumption and acknowledged to complement

each other. The rich representation of environments projected

into an image helps to build a map and to estimate the

trajectory of a camera up-to-scale, while the accurate short-

term rigid body motion can be estimated by integrating

the measurements of gyroscope and accelerometer contained

in an IMU sensor. These properties make it possible for

the visual-inertial setup to be applied to extensive practical

applications, such as robot navigation [1], [2], autonomous or
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semi-autonomous driving [3], live metric 3D reconstruction

[4], augmented and virtual reality [5], etc.

Several visual-inertial techniques have been presented in

the literature, such as the recursive algorithms [6], [7] which

commonly use the IMU measurements for state propagation,

and the keyframe-based nonlinear optimization methods [8]–

[10] which jointly minimize visual and inertial geometry

error. However, the performances of these methods heavily

depend on prior precise extrinsic calibration of the six-

degree-of-freedom (6-DOF) transformation between the cam-

era and the IMU. Extrinsic parameters are the bridge of

the state transformation between camera reference frame and

IMU reference frame. Incorrect calibration will introduce a

systematic bias in motion estimation and degrade the overall

navigation performance.

One alternative to obtain precise extrinsic parameters is

to utilize offline methods [11]–[13]. However, these meth-

ods are complex and time-consuming since they usually

require a professional user to carefully move the sensor

suite in front of a stationary calibration target. Besides,

it is usually required to repeat this process whenever the

sensors are repositioned or significant mechanical stress is

applied. Another alternative is to apply the online calibration

approaches to jointly estimate the initial values and the

extrinsic parameters. A self-calibration method based on

unscented Kalman filter is proposed by Kelly et al. [14] to

calibrate the extrinsic parameters. A closed-form solution is

introduced by Martinelli [15] to estimate the initial values,

and its revision is later proposed in [16] to automatically

estimate the gyroscope bias. Yang and Shen [17] calibrate the

extrinsic parameters and the initial values (except for IMU

bias) with an optimization-based linear estimator. In their ex-

tended monocular visual-inertial system (VINS-Mono) [18],

the IMU bias calibration is included in the sliding window

nonlinear estimator.

Recently, an efficient IMU initialization method named

VI ORB SLAM was introduced by Mur-Artal et al. [19].

This method subdivides the initialization process into three

simple sub-problems and achieves high accuracy in a short

time. Unfortunately, the camera-IMU extrinsic parameters

are still assumed as prerequisites in this method. Motivated

by Mur-Artal’s work, in this paper, three simple process-

es are introduced to automatically estimate the extrinsic

parameters and the initial values with no need for any

initial guess or any priori knowledge about the mechanical

configuration of the sensor suite. Firstly, an iterative strategy

is introduced to estimate the camera-IMU orientation and

the gyroscope bias. Secondly, the extrinsic translation, the
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visual scale and the gravity are roughly estimated. Finally,

by considering the accelerometer bias and the magnitude of

the gravitational acceleration, the scale, gravity and extrinsic

translation are further refined. Although the proposed method

is implemented based on the monocular ORB-SLAM [20],

[21], our method is generic and could be applied to any

keyframe-based visual odometry or SLAM system. The main

contributions of this paper are identified as follows:

• Without knowing the mechanical configuration of the

sensor suite, the scale, velocity, gravity, IMU biases,

and the extrinsic parameters are jointly estimated.

• An iterative strategy is conducted to calculate the ex-

trinsic orientation and gyroscope bias.

• A general convergence criteria is introduced to identify

the convergence of the orientation and translation cali-

bration and to terminate the initialization procedure.

II. PRELIMINARIES

In this section, the necessary notations and some useful

geometric concepts are briefly reviewed. Besides, the defini-

tion of the reference frames and the IMU preintegration on

manifold are also presented as follows.

A. Notation

In this paper, vectors and matrixes are denoted in boldface,

and a vector is expressed with respect to a specific reference

frame by appending a left subscript, e.g. Av for the vector

v expressed in frame {A}. If a vector describes the relative

transformation from one reference frame to another frame,

a right subscript is appended to indicate the transformed

frame, e.g. CpB for the vector that defines the translation

from camera frame {C} to IMU body frame {B}. For the

rotation matrix, the orientation from camera frame to IMU

body frame is denoted as RCB.

B. Geometric Concepts

1) Skew-symmetric matrix: The skew-symmetric matrix of

a vector a = [ax ay az]
T ∈ R

3×1 is denoted as [a]×:

[a]× =

⎡
⎣ 0 −az ay

az 0 −ax
−ay ax 0

⎤
⎦ . (1)

Given two vectors a,b ∈ R
3×1, the cross-product can be

written as a×b = [a]×b =−[b]×a.

2) Quaternion: A quaternion is a four-dimensional com-

plex number that can be used to non-singularly parameterize

the 3D rotation group SO(3). It generally consists of a scalar

part qw and a vector part qv:

q = qw +qxi+qyj+qzk =

[
qw
qv

]
(2)

where qw,qx,qy,qz ∈ R, qv = [qx qy qz]
T ∈ R

3×1. A quater-

nion can be normalised by dividing its norm ||q||, where

||q||=
√

q2
w +q2

x +q2
y +q2

z . In practice, quaternion arithmetic

often requires that a quaternion describing an orientation

needs to be normalised. As a result, the quaternions men-

tioned in the rest of this paper are normalised by default.
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Fig. 1. Relationships among the world {W}, camera {C}, and IMU
body {B} reference frames. The camera and IMU are rigidly attached to
a common bracket (e.g. printed circuit board (PCB)). The transformation
TCB = [RCB|CpB] between the camera frame {C} and the IMU body frame
{B} is usually unknown and has to be calibrated online. The EG and Wg are
respectively the vectors of gravitational acceleration in the earth’s inertial
frame {E} and in the world frame {W}.

Given two unit quaternions qAB and qBC, the compound

orientation qAC can be defined by the quaternion multiplica-

tion:
qAC = qAB⊗qBC

= [qAB]L ·qBC = [qBC]R ·qAB
(3)

where ⊗ is the quaternion multiplication operator, and the

matrix representations for left and right quaternion multipli-

cation are respectively defined as follows:

[q]L =

[
qw −qT

v
qv qwI3×3 +[qv]×

]

[q]R =

[
qw −qT

v
qv qwI3×3− [qv]×

] (4)

where I3×3 is the 3×3 identity matrix, and [qv]× represents

the skew-symmetric matrix of the vector part of a quaternion.

An orientation can be expressed in an unit quaternion q or

a rotation matrix R. The transformation between these two

formats is:

q �→ R : R = (2q2
w−1)I3×3 +2qw[qv]×+2qvqT

v

R �→ q : qw =

√
tr(R)+1

2

qv =

[
m32−m23

4qw

m13−m31

4qw

m21−m12

4qw

]T

(5)

where the rotation matrix R ∈ SO(3), R = {mi j}, mi j ∈ R,

i, j ∈ [1,2,3], and the trace tr(R) is the sum of the elements

on the main diagonal of R.

C. Reference Frames

The relationships among the reference frames of our

method are shown in Fig. 1. Since the visual odometry

and the IMU integration measure the relative motion, the

absolute attitude in the pre-fixed reference frame (e.g. the

earth’s inertial frame) can not be determined. Therefore, the

reference frame (world frame {W}) of our method coincides

with the coordinate system of the first keyframe which is

determined by the monocular SLAM system. Our goal is to

calibrate the rigid orientation RCB ∈ SO(3) and the translation
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CpB ∈R
3×1 between camera frame {C} and IMU body frame

{B}, meanwhile calculating the velocity WvB, gyroscope bias

bg, accelerometer bias ba, gravity Wg, and the visual scale s
in the initialization stage.

Considering the scale factor s for the trajectory computed

by monocular SLAM, the transformation between camera

frame {C} and IMU body frame {B} is:

RWB = RWCRCB (6)

WpB = RWC · CpB+ s · WpC. (7)

D. IMU Model and Preintegration

An IMU commonly provides discrete time samples of

the rotation rate and the acceleration of the sensor w.r.t.

the body frame {B}. In principle, the change in pose of

a strap-down IMU can be determined by integrating the

gyroscope and accelerometer outputs with an initial linear

speed. However, in addition to white sensor noises ηg and

ηa, the measurement outputs ωB and aB are subject to low-

frequency drift biases bg and ba which limit the accuracy of

inertial dead-reckoning over extended periods. In addition,

the IMU accelerometer senses the force of gravitational

attraction. The effect of the gravity Wg in the world frame

should be subtracted since the magnitude of the gravitational

attraction is often large enough to dominate other measured

accelerations.

The concept of preintegrated IMU measurement was first

proposed in [22] and extended by Forster et al. [23] on the

manifold space. Given two consecutive keyframes at time

i and j, the corresponding IMU orientation RWB, velocity

WvB and position WpB can be computed by summarizing all

measurements within this period:

R j
WB = Ri

WB

j−1

∏
k=i

Exp
(
(ωk

B−bk
g−ηk

g)Δt
)

Wv j
B = Wvi

B+ WgΔti j +
j−1

∑
k=i

Rk
WB(a

k
B−bk

a−ηk
a)Δt

Wp j
B = Wpi

B+
j−1

∑
k=i

(
Wvk

BΔt +
1

2
WgΔt2

+
1

2
Rk
WB(a

k
B−bk

a−ηk
a)Δt2

)

(8)

where Δt denotes the IMU sampling interval, and Δti j
.
=

( j− i)Δt. The Exp(·) is the exponential map operator that

maps Lie algebra so(3) to Lie group. When the influence of

IMU measurement noise is ignored, and the bias is assumed

to remain constant during the preintegration period, a small

bias correction δbi
(·) w.r.t. previously estimated b̄i

(·) could be

taken into account to rectify the preintegrated results. The

expressions in (8) can be rewritten as:

R j
WB = Ri

WBΔR̄i jExp(JgΔR̄i j
δbi

g)

Wv j
B = Wvi

B+ WgΔti j +Ri
WB

(
Δv̄i j +JgΔv̄i j

δbi
g+JaΔv̄i j

δbi
a

)

Wp j
B = Wpi

B+ Wvi
BΔti j +

1

2
WgΔt2

i j

+Ri
WB

(
Δp̄i j +JgΔp̄i j

δbi
g+JaΔp̄i j

δbi
a

)
(9)

where the Jacobians Jg
(·) and Ja(·) describe how the measure-

ments change due to a change in the bias estimation. The

biases b̄i
g and b̄i

a remain constant during the preintegration

and they can be precomputed at time i . The details of the

Jacobians can be found in [23]. The terms of preintagration

ΔR̄i j, Δv̄i j and Δp̄i j are independent of the states at time i
and the gravity, in particular, they can be computed directly

from the IMU outputs between two keyframes, as follows:

ΔR̄i j =
j−1

∏
k=i

Exp
(
(ωk

B− b̄i
g)Δt

)

Δv̄i j =
j−1

∑
k=i

ΔR̄ik(ak
B− b̄i

a)Δt

Δp̄i j =
j−1

∑
k=i

(
Δv̄ikΔt +

1

2
ΔR̄ik(ak

B− b̄i
a)Δt2

)
.

(10)

III. IMU INITIALIZATION AND EXTRINSIC CALIBRATION

This section details the proposed online initialization

method to jointly calibrate the camera-IMU extrinsic pa-

rameters, as well as estimating the initial values, including

velocity, scale factor, gravity, and the biases of gyroscope

and accelerometer. In order to make all variables observable,

our method requires that the pure monocular SLAM system

has been performed for a few seconds and several keyframes

have been determined.

A. Gyroscope Bias Estimation and Orientation Calibration

Assuming the gyroscope bias changes slowly and the

change could be neglected in the initialization stage, a

constant gyroscope bias can be estimated by minimizing the

difference between camera rotations and IMU body rotations.

As shown in Eq.(6), a prior calibrated extrinsic orientation

RCB is needed for transforming the camera rotations into

IMU body frame. However, this extrinsic orientation is

usually unknown in most of practical applications. This

problem can be solved by calculating the gyroscope bias and

the extrinsic orientation using the same minimum function.

However, the Jacobian calculation for extrinsic orientation

on SO(3) is complex due to the self-constraint.

In this paper, an iterative strategy is introduced to decouple

the problem. At each iteration, the last calibrated extrinsic

orientation is utilized to estimate a gyroscope bias. Then the

integrated rotations are rectified by applying the estimated

gyroscope bias. Finally a linear over-determined equation is

developed to calculate a new extrinsic orientation.

1) Gyroscope Bias Estimation: The rotation relationship

of two consecutive keyframes at time i and i+1 is described
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as:

Ri
WB = Ri

WCR̂CB, Ri+1
WB = Ri+1

WC R̂CB (11)

where R̂CB is the extrinsic orientation calibrated in last

iteration.

Substituting Eq.(9) into Eq.(11), the relationship of prein-

tegration rotation and camera rotation can be described as:

ΔR̄i,i+1Exp(JgΔR̄δbg) = R̂BCRi
CWRi+1

WC R̂CB (12)

where R̂BC, Ri
CW are the inverses of R̂CB, Ri

WC respectively.

Using the logarithm map Log(·), the minimum function for

bias estimation is:

δb∗g = argmin
δbg

N−1

∑
i=1

∥∥∥Log
((

ΔR̄i,i+1Exp(JgΔR̄δbg)
)T

R̂BCRi
CWRi+1

WC R̂CB

)∥∥∥2
(13)

where ‖·‖ is the L2-norm. This equation can be solved with

Gauss-Newton algorithm [24]. Since the gyroscope bias is

assumed to remain constant in the initialization stage, and

the gyroscope bias b̄g is set to zero 03×1 when integrating

the ΔR̄i,i+1, the final estimated gyroscope bias is b∗g= 03×1+
δb∗g = δb∗g. Once the gyroscope bias has been estimated, the

preintegrations can be rectified by Eq.(10).

2) Extrinsic Orientation Calibration: The extrinsic ori-

entation can be calibrated by aligning the camera rotations

with the integrated IMU rotations. Here, the ”delta” notations

ΔCRi,i+1 = Ri
CWRi+1

WC and ΔBRi,i+1 = Ri
BWRi+1

WB are respec-

tively defined to describe the relative rotation increments

of the camera and the IMU body. The rotation relationship

described in Eq.(11) becomes:

RCBΔBRi,i+1 = ΔCRi,i+1RCB. (14)

With the quaternion representations qCB, Bqi,i+1 and Cqi,i+1

for RCB, ΔBRi,i+1 and ΔCRi,i+1 respectively, (14) can be

described as:

qCB⊗ Bqi,i+1 = Cqi,i+1⊗qCB
⇒ ([Bqi,i+1]R− [Cqi,i+1]L) ·qCB = Qi,i+1 ·qCB = 04×1.

(15)

Writing N keyframes i, i+1, ..., i+N−1 as 1, 2, ..., N for

clarity of notation, all relations can be stacked into a linear

over-determined equation:⎡
⎢⎢⎢⎣

w12 ·Q12

w23 ·Q23

...

wN−1,N ·QN−1,N

⎤
⎥⎥⎥⎦ ·qCB = 04(N−1)×1 (16)

where the wi,i+1 is a weight for outlier handling. As the

orientation calibration runs with incoming keyframes, the

previously estimated result q̂CB can be employed to calculate

the residual. Specifically, the residual for two consecutive

keyframes at time i and i+1 is defined as:

ei,i+1 = Qi,i+1 · q̂CB. (17)

The weight can be calculated as:

wi,i+1 = exp(−‖ei,i+1‖ ·Ko) (18)

where exp(·) indicates the exponential function, and Ko is a

gain factor used to amplify the residual effect.

The orientation qCB in Eq.(16) can be obtained by solving

the minimum function:

q∗CB = argmin
qCB:‖qCB‖=1

∥∥A4(N−1)×4 ·qCB
∥∥ . (19)

In Eq.(19), there are 4(N−1) equations and 4 unknowns,

therefore at least a pair of keyframes is required to calculate

a solution. Once an orientation q∗CB has been obtained from

Eq.(19), the corresponding matrix representation R∗CB can

be calculated according to Eq.(5). The R̂CB and q̂CB which

are respectively used for gyroscope bias estimation and

residual computation can be updated for next iteration. The

convergence criteria for orientation calibration is described

in Section.III-D.

B. Scale, Gravity and Translation Approximation (no ac-
celerometer bias)

Once the camera-IMU orientation has been calibrated, the

scale s, gravity Wg and extrinsic translation CpB can be ap-

proximately estimated without considering the accelerometer

bias. Since the preintegrations have been rectified after the

gyroscope bias estimation and the gyroscope bias is assumed

constant, the JgΔp̄ and JgΔv̄ can be set to zero. Substituting

Eq.(6) and Eq.(7) into the third equation of Eq.(9), the

position relationship of two consecutive keyframes can be

obtained:

s · Wpi+1
C =s · Wpi

C+ Wvi
BΔti,i+1 +

1

2
WgΔt2

i,i+1

+Ri
WCR∗CBΔp̄i,i+1 +(Ri

WC−Ri+1
WC )CpB.

(20)

Since the accelerometer bias is not considered at this stage,

the IMU body rotation Ri
WB is replaced by Ri

WCR∗CB to

eliminate the drift caused by accelerometer bias. Eq.(20)

aims to estimate s, Wg and CpB. Using the velocity relation

in Eq.(9), two relations between three consecutive keyframes

are calculated to reduce the burden of solving N velocities,

which results in the following expression:

[
λ (i) β (i) ϕ(i)

] ⎡⎣ s
Wg
CpB

⎤
⎦= γ(i). (21)

When writing keyframes i, i+1, i+2 as 1, 2, 3, we have:

λ (i) = (Wp2
C− Wp1

C)Δt23− (Wp3
C− Wp2

C)Δt12

β (i) =
1

2
(Δt12Δt2

23 +Δt2
12Δt23)I3×3

ϕ(i) = (R2
WC−R3

WC)Δt12− (R1
WC−R2

WC)Δt23

γ(i) = R1
WCR∗CBΔp̄12Δt23−R2

WCR∗CBΔp̄23Δt12

−R1
WCR∗CBΔv̄12Δt12Δt23.

(22)

Similar to Eq.(16), a weight coefficient wi is introduced

to handle the outliers:

ei = ŝ ·λ (i)+β (i)Wĝ+ϕ(i)Cp̂B− γ(i)
wi = exp(−‖ei‖ ·Kt)

(23)
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where ei represents the predicted residual, and Kt is a gain

factor used to amplify the residual effect, and ŝ, Wĝ and Cp̂B
indicate the last estimation results detailed in Section III-C.

All relations (21) for N keyframes can be stacked in-

to a linear over-determined equation B3(N−2)×7 · x7×1 =
C3(N−2)×1 with the weights defined in (23) for outlier han-

dling. The solution s∗, Wg∗, Cp∗B can be obtained by solving

the minimum function:

x∗ = argmin
x

∥∥B3(N−2)×7 ·x7×1−C3(N−2)×1

∥∥ (24)

where x∗ = [s∗ Wg∗T
Cp∗B

T]T. Since there are 3(N − 2)
equations and 7 unknowns, at least 5 keyframes is required

to calculate a solution.

C. Accelerometer Bias Estimation, and Scale, Gravity and
Translation Refinement

Note that the accelerometer bias has not been considered

when computing the scale, gravity and camera-IMU trans-

lation. If the accelerometer bias is incorporated in Eq.(21),

the chance of having an ill-conditioned system will increase

since the gravity and accelerometer bias are hard to be distin-

guished. In our method, a rough gravity Wg∗ is approximated

without considering the accelerometer bias in Section.III-

B, and then the rough gravity is optimized by appending a

perturbation. Using the already computed gravity Wg∗, the

rotation between the earth’s inertial frame and the world

frame can be computed as follows:

RWI = Exp(ṽθ)

ṽ =
Eg̃× Wg̃
‖Eg̃× Wg̃‖ , θ = atan2(‖Eg̃× Wg̃‖,Eg̃ · Wg̃)

Eg̃ = EG/‖EG‖, Wg̃ = Wg∗/‖Wg∗‖.
(25)

This rotation can be optimized by appending a perturbation

δθ ∈ R
3×1:

Wg = RWIExp(δθ) · EG ≈ RWI · EG−RWI[EG]×δθ

δθ =
[
δθ T

xy 0
]T

, δθxy = [δθx δθy]
T ,

EG = [0 0 −G]T
(26)

where the first-order approximation Exp(δθ)≈I + [δθ ]×
is applied, and G (normally G = 9.81m · s−2) represents

the magnitude of the gravitational acceleration. Substitut-

ing Eq.(26) into Eq.(20) and including now the effect of

accelerometer bias, we have:

s · Wpi+1
C = s · Wpi

C+ Wvi
BΔti,i+1− 1

2
RWI[EG]×δθΔt2

i,i+1

+Ri
WCR∗CB(Δp̄i,i+1 +JaΔp̄δba)+(Ri

WC−Ri+1
WC )CpB

+
1

2
RWI · EGΔt2

i,i+1.

(27)
Similar to the derivation of Eq.(21), we use the position

relationships described in Eq.(9) to obtain the following

expression:

[
λ (i) φ(i) ζ (i) ξ (i)

]
⎡
⎢⎢⎣

s
δθxy
δba
CpB

⎤
⎥⎥⎦ = ψ(i) (28)

where λ (i) remains the same as in (22), and φ(i), ζ (i) and

ξ (i) are computed as follows:

φ(i) =
[
−1

2
RWI[EG]×(Δt12Δt2

23 +Δt2
12Δt23)

]
(:,1:2)

ζ (i) = R2
WCR∗CBJaΔp̄23

Δt12−R1
WCR∗CBJaΔp̄12

Δt23

+R1
WCR∗CBJaΔv̄12

Δt12Δt23

ξ (i) = (R2
WC−R3

WC)Δt12− (R1
WC−R2

WC)Δt23

ψ(i) = R1
WCR∗CBΔp̄12Δt23−R2

WCR∗CBΔp̄23Δt12

−R1
WCR∗CBΔv̄12Δt12Δt23

− 1

2
RWI · EG(Δt12Δt2

23 +Δt2
12Δt23)

(29)

where [·](:,1:2) means the first two columns of the matrix.

A weight coefficient wi for outlier rejection is introduced:

ei = ŝ ·λ (i)+φ(i)δ θ̂xy +ζ (i)δ b̂a+ξ (i)Cp̂B−ψ(i)

wi = exp(−‖ei‖ ·Kr)
(30)

where ei and Kr are respectively the predicted residual and

a gain factor to amplify the residual effect, and ŝ, δ θ̂xy, δ b̂a
and Cp̂B are the last estimated results.

Similar to Eq.(24), a linear over-determined equation

D3(N−2)×9 · x9×1 = E3(N−2)×1 with the weights defined in

(30) can be constructed to calculate the estimations s∗, δθ ∗xy,

δb∗a and Cp∗B. Since the accelerometer bias is set to zero

03×1 when integrating the ΔR̄i,i+1, Δv̄i,i+1 and Δp̄i,i+1, the

final estimated accelerometer bias is b∗a= 03×1+δb∗a= δb∗a.

The gravity is refined by appending the perturbation, i.e.

Wg∗ = RWIExp(δθ ∗) · EG.

D. Convergence Criteria

With the incoming new keyframe, the calibrated extrinsic

orientation and translation will respectively converge to their

stable values, which can be checked through calculating the

standard deviation within a local period Tl . Specifically, we

calculate the standard deviations σoy, σop, σor of the three

axes (yaw, pitch, roll) of the historical calibrated orientations,

and the σtx, σty, σtz of the three axes of the historical

calibrated translations within the local period. Besides, the

quantity Nσ of the keyframes within the local period should

be greater then a threshold thN to exclude the case that

a camera remains stable (e.g., new captured frames won’t

be determined as new keyframe if an aircraft hovers at one

place). The extrinsic orientation calibration is convergent if

σoy,σop,σor < tho and Nσ < thN , and the extrinsic translation

is convergent if σtx,σty,σtz < tht and Nσ < thN . Here tho, tht
and thN are three thresholds. If the calibrated orientation and

translation are both convergent, the velocities of the historical

keyframes could be computed by Eq.(9).

IV. EXPERIMENTS AND DISCUSSIONS

In this section, performances of our online initialization

method are evaluated on the EuRoC dataset [25] which

provides accurate position ground-truth and camera-IMU

extrinsic parameters. Eleven indoor sequences, ranging from

slow flights under good visual conditions to dynamic flights
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Fig. 2. Calibrated orientation, translation, as well as their corresponding standard deviations in V2 01 easy. The word ”staDev” is the shorthand of
”standard deviation”. The ground-truth provided by the dataset is calibrated by Kalibr, with [89.147953 1.476930 0.215286] degrees in yaw, pitch, roll,
and [-0.021640 -0.064677 0.009811] meters in x, y, z respectively.

with motion blur and poor illumination, were recorded with

a Micro Aerial Vehicle (MAV). The two global-shutter,

monochrome cameras and the IMU were hardware time-

synchronized and were logged at a rate of 20 Hz and 200

Hz respectively. All the experiments are carried out with an

Intel CPU i7-4720HQ (8 cores @2.60GHz) laptop computer

with 8GB RAM.

A. Implementation Details

The proposed online initialization method is implemented

in the Local Mapping thread of ORB SLAM [20], specially,

between the Local BA module and the Local Keyframes
Culling module. Besides, the optimization theories intro-

duced by Mur-Artal [19] is adopted to build our monocular

visual-inertial SLAM system. The difference between Mur-

Artal’s work and ours is that our method automatically

estimates the extrinsic parameters and the initial values,

while the former assumes the extrinsic parameters are known.

Some parameters mentioned above are set as follows: Ko =
200.0, Kt = 100.0, Kr = 1.0, tho = 0.1, tht = 0.02, thN = 10,

Tl = 10. In fact, these parameters can be set in a wide

range and won’t significantly impact the performance of our

method.

B. Convergence Performance

In order to verify the convergence performance for the

extrinsic calibration and the initial value estimation, the

sequence V2 01 easy is expected to evaluate the proposed

method. The time varied characteristic curves of the extrinsic

parameters and the corresponding standard deviations are

shown in Fig. 2. It can be seen that all the extrinsic parame-

ters (yaw, pitch, roll for orientation and x, y, z for translation)

are start to converge between 5 and 10 seconds. All the

standard deviations satisfy the convergence criteria within

25 second. It is worth noting that the standard deviations

of yaw, pitch and roll change dramatically at around 10

seconds. This phenomenon greatly dues to the quantity of

keyframe is relatively small at the beginning, which results

in the constraints of Eq.(19) is too weak to obtain a good

solution. Because the standard deviation is calculated by the

values within a local period Tl , the poor solutions in the first

few seconds will have an effect on the standard deviation

calculation within the local period. Fortunately, the extrinsic

parameters tend to be stable with the increase of the keyframe

quantity.

Fig. 3 shows the estimated results of the scale factor,

gyroscope bias, accelerometer bias and the gravity. It can be

seen that all the estimated values are almost convergent to

stable values between 10 and 15 seconds. In particular, the

yaw, pitch, roll curves shown in Fig. 2 and the gyroscope

bias curves shown in Fig. 3 illustrate that the camera-IMU

orientation calibration and the gyroscope bias estimation can

achieve stable values in a very short time, which confirms

that the iterative strategy described in Section III-A achieves

good performance. It is worth noting that the curves of

accelerometer bias suffer severe oscillation in the first ten

seconds. It might be because the accelerometer bias and the

gravity are hard to distinguished, therefore more keyframes

are required for calculating stable values. Fig. 3 also shows

that the processing time of our method is approximately

linear to the quantity of keyframes.

C. Consistency Analysis

To analyze the consistency of the proposed initialization

method, our method is compared with the state-of-the-art

VINS-Mono [18]. In VINS-Mono, the extrinsic parameter-

5187



time [s]
0 5 10 15 20 25

sc
al

e 
fa

ct
or

0

2

4

time [s]
0 5 10 15 20 25gy

ro
 b

ia
s 

[ra
d/

s]

0

0.05

0.1

time [s]
0 5 10 15 20 25ac

c 
bi

as
 [m

/s
^2

]

-0.4

0

0.4

time [s]
0 5 10 15 20 25gr

av
ity

 [m
/s

^2
]

0

5
10

time [s]
0 5 10 15 20 25

pr
oc

es
si

ng
 ti

m
e 

[s
]

0

0.02

0.04

time [s]
0 5 10 15 20 25ke

yf
ra

m
e 

nu
m

0

50

100

x

g
g
g

x

Fig. 3. IMU initialization results and processing time in V2 01 easy. The
”acc” and ”gyro” are the shorthands of ”accelerometer” and ”gyroscope”
respectively.

s, velocity and gravity are roughly estimated by a linear

initialization process, and then these values are refined by

a nonlinear optimization process which takes accelerometer

and gyroscope biases into account. Ten trials in the sequence

V2 01 easy for our method, linear and nonlinear precesses of

VINS-Mono are conducted in Fig. 4. It is observed that the

proposed method achieves more accurate than the two pro-

cesses of VINS-Mono on the extrinsic orientation calibration.

As for translation calibration, it seems that the consistency

of our method is slightly lower than the nonlinear results

of VINS-Mono. This is probably due to the fact that there

is no criteria to identify the convergence of these variables

or to terminate the nonlinear optimization process in VINS-

Mono, therefore the extrinsic parameters are persistently

refined until the end of the sequence. In this way, all the

measurements contained in the sequence are used to estimate

parameters by VINS-Mono, which results in more consistent

calibrated translations than ours. However, it spends more

time to calculate accurate extrinsic parameters and there is no

guarantee that the intermediate calibration is precise enough

to obtain good localization performance. On the contrary,

our method provides reasonable and comparable calibration

results in a few seconds, which are accurate enough to

support the further localization and mapping work.
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Fig. 4. Consistency analysis of different methods in V2 01 easy.

D. Motion Estimation Performance

Table I shows the errors of the calibrated orientation and

translation, and the absolute translational root-mean square

error (RMSE) of the keyframe trajectory for each sequence.

The listed results of VI ORB-SLAM is obtained from [19].

The VINS-Mono [18] is performed without knowing the

prior extrinsic parameters. All the results of our method and

VINS-Mono are the median over five executions in each

sequence. The ideal scale factor ŝ is measured by aligning the

estimated keyframe trajectory to the best fit with the ground-

truth. The scale error can be calculated as |s∗− ŝ|/|ŝ|×100%.

It can be seen that in spite of the extrinsic parameter-

s are unknown in our method, the RMSE error of our

method is not much worse than VI ORB-SLAM. Conversely,

our method exhibits more accurate performance on the

MH 01 easy, MH 02 easy and MH 04 difficult sequences.

Comparing with VINS-Mono, we can conclude that the most

of the trajectories estimated by our method are more accurate

than VINS-Mono, especially on the machine hall sequences.

This demonstrates that the calibration results provided by

our method are more reasonable than VINS-Mono to support

the motion estimation, although the extrinsic parameters cal-

ibrated by our method are less consistent than the nonlinear

process of VINS-Mono. The results on the V1 03 difficult
sequence show that VINS-Mono is more robust against the

motion blur and illumination change, while our method and

VI ORB-SLAM both fail tracking. However, the extrinsic

parameters can still be accurately estimated by our method

on this sequence. The emphasized data in the Table I also

shows that our method is able to calibrate accurate extrinsic

parameters, achieving a typical precision of 0.6 degree for

orientation and 0.05 meter for translation.
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TABLE I

EXTRINSIC CALIBRATION ERROR AND KEYFRAME TRAJECTORY ACCURACY IN EUROC DATASET.

Ours (No Full BA) VINS-Mono VI ORB-SLAM

Orientation Error (degree) Translation Error (m) RMSE Scale RMSE(m) RMSE RMSE

e yaw e pitch e roll e x e y e z (m) Error(%) GT scale1 (m) (m)

V1 01 easy -0.122 -0.484 0.108 -0.003 -0.014 0.010 0.056 1.1 0.049 0.069 0.027
V1 02 medium -0.275 -0.039 0.161 -0.006 0.007 0.018 0.044 1.1 0.042 0.007 0.028

V1 03 difficult -0.053 -0.147 0.151 -0.015 -0.025 0.047 —2 — — 0.158 —

V2 01 easy -0.148 -0.030 -0.056 -0.004 0.023 0.005 0.048 1.9 0.019 0.058 0.032
V2 02 medium -0.521 -0.160 0.128 -0.039 -0.003 0.011 0.071 2.1 0.053 0.062 0.041
V2 03 difficult 0.043 0.193 0.009 -0.043 0.005 0.017 0.100 2.1 0.095 0.253 0.074

MH 01 easy -0.122 0.145 0.231 -0.014 0.009 0.010 0.050 0.9 0.045 0.135 0.075
MH 02 easy 0.090 0.427 0.293 -0.010 0.014 0.024 0.031 0.0 0.031 0.112 0.084
MH 03 medium 0.116 0.233 0.277 -0.016 0.012 0.038 0.093 1.1 0.073 0.125 0.087
MH 04 difficult 0.084 0.074 0.373 -0.007 -0.023 0.035 0.081 1.1 0.072 0.169 0.217
MH 05 difficult -0.071 0.366 0.130 -0.014 -0.035 0.046 0.133 0.0 0.133 0.260 0.082

1 GT scale: the estimated keyframe trajectory is scaled to the best fit with the ground-truth trajectory.
2 “—” means that the tracking is lost at some point and a significant portion of the sequence is not processed by the system. The max absolute errors for

each axis of orientation and translation are emphasized with underlines.

V. CONCLUSIONS

In this paper, we propose a novel online initialization

method for monocular visual-inertial SLAM without know-

ing the mechanical configuration of the sensor suite. Specifi-

cally, our method automatically estimates the visual scale,

velocity, gravity, biases of gyroscope and accelerometer,

and calibrates the camera-IMU extrinsic parameters while

the system is performing free motion in environments. To

simplify the initialization problem, three simple processes are

included in our method. Our method is able to automatically

identify the convergence of the calibration parameters so

that the initialization stage can be terminated. Experiments

demonstrate that our method achieves competitive accuracy

and consistency compared with the state-of-the-art methods.

A limitation of our method is the assumption that the camera

and IMU measurements are hardware time-synchronized. To

overcome this, we plan to correct the time offset in our future

work.
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