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Feature points selection with flocks
of features constraint for visual
simultaneous localization and mapping

Hong Liu, Zhi Wang, and Pengjin Chen

Abstract
Simultaneous localization and mapping is a crucial problem for mobile robots, which estimates the surrounding envi-
ronment (the map) and, at the same time, computes the robot location in it. Most researchers working on simultaneous
localization and mapping focus on localization accuracy. In visual simultaneous localization and mapping , localization is to
calculate the robot’s position relative to the landmarks, which corresponds to the feature points in images. Therefore,
feature points are of importance to localization accuracy and should be selected carefully. This article proposes a feature
point selection method to improve the localization accuracy. First, theoretical and numerical analyses are conducted to
demonstrate the importance of distribution of feature points. Then, an algorithm using flocks of features is proposed to
select feature points. Experimental results show that the proposed flocks of features selector implemented in visual
simultaneous localization and mapping enhances the accuracy of both localization and mapping, verifying the necessity of
feature point selection.
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Introduction

Simultaneous localization and mapping (SLAM) is one of

the key technologies in robotics. SLAM addresses the prob-

lem of building the map of the environment surrounding a

robot and estimating the position of the robot simultaneously,

as shown in Figure 1. When referring a ‘‘map,’’ it may be just

a set of feature points in the environment called ‘‘landmarks.’’

Most researchers working on visual SLAM pay atten-

tion to indoor environments,1–4 while some works dealing

with the airborne applications.5,6 Recently, SLAM is also

applied in underwater scenarios.7,8 In terms of the sensors

used to perceive surroundings, SLAM can be classified

into sonar based, laser based, and vision based with aux-

iliary sensors such as Inertial measurement unit (IMU),

compass, infrared, and depth sensors.9–12 Thanks to the

development of image processing and stereo vision, visual

SLAM1–3 has been rapidly developing and been applied in

a wide range of fields, such as argument reality,1 com-

puter games,4 and humanoid robots.13 In a visual SLAM

system, one or more cameras can be used as sensors,14

whereas we focus on one camera that is called mono-

SLAM.1 Figure 2 shows the output of visual SLAM

including the feature map and the location of the camera.

Researchers working on SLAM have been making their

efforts to increase the localization accuracy through different

approaches. Most of them focus on the probabilistic frame-

work15 of SLAM, for example, the extended Kalman filter
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(EKF),3,16,17 particle filter,18 information filter,19 and expec-

tation maximization.20 Auxiliary sensors9 are often applied to

obtain more information and more accurate results. Since the

localization is calculated relative to the set of feature points,

feature initialization3,21 is crucial to localization accuracy.

The aim of this article is to enhance the localization

accuracy by optimizing the selection of feature points. The

selection process can be divided into two steps. First, fea-

ture points should be detected in the image with feature

detection methods,22 such as GoodFeaturesToTrack,23 Fea-

tures from Accelerated Segment Test (FAST),24 Scale-

Invariant Feature Transform (SIFT),25 and Speed Up

Robust Feature (SURF),26 which are introduced to choose

stable features for localization. Desai and Lee27 have devel-

oped a novel descriptor called synthetic basis descriptor

that provides accurate feature matching for real-time vision

applications. Second, the useful subset of feature points

should be selected. This article pays attention to the second

step. Based on the EKF framework, a feature point selec-

tion method called flocks of features (FoF) selector is

applied, aiming to enhance the localization accuracy in

visual SLAM. Liu et al.28 have successfully applied FoF

in hand tracking to select feature points in the hand area and

have achieved great tracking results.

The rest of the article is organized as follows. The

framework of visual SLAM is briefly introduced in section

‘‘Framework of EKF-based visual SLAM.’’ Section ‘‘Anal-

ysis of the distribution of feature points’’ analyzes the sig-

nificance of the distribution of feature points in improving

the localization accuracy. A proposed method using FoF to

select feature points for visual SLAM is exhibited in sec-

tion ‘‘Feature point selection using flocks of features.’’

Section ‘‘Experiments and discussions’’ shows experimen-

tal results, and the final section gives the conclusions.

Framework of EKF-based visual SLAM

The framework of visual SLAM is briefly introduced in this

section. The MATLAB [Version: 8.6.0.267246 (R2015b)]

implementation and other details can be referred from the

literature.16 Figure 3 shows the flowchart of EKF-based

visual SLAM. The core part is EKF framework consisting

of prediction and update steps labeled by the red dotted box.

Overview of visual SLAM

The main portion of visual SLAM is EKF loop. After pro-

viding the initial state x0 and its covariance P0, visual

Figure 1. The robot (left) and handheld camera (right) are recognizing the environment and localizing themselves using visual SLAM
algorithm. SLAM: simultaneous localization and mapping.

Figure 2. Input and output of visual SLAM. An image is the input of visual SLAM, and feature points are detected as landmarks (left).
Localization and mapping results are the output of visual SLAM (right). The yellow curve is the trajectory of the moving camera. The red
and blue points stand for the natural landmarks corresponding to the feature points. SLAM: simultaneous localization and mapping.
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SLAM works frame by frame with the image perceived by

the camera.

Key point detection is applied to find the natural landmarks.

According to the prediction step, the positions of feature points

in current frame can be estimated, so the corresponding feature

points can be searched near the estimated positions, which is

called the active feature searching. If the number of features in

one frame is less than a given threshold, new feature points

should be found where the proposed FoF method is implemen-

ted. New positions of the visible feature points are input as the

observations for the update step. As a result, the localization

and map construction are accomplished.

The EKF

In EKF,29 the new measurement zk and the state vector of

previous frame xk�1 are used as input to estimate current

state vector xk . Since it is a probabilistic method, the cov-

ariance matrix Pk of state vector xk is calculated to repre-

sent the uncertainty of the estimated xk . The map in visual

SLAM can be viewed as a state vector x and covariance

matrix P. The state vector consists of camera state xv and

positions of feature points yiði ¼ 1; . . . ; nÞ, and P is a

square matrix that is of equal dimension to x

x ¼
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y1

..

.

yn

0
BBBB@

1
CCCCA
;P ¼

Pxx Px1 � � � Pxn

P1x P11 � � � P1n

..

. ..
. . .

. ..
.

Pnx Pn1 � � � Pnn

2
66664

3
77775

(1)

Generally, the camera’s state vector xv is expressed as a

13-dimensional vector1

xv ¼

rW

qWR

vW

!R

0
BBB@

1
CCCA (2)

where rW is the 3-D position of the focal point of the

camera, qWR is a quaternion that represents the camera’s

orientation, vW and !R are 3-D velocity and angular velo-

city vectors, respectively.

In the prediction step, predicted state vector and its cov-

ariance matrix can be obtained from the non-linear stochas-

tic differential equation

xk ¼ f ðxk�1; uk�1;wÞ (3)

The predicted state vector x�k and its covariance matrix

P�k are acquired by

x�k ¼ f ðxk�1; uk�1; 0Þ (4)

P�k ¼ AkPk�1AT
k þWQW T (5)

where Q is the process noise covariance, Ak and W mean

the Jacobian matrix of partial derivatives of f with respect

to xk�1 and w, respectively.

In the update step, the observation zk ¼ hðxk ; vÞ is used

to update the state vector and its covariance, where v is a

Gaussian noise. In visual SLAM, image coordinates ðui; viÞ
of feature points are viewed as observations through the

standard pinhole model.

The current state vector and its covariance are updated

as follows

xk ¼ x�k þ Kk

�
zk � hðx�k ; 0Þ

�
(6)

Pk ¼ ðI � KkHkÞP�k (7)

where Kk is the Kalman gain, Hk is the Jacobian matrix of

partial derivatives of h with respect to x. Equations (4) to

(7) are the basic equations of EKF that provide the solution

to current state.

Analysis of the distribution
of feature points

The number of feature points that the SLAM system can

cope with in each frame should be controlled within a

certain range, since too few features will decrease the loca-

lization accuracy and too many features can be time-

consuming. If there is no feature point in the first frame

or the number of feature points perceived by the camera

decrease after a move, new feature points need to be

detected in the image. In this case, the key problem is how

to promote the performance of system by selecting a

Active feature searching

Number of features 
<  threshold ?

Find new features

Prediction step Update step

1 1( , )k kx P− − ( , )k kx P− −

( , )k kx P− −

( , )k kx P

Input image

Feature points

Yes

No

kz
EKF

FoF

Figure 3. Framework of visual SLAM. The input of the system is
the image captured by the camera in each frame. The proposed
FoF selector is indicated by green dashed box.

Liu et al. 3



suitable subset of feature points, that is, the distribution of

feature points.

The existing visual SLAM systems1,3,30 just use random

method to select feature points. In this section, both theo-

retical and numerical analyses of how the distribution of

feature points influences the localization accuracy will be

demonstrated.

Theoretical analysis

Assume a set of feature points piði ¼ 1; . . . ; nÞ is visible in

current frame

pi ¼ ðxi; yi; 1Þ (8)

where pi is in its projective coordinate system, and ðxi; yiÞ is

the image coordinate of pi. To theoretically analyze the

influence of the distribution of fpign
i¼1 on localization accu-

racy, 3-D reconstruction theory31 is applied.

Let fp0ig
n

i¼1 be the feature points in another frame from

another view corresponding to fpign
i¼1, and rotation matrix

R and translation vector t be the movement parameters of

the camera between two frames

p0i ¼ Rpi þ t (9)

The problem turns to be that how the distribution of

fpign
i¼1ðfp0ig

n

i¼1
Þ influences R and t. According to the epi-

polar theory in multiple-view geometry31

p0
T

i Epi ¼ 0; i ¼ 1; . . . ; n (10)

where

E ¼ t � R (11)

is called the essential matrix, a set of n linear equations is

obtained and can be rewritten as follows

Ae ¼ ½a1; . . . ; an�T e ¼ 0 (12)

where

ai ¼ ðx0ixi; x
0
iyi; x

0
i; y
0
ixi; y

0
iyi; y

0
i; xi; yi ; 1ÞT (13)

still stands for the i-th feature point. In equation (12),

matrix A is the set of feature points and reflects the distri-

bution of them, and e is a 9-D vector made up of the entries

of E in column order standing for the movement of the

camera. As a result, the problem is how the matrix A influ-

ences the vector e under the restriction of equation (13).

Generally, the rank of matrix A is equal to 9 due to the

noises in feature point coordinates. Thus, the exact solution

of equation (13) does not exist. In this case, a least-squares

solution is regarded as the best solution of e. The eight-

point algorithm32 states that the solution of e is the eigen-

vector corresponding to the least eigenvalue of matrix AT A.

Different distributions of feature points generate different

A, resulting in different errors e. For example, if some

feature points are too close, the corresponding vector ai

in A is close and can be viewed as one vector. Thus, the

error of e is larger. An alternative geometric interpretation

is shown in Figure 4. The measurements of the centralized

distribution provide less information than the scattered dis-

tribution because of the overlapped information. It is

expected that the feature points distribute more uniformly

in the image. Extra researches are conducted to numerically

analyze the influence of distributions on localization results

in the next subsection.

Numerical analysis

In order to illustrate how distributions of feature points

affect the accuracy of SLAM, simulations based on Sola’s

MATLAB program21 are implemented. It is simulated in a

2-D plane, where a camera moves in a circle, perceives 2-D

landmarks, and localizes itself simultaneously. Five simu-

lations with different distributions of feature points are

designed; see Figure 5. In the first and second simulations,

landmarks are distributed uniformly and randomly in a

circle, respectively. In the third, fourth, and fifth simula-

tions, landmarks are distributed in one 1=8 arc, two 1=16

arcs, and four 1=32 arcs, respectively.

While the simulated SLAM is running, the localization

error � ¼ jxg � xj, which means the distance between

ground truth xg and estimated position x of the camera, is

shown in Figure 6. Here, the ground truth is the real posi-

tion of the camera. Errors of five simulations are compared

in Figure 6. Five error curves are separated into two plots in

order to analyze conveniently with the error curve of the

third simulation. Indexes in legends of plots are the same as

indexes of simulations.

In Figure 6(a), the first distribution has the least errors as

the features are distributed uniformly, while the third dis-

tribution performs worse than the former two because of its

irregularity. In Figure 6(b), the third distribution still per-

forms worst because the features are so centralized in just

one segment that it cannot provide sufficient information

for localization. It can be concluded from the error curves

Figure 4. Simple geometric interpretation. The blue ‘‘þ’’ pre-
sents the landmark. The camera is expected to localize itself
relative to the two known landmarks. Two cases are shown here.
The localization result of case (b) is more accurate than case (a),
considering computing error and observation error.
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that if the landmarks are uniformly distributed, SLAM sys-

tem will work with less errors. In another words, the more

centralized the landmarks are distributed, the worse the

accuracy will be. Overall, it is evident that the distribution

of feature points has a great impact on the accuracy of

SLAM systems.

Feature points selection using FoF

The analysis in the precious section reveals that it will be

meaningful if some rules are applied to restrict the distri-

bution of feature points. Thus, it is expected that the loca-

tions of feature points can satisfy following conditions:

(a) the locations cannot be too converged, (b) the gravity

of them should be close to the center of the image, and

(c) feature points shouldn’t locate near the edge of the

image since great distortion exists in that region. Consid-

ering aforementioned analysis, a recent widely used bionic

algorithm called FoF33 is suitable and can be adopted as the

restriction. In this chapter, the principle of FoF is stated and

then the proposed method using FoF is introduced.

Flocks of features

A biological phenomenon named Flock Behavior33 states

that the members mi in the flock F ¼ ffmigNf

i¼1g should be

neither too condensed nor too scattered

d min < jmi � mjj; 8i; j 2 f1; 2; :::;Nf g
d max > jmi � mj; 8i 2 f1; 2; :::;Nf g
m ¼ medianðFÞ or centroidðFÞ

(14)

where Nf is the number of members, and m is the center of

the flock. d min is the minimum tolerable distance among

Figure 5. Five different distributions of feature points in simulated experiments. It is simulated in 2D plane that is represented by the
x–y coordinates in the plot. The red circles in each plot stand for the landmarks. The blue ‘‘þ’’ simulates the position of the camera.
(a) First: uniform distribution. (b) Second: random distribution. (c) Third: centralized distribution in one 1/8 arc. (d) Fourth: centralized
distribution in two 1/16 arcs. (e) Fifth: centralized distribution in four 1/32 arcs.

Figure 6. The error curves of the five distributions. The error "
(Y axis) is the function of frame number (X axis). (a) The error
curves of the first three distributions. (b) The error curves of the
last three distributions.
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the flock, and d max is the maximum tolerable distance

between the center m and other members in the flock.

The well-known Boids algorithm33 in computer graphics

is widely used to simulate flock behaviors. Calling the

members of the flock as boids, the flock behavior is main-

tained by following rules:

� Separation: boids try to keep a distance away from

other boids.

� Cohesion: boids try to fly toward the center of

neighbors.

� Alignment: boids try to match velocity with near

boids.

FoF has been successfully applied in visual tracking

especially in tracking articulated objects. Kolsch and

Turk34 and Liu et al.28 proposed the FoF tracker in hand

tracking using boids and obtained great results. Feature

points in hand area is treated as boids and proper feature

points can be obtained with the restriction of flock

behavior.

Proposed algorithm for feature points selection

Feature points are matched in this frame as the observa-

tions to update the state of camera and all the feature

points. As the camera has moved, some feature points will

be out of view and failed to be matched. If the number of

the matched feature points is less than a given threshold

minNum, then the FoF selector is employed to add new

feature points.

The framework of FoF selector is shown in Figure 7.

According to the result of the prediction step, feature points

are matched in the current frame. If the number of success-

fully matched feature points is less than minNum, then a

feature selection algorithm is activated to find more feature

points. Generally, there will be abundant detected feature

points, while just a few of them will be selected as land-

marks under the FoF restriction.

The core module of the basic FoF selector algorithm is

summarized in algorithm 1. All the feature points are

treated as boids. The successfully matched features are

existing boids and the new detected features are candidate

boids. In algorithm 1, W is the weighted map indicating

weights of these features, and Sp is the center of all the

boids calculated in line 4. For every candidate p in the

candidate boids, the positive driving force fp and negative

driving force fn are computed in algorithm 1 from lines 7 to

14. Here, fp is the positive driving force pointing from p to

the center Sp, driving this point to the center. The negative

driving force fn appears when two boids are too close,

acting like the repulsive force between two magnets. For

any other boids q, if the distance between the two boids p

and q is less than a given threshold d min, add the repulsive

force f ðp; qÞ to fn. Here, f ðp; qÞ is inversely proportional to

the distance between p and q. Finally, the drift of each

candidate is obtained as

�f ¼ � � fp þ � � fn (15)

where � and � are corresponding parameters. If the length

of the drift is less than a given threshold T , then the can-

didate is chosen as the new feature point because boids that

drift too much are regarded as ‘‘bad’’ boids in the flock.

The new uniformly distributed feature points are gained.

Experiments and discussions

To evaluate the localization accuracy of the proposed fea-

ture selection strategy, experiments are conducted in both

No

Active feature searching

Is the number of 

features < minNum

Feature detection

Predicted state vector

Yes

No

Feature selection 

under FoFrestriction

New features as the 

observed values

Figure 7. Framework of the FoF selector. FoF: flocks of features.

Algorithm 1. The basic algorithm of FoF Selector.

1. INPUT: The matched feature points F pre, new
detected feature points F , weighted map W

2. OUTPUT: New feature points F new

3. BEGIN:
4. Sp  

P
p2fF pre ;FgWðpÞ � p

5. t 
P

p2fF pre;FgWðpÞ
6. for p 2 Fdo
7. ‘‘Perceived center’’: Sp  Sp�p

t�WðpÞ
8. ‘‘Positive Driving Force’’: fp  Sp � p
9. ‘‘Negative Driving Force’’: fn  0

10. for q 2 F pre do
11. if p 6¼ q and jjp� qjj2 � dmin then
12. fn  fn þ f ðp; qÞ
13. end if
14. end for
15. if jj� � fp þ � � fnjj2 < T thens
16. F pre ¼ fF pre; pg
17. end if
18. end for
19. F new  F pre

20. END
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simulated and real-world environments, which are carried

out in indoor environments. The proposed FoF selector is

compared with the original random method in the process

of feature point selection. Here, the original random

method selects the subset of feature points randomly. A

single handheld camera is used as the visual sensor mov-

ing around and sensing the environment. The camera

used in the experiment is a Logitech web camera (see the

right part of Figure 1) with 320 � 240 pixels resolution.

The original system is run at about one frame per second

on a DELL computer with a dual-core processor at 3.1

GHz. Two groups of experiments are conducted. First, a

long sequence of 1500 frames is input to SLAM for map

building and camera localization, which costs about

25 min. Then, 10 short sequences are used to make a deep

analysis.

Experiment on a long sequence

The camera moves around in the lab arbitrarily and cap-

tures a long sequence of images. The images are put

frame by frame into the SLAM systems using FoF and

original random method, respectively. The outputs of the

systems are the trajectory of the camera and positions of

landmarks.

Figure 8 presents the output of six frames using two

different SLAM systems and the corresponding frames are

the same for a direct comparison. Feature points are

detected and labeled in the left half of each subfigure, and

positions of feature points and the trajectory of the camera

are drawn in 3-D coordinate systems in the right half. As

presented in Figure 8, features are more uniformly distrib-

uted in the first and third rows than in the second and fourth

rows, which means that the SLAM system using FoF selec-

tor performs better than using original random method.

Meanwhile, blue circles in the first and third rows are less

than in the second and fourth rows in most frames, which

indicates feature points are more successfully matched

using FoF. In the 3-D coordinate system, presented in the

right half of each subfigure, the size of the red ellipse

covering the feature point indicates the uncertainty of the

estimated position which is in relation to the estimated

error covariance. Therefore, it is seen that the red ellipses

are smaller in the first and third rows, meaning that 3-D

positions of feature points are more accurate and quickly

converged using FoF selector.

Figure 9 reveals the landmarks and the whole trajec-

tories of the camera output by the SLAM systems with FoF

selector and random method, respectively. The red pluses

are landmarks of the image and the surrounding red ellipse

of each plus represents the error covariance. It is obvious

that the landmarks are distributed more uniformly using

FoF selector than the random method. Moreover, more

landmarks are detected using FoF selector. As a result,

errors can be spread uniformly, which restrains the drift

to a certain extent.

Experiments on short sequences

To measure the localization accuracy, 10 short sequences

with 100 frames for each sequence are recorded. In addi-

tion, motion trajectories of the camera are known to the

system. As shown in Figure 10, the camera makes uniform

linear motion or uniform circular motion to get the ground

truth of the camera trajectories. In our experiments, for

each kind of motion, five sequences are made to test the

localization accuracy of the SLAM systems.

Figure 11 shows the results referring to the ground truth

using FoF and random method. In each plot, the red dotted

curve and the blue curve represent the camera trajectory

using FoF and random method, respectively, and the blue

dotted curve represents the ground truth. Every trajectory

starts from the left end point of the curve and ends on the

right end point. In most sequences (e.g. L3, L5, R4, and R5),

the estimated trajectories using FoF selector are more close

to the ground truth than those using random method, which

verifies the better performance in localization accuracy of

our approach. However, in some sequences (e.g. L2 and R1),

Figure 9. The comparison of the landmark distribution using two
methods. The red pluses stand for the landmarks. (a) FoF selector
and (b) random method. FoF: flocks of features.

Figure 10. Camera movement. The camera moves on a quadrant
with radius 0:6 m in a constant velocity (left). The camera does the
uniform motion for 1 m (right).
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advantages are not distinct because the feature points

selected by the random method are also distributed well.

Conclusions

In this article, both theoretical and numerical analyses are

made to emphasize the significance of the distribution of

feature points in improving the localization accuracy of

visual SLAM. According to the analyses, a FoF selector with

the flock restriction is introduced to select the feature points

when new landmarks need to be added to the map. Experi-

mental results demonstrate that the map is more uniformly

distributed and better localization results are obtained when

the FoF selector is implemented. In addition, the more fea-

ture points are detected, the more effectively FoF selector

performs. In future work, novel efficient descriptors will be

employed, such as Tree Basis Sparse-coding Inspired Simi-

larity (BASIS),22 Synthetic Basis (SYBA),27 and more sen-

sory data will be combined to improve the localization

accuracy for real-world applications, for example, advanced

robotics, wearable computing, and augmented reality.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

Figure 11. Camera trajectories of both methods compared to the ground truth. The blue dotted curve is the ground truth of the
camera trajectory. The red dotted curve and the blue curve represent the camera trajectory obtained by FoF and random method,
respectively. All the curves start from the left end points and end on the right. FoF: flocks of features.
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16. Solà J, Vidal-Calleja T, Civera J, et al. Impact of landmark

parametrization on monocular EKF-SLAM with points and

lines. Int J Comput Vis 2012; 97(3): 339–368.

17. Moore T and Stouch D. A generalized extended Kalman filter

implementation for the robot operating system. In: IAS 2014 –

The 13th international conference on intelligent autonomous

systems (eds, Menegatti E, Michael N,, Berns K, et l), Cetro

Congressi Paova,Padova, Italy, 15–19 July 2014, pp.

335–348. Springer.

18. Roller D, Montemerlo M, Thrun S, et al. Fastslam 2.0: an

improved particle filtering algorithm for simultaneous loca-

lization and mapping that provably converges. In: Proceed-

ings of the international joint conference on artificial

intelligence (IJCAI-03) (eds Gottlob G and Walsh T), Aca-

pulco, Mexico, 9–15 August 2003, pp. 1151–1156.

19. Thrun S, Liu Y, Koller D, et al. Simultaneous localization and

mapping with sparse extended information filters. Int J Robot

Res 2004; 23(7–8): 693–716.

20. Burgard W, Fox D, Jans H, et al. Sonar-based mapping

with mobile robots using EM. In: Machine learning, 1999,

pp. 67–76. Morgan Kaufmann Publishers, inc.

21. Sola J, Vidal-Calleja T, Civera J, et al. Impact of landmark

parametrization on monocular EKF-SLAM with points and

lines. Int J Comput Vis 2012; 97(3): 339–368.

22. Fowers S, Desai A, Lee DJ, et al. Efficient tree-based feature

descriptor and matching algorithm. J Aerosp Inf Syst 2014;

11(9): 596–606.

23. Shi J and Tomasi C. Good features to track. In: 1994 IEEE

computer society conference on computer vision and pattern

recognition, proceedings, Seattle, Washington, 21–23 June

1994, pp. 593–600. IEEE.

24. Rosten E, Porter R, and Drummond T. Faster and better: a

machine learning approach to corner detection. IEEE Trans

Pattern Anal Mach Intell 2010; 32(1): 105–119.

25. Se S, Lowe D, and Little J. Mobile robot localization and

mapping with uncertainty using scale-invariant visual land-

marks. Int J Robot Res 2002; 21(8): 735–758.

26. Murillo AC, Guerrero JJ, and Sagüés C. Surf features for effi-
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