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 Abstract –This paper presents an efficient path planner to 
identify difficult regions for path planning in changing 
environments, in which obstacles can move randomly. The 
difficult regions consist of narrow passages and the boundaries 
of obstacles in robot Configuration Space (C-space). These 
regions exert significantly negative influence on finding a valid 
path in static environments. The problem becomes more 
complicated in changing environments, because that the 
regions will change their positions when obstacles move. 
Besides, it is necessary to identify difficult regions in real time 
since obstacles may move frequently. To identify difficult 
regions fast when they change their positions, a dynamic 
bridge builder is proposed based on a W-C nodes mapping 
and a Bridge planner method. The W-C nodes mapping is 
used not only to conserve the validity of nodes in C-space, but 
also to provide the information about where a “bridge” should 
be built, i.e. the positions of narrow passages, and where the 
boundaries of obstacles are. Furthermore, a hierarchy 
sampling strategy is employed to boost the density of nodes in 
difficult regions efficiently. In the query phase, a Lazy-edges 
evaluation method is adopted to validate the edges in a found 
path. Simulated experiments for a dual-manipulator system 
show that our method is efficient for path planning in 
changing environments. 
 
 Index Terms – Path Planning, Changing Environments, 
PRM, Dynamic Roadmaps, Lazy Evaluation. 
 

I. INTRODUCTION 

As a challenging problem of path planning, difficult regions 
exert significantly negative influence on the aspect of 
finding a valid path in the query phase. Traditionally, the 
difficult regions consist of narrow passages and the 
boundaries of obstacles in C-space, which is also named C-
obstacles. The problem in static environments has been 
studied extensively in the past. However, the problem still 
exists in changing environments, especially in the cluttered 
environments. In the changing environments, when 
obstacles change their positions or orientations in the 
workspace (W-space) of a robot, C-obstacles also change 
accordingly. Consequently, there are mainly two difficulties 
to solve the difficult region problem in the changing 
environments. Firstly, difficult regions may change their 
positions in C-space when obstacles move. Secondly, real 
time of identifying the difficult regions and increasing the 
density of nodes inside them is required when obstacles 
move frequently.  

  Although many sampling-based methods [1-4] can solve 
many challenging problems including ones with many 
degrees of freedom (DOFs), their efficiencies are not 
satisfying when C-space has difficult regions. Therefore, 
many non-uniform sampling strategies that sample nodes in 
difficult regions have been proposed. Such as the Bridge 
planner [5], the Obstacles-based PRM planner 
(OBPRM)[6], the Gaussian sampling [7], and the medial-
axis sampling[8]. However, they don't consider the difficult 
region problem in changing environments. There also exist 
some planning algorithms to solve the path planning 
problem in changing environments or dynamic 
environments [9-15]. The most important one is Dynamic 
Roadmap Method (DRM) [16-17], which is a Multi-query 
approach. DRM can answer queries fast in changing 
environments, since it preserves two kinds of mappings 
from W-space to C-space. However, DRM initially samples 
nodes randomly and adopts an enhancement step, which 
consumes even several days [16], to preserve the 
connectivity of the roadmap when environments change. 
Some Single-query methods can also be used in changing 
environments, such as the Lazy-PRM[18]. However, when 
difficult regions are found in the query phase, Lazy-PRM 
costs much time to generate more nodes in these regions.  

This paper aims to design a planner which can identify 
the difficult regions fast and find a path successfully in the 
changing environments. To achieve these goals: (1) a 
dynamic bridge builder is presented for identifying difficult 
regions fast in changing environments. The bridge builder 
can update the positions of difficult regions dynamically 
when obstacles move. (2) An efficient hierarchy sampling 
strategy is proposed for increasing the density of nodes 
inside difficult regions. 

The rest of this paper is organized as follows: Section II 
describes the motivation of our method and some related 
work. Details of our method are presented in Section III 
and Section IV. In Section V experimental results are 
shown, and conclusions are given in Section VI. 

II. MOTIVATION AND RELATED WORK 

The typical approaches concentrate on difficult regions 
are non-uniform sampling strategies in static environments. 
They can be divided into three catalogues. The first kind of 
approaches, such as Gaussian sampling and OBPRM, focus 
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on increasing the sampling density near C-obstacles, since 
narrow passages can be considered as thin corridors near 
the boundaries of C-obstacles [19]. The second kind of 
approaches pays attention to sampling inside narrow 
passages, such as Bridge planner, which employs a bridge 
test to locate narrow passages. The last kind of approaches 
uses W-space information to find narrow passages, since 
narrow passages in the workspace often indicate the 
presence and the location of narrow passages in C-space 
[20]. All the sample strategies above primarily generate 
nodes in difficult regions, i.e. narrow passages and the 
boundaries of C-obstacles. As a result, a planner has high 
probability to pass difficult regions. However, the strategies 
are hard to adapt to changing environments since collision 
checks are repeated many times in order to identify the 
difficult areas, which is time consuming and can’t satisfy 
the requirement of a real-time system. For example, the 
Bridge planner employs at least three times of collision 
check algorithm to sample a node in narrow passages. 
Some related work will be introduced firstly in the 
following parts in order to fully explain our method. 

A. Bridge Planner  
Bridge planner is a non-uniform sampling method in 

static environments. The core of Bridge planner is a 
Randomized Bridge Builder (RBB) algorithm. In the course 
of RBB, two adjacent points q  and 'q  are randomly 
selected. If they are both in collision, their middle 
point mq will be added to the roadmap if it is collision free. 
The line segment s between q  and 'q is called a bridge, 
since it resembles a bridge across the narrow passage and 
the end-points of s  serve as pies, which contribute mq to 
hover over the free space. The Bridge planner will sample 
nodes in the narrow passages since it captures the 
geometric character of narrow passages. However, RBB 
employs three times of the CLEARANCE algorithm [25], 
which uses collision checks, to obtain a configuration. 
Therefore, if obstacles move, the time cost of finding 
narrow passages again becomes intolerable for a real-time 
system. 

B. DRM 
DRM is a kind of variation of PRM to solve path 

planning problems in changing environments. DRM 
generates nodes randomly since there are no obstacles 
initially. The core of DRM is to represent the relationship 
between W-space and a roadmap in C-space by means of 
constructing two kinds of mappings, a nodes mapping (1) 
and an edges mapping (2):  

{ }( ) | ( )n nw q G q wΦ = ∈ Ω ≠ ∅∩  (1)   
{ }( ) | ( ) for somea aw G q w qγ γΦ = ∈ Ω ≠ ∅ ∈∩  (2) 

Here, ( , )n aG G G=  is the roadmap constructed in C-
space; nG is a set of nodes and aG is a set of edges. 

( )n wΦ  and ( )a wΦ  indicate which nodes and edges of 
the roadmap are invalid caused by the basic cell w  of W-

space occupied by obstacles, respectively. ( )qΩ  denotes a 
subset of basic cells occupied by the robot whose 
configuration is q .  

Instead of computing the complex mapping ( )n wΦ and 
( )a wΦ , the inverse mapping 1

n
−Φ  and 1

a
−Φ  are 

computed. For example, to compute the 1
n
−Φ , the robot in 

the W-space is first set to the configuration in C-space, and 
then a “seed” cell is put inside the robot and expanded in 
each direction until all cells ( )qΩ  occupied by the robot are 
found by collision checks. The computing of 1

a
−Φ  is to 

make the edge γ discrete recursively until a required 
resolution is reached. Generally speaking, it is time 
consuming to compute edges mapping in order to ensure 
that the robot will be collision free when they move along 
the edges. 

In contrast with the W-C nodes mapping, the W-C edges 
mapping is time consuming and less important as proved in 
our previous work [21], where instead of the W-C edges 
mapping, a Lazy-edges evaluation approach enables the 
query phase fast and reduces time cost of the preprocessing 
phase significantly. However, since DRM has no bias when 
it comes to sampling in the difficult regions initially, the 
rate of finding free path is low in the case that there exist 
narrow passages in C-space. 

C. Lazy Evaluation Approaches. 
Lazy evaluation is adopted by several PRM variants [22-

23]. The idea behind it is to delay collision checks for some 
or all nodes (denoted by Lazy-nodes evaluation) and edges 
(denoted by Lazy-edges evaluation) until they are needed in 
the query phase. The reason for postponing collision checks 
is that only a small part of C-space is explored and a few 
collision checks are needed for answering a certain query. 
Lazy-PRM is the representation of Lazy evaluation 
approach. It generates initially nodes randomly and 
assumes all nodes and edges to be valid during the roadmap 
construction. After the shortest path is found, all nodes and 
edges along the path are checked to determine whether they 
are valid or not. If no path returned, an enhancement step 
will be carried out. The enhancement step of Lazy-PRM 
considers the middle point of the set of edges which have at 
least one end-point in C-obstacles as “seeds”. Then Lazy-
PRM increases the number of nodes around the “seeds” 
online. Lazy PRM can be used as Single-query or Multi-
query since more information of C-space can be obtained 
during subsequent queries.  

By analysing DRM and the Bridge Planner method, two 
conclusions can be obtained: first, W-C nodes mapping of 
DRM, which maps every basic cell in W-space to nodes in 
a roadmap, can conserve the validity of nodes in C-space 
for each query. Second, compared with other sampling 
strategies, the Bridge planner can identify narrow passages 
relying only on the validity of nodes in C-space. Therefore, 
we combine the W-C nodes mapping and the idea behind 
the Bridge planner to propose a new and efficient 
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algorithm, named Dynamic Bridge Builder (DBB), to 
identify difficult regions in changing environments fast. 
When obstacles move, DBB can update the positions of 
difficult regions dynamically. In our method, the W-C 
nodes mapping not only preserves the validity of nodes in 
C-space, but also provides our planner with the information 
where a “bridge” can be built, i.e. the location of narrow 
passages, and where the boundaries of C-obstacles are. 
Based on the W-C nodes mapping, a Hierarchy Sampling 
Strategy (HSS) is introduced to increase the number of 
nodes inside the difficult regions efficiently. Moreover, a 
Lazy-edges evaluation is adopted to check the validity of 
edges in a found path instead of the time-consuming W-C 
edges mapping process of DRM. 

III.  DYNAMIC BRIDGE BUILDER  

A. Overview of Our Method 
Identifying difficult regions in changing environments 

should be real time, since these regions may change their 
positions in a short time. Initially, the nodes in a roadmap 
of C-space are divided into two levels.  

The objective of our method is to find a flags in narrow 
passages or near the boundaries of C-obstacles, and then to 
exploit it to obtain more valid and valuable nodes, which 
can aid the planner to pass difficult regions during the 
query phase. For example, a region is classified to be 
narrow passages if it contains at least one flag, and then the 
density of nodes around the flags is increased. In each 
query, some nodes of the second level serve as flags 
according to the DBB algorithm in the Updating Phase. 
Then, HSS serves to increase the density of nodes in the 
difficult regions efficiently even if obstacles move 
frequently. After that, the shortest path will be searched in 
the roadmap by means of Lazy-edges evaluation. Our 
method consists of three phases as illustrated in Fig.1. 

B. Initial Roadmap Building with Two Levels and W-C 
Nodes Mapping Computing 

The roadmap is initialized with a set of nodes generated 
by uniform random sampling. In our method, all points are 
collision free since there are no obstacles at the beginning. 
These points belong to nodes of the first level. Then, a 
straight-line local planner is used to connect 10-nearest 
neighbours for each node. Once the nodes have been 
connected, middle points, i.e. nodes of the second level, are 
sampled for each edge of the initial roadmap. This roadmap 
is denoted by { ( , ), }n aG G P M G= = , in which P  is the 
set of nodes of the first level and M  is the set of nodes of 
the second level. aG is the set of edges in the roadmap. If a 
node m M∈  on an edge ae G∈ , it is denoted by m e∈ . 

W-C nodes mapping is computed by the following steps: 
(1) decomposing W-space into basic cells; (2) computing 

1 ( )n q−Φ  for all nq G∈ . The computation of 1 ( )n q−Φ  has 

been described in part B of Section II. In our experiments, 
the “seed” cube used for expansion is located in the base of 
the manipulator. 

 
Fig. 1 Overview of our method 

C. DBB Algorithm   
When obstacles move to new positions and change their 

orientations, difficult regions of C-space will change 
accordingly. Validity of each node in nG  can be obtained 
from the W-C nodes mapping immediately according to our 
previous work [24]. Consequently, four kinds of edges of 

aG can be used to identify regions where additional samples 
are needed based on which kind of edges they have in our 
method. The first kind of edge, denoted by aN , is that its 
two end points are both invalid while its middle point is 
valid. The second kind of edge, denoted by aB , is the same 
as the first kind except that its middle point is invalid. The 
third kind of edge with one end point being invalid and the 
other being valid will be denoted by aS . If one edge’s two 
end points are both valid, they will be denoted by aO , as 
shown in Figure 2. Difficult regions are then identified by 
the edges inside them. Clearly, edges of aN indicate where 
narrow passages are. Edges of aS show locations of 
boundaries of C-obstacles. Edges of aB and aO point out 
positions of blocked areas and large open areas 
respectively. The regions contain aN  and aS indicate the 
difficult regions. The algorithm to classify edges above is 
called Dynamic Bridge Builder. The details are shown in 
Algorithm-1. 
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Fig. 2 Illustration of types of edges classified by the DBB algorithm. The 
green nodes m are the flags in the narrow passages and boundaries of C-

obstacles. 
 

Algorithm-1 Dynamic Bridge Builder (DBB) 
Required: W-C nodes mapping for P and M . 
1: while there exists an unmarked edge in aG do  
2:  Pick an edge e from aG , which has two end 
points 1 2,p p P∈ and middle point m e∈ . 
3:  if 1( )Validity p return False and 2( )Validity p return 
False and ( )Validity m return True then 
4:      ae N∈  
5:  else if ( )Validity m return False then 
6:      ae B∈  
7:  if 1( )Validity p  return True and 2( )Validity p  return 
True then. 
8:      ae O∈  
9:  if one of 1( )Validity p and 2( )Validity p  return True 
and the other return False then 
10:     ae S∈  
11: mark e  
12: end while   

Fig. 3 Dynamic Bridge Builder Algorithm

As the function which costs most time of DBB, 
( )Validity  is able to run without any collision check. It is 

resulted from the fact that the W-C nodes mapping has 
recorded the validity of each node in the preprocessing 
phase. Further, when obstacles move, the approach 
introduced in our previous work [24] can update validity of 
each node efficiently. Therefore, DBB Algorithm can 
update the positions of difficult regions efficiently and 
dynamically in the changing environments. In our method, 
the middle points in narrow passages can be considered as 
the flags mentioned above. Besides, if the middle points of 
edges ae S∈ are valid, they are also valuable and serve as 
flags to help the planner to pass the difficult regions, since 
they lie near the boundaries of C-obstacles. It is impractical 
to sample countless nodes in the preprocessing phase to 
identify all narrow passages for a certain query. Moreover, 
narrow passages can be considered as thin corridors near 
the boundaries of C-obstacles. Therefore, points near C-
obstacles can help the planner find some narrow passages 
in the query phase. Part IV will give the details about how 
to make use of the flags. 

IV. HIERARCHY SAMPLING STRATEGY  

A. Hierarchy Sampling Strategy  
Based on the first level nodes P and the second level 

nodes M, nodes are sampled around each node of M in the 
preprocessing phase by means of Gaussian distribution. 
They will be denoted by set T, i.e. nodes of the third level. 
There are two steps to connect them. Firstly, each node is 
connected to their centres which are the nodes of M. Then 
each node of T is connected to its k-nearest neighbours. 
Roadmap G  is then modified and shown as 

' '{ ( , , ), }n aG G P M T G= = , , andP M T indicate the first, 
second and third level nodes of roadmap 'G respectively. 

Also, W-C nodes mapping for nodes of T should be 
computed in the preprocessing phase, so as to update their 
validity fast for each query.  

At the beginning, all nodes of T will be marked as 
inactive, which means they will be ignored in the course of 
searching a path. Once narrow passages or the boundaries 
of C-obstacles are identified, valid nodes of T around the 
flags, will be activated and aid to increase the number of 
nodes in difficult regions. The details of the Hierarchy 
Sampling Strategy described above are shown in 
Algorithm-2. 

Algorithm-2 Hierarchy Sampling Strategy (HSS) 
Preprocessing phase  
Required: { ( , ), }n aG G P M G= =  
1: Set T = {nodes around each node m M∈ } 
2: Compute W-C nodes mapping for T 
3: Connect t T∈  to their centres m M∈  
4: for each t T∈ connect k-nearest neighbours of nG  
5: return ' '{ ( , , ), }n aG G P M T G= =  
Updating phase 
Required: aN , aS  from DBB 
1: while there exists an unmarked node am N∈  or 

am S∈ do 
2:  for each t around m  
3    if ( )Validity t return True then   
4:       ( )Activate t   
5:  end for 
6: mark t  
7: end while   

Fig. 4 Hierarchy Sampling Strategy 
HSS fully exploits the information provided by DBB. 

Whenever obstacles move, HSS will increase the number of 
nodes in narrow passages and near the boundaries of C-
obstacles with the help of DBB. The valid middle points in 
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the narrow passages and those on the line segments 
intersecting with the boundaries of C-obstacles, i.e. am S∈ , 
are both used in HSS. Similarly to DBB, HSS employs the 
W-C mapping to avoid collision checking in updating 
phase, which significantly reduces the time cost of 
increasing the number of nodes in difficult regions. 

V. EXPERIMENTS AND ANALYSES 

In order to evaluate our method, several simulated 
experiments have been implemented in 3D workspace with 
two manipulators modelled by parameters of practical 6-
DOF Kawasaki manipulators (FS03N). The manipulators 
are mounted on two fixed bases which amount to 12 DOFs. 
Instead of planning two manipulators respectively, we 
consider that collision avoidance and coordination for the 
dual-manipulators are more important. Therefore, 12-DOFs 
of two manipulators are planned simultaneously. In other 
words, a 12-dimensional C-space is constructed using 
weighted Euclidean metric. The weights are chosen as 
described in our previous work [21]. The reachable 
workspace of the dual-manipulators approximates a cuboid 
with the size of 1.60×2.44×1.36 3m . This cuboid is 
decomposed into 40×61×34 grids. Each grid is a cube with 
the size of 4×4×4 3cm . A free 3D Collision Detection 
Library, ColDet 1.1, serves as the collision check algorithm 
in our system. All experiments are performed on a Pentium 
IV 2.8GHz PC with 512MB memory. 

Two cluttered environments are designed where narrow 
passages in C-space are ensured, as shown in Figure 5. A 
moveable wall with two holes is regarded as an obstacle in 
Environment 1. It can move up and down when two 
manipulators try to traverse the narrow passages to get a 
goal position. In Environment 2, five moveable cubes with 
the size of 0.25×0.25×0.25 3m are considered as obstacles. 
Compared with Environment 1, the difficult regions of 
Environment 2 are more volatile since obstacles can 
translate and rotate in any direction. Table I shows the 
experimental results, which evaluate the time cost of DBB 
to find difficult regions in both of the two environments. 
Comparisons between our method and DRM (without 
enhancement), Lazy-PRM (both with enhancement and 
without it) are given in Table II and III. The DRM with 
enhancement isn’t included for the reason that it will cost 
even several days as described in [16]. 

 
 

 
 
 
 

 
 

(a) 
 

 
 
 
 
 
 
 
 

 
(b) 

 
 
 

 
 
 
 
 

(c) 
Fig. 5. Illustration of Environments. (a) and (b) is the initial configuration 
and goal configuration in Environment 1. (c) is Environment 2. 

A. DBB results  
The time cost of DBB algorithm is tested in both two 

environments. Nodes of P are randomly generated since 
there are no obstacles in W-space initially. “Num of P” is 
the number of the first level nodes. Obstacles of both two 
environments move randomly. Then the time cost, number 
of edges belong to narrow passages (Num of aN ), and 
those intersecting with boundaries of obstacles (Num of 

aS ) are recorded. The results are averaged over 100 runs. 
Table I shows that DBB costs negligible time to identify the 
difficult regions with three different sizes of roadmaps. It is 
attributed to the W-C nodes mapping in the preprocessing 
phase. Therefore, no collision check is needed for the DBB 
algorithm. Moreover, the time cost in the more complex 
one Environment 2, increases very slightly than that of 
Environment 1, which indicates that DBB is effective and 
fast in the cluttered environments. 

B. Comparison results 
HSS is implemented in different sizes of roadmaps to 

increase the number of nodes in difficult regions. “Num of 
T” is the number of samples around each node of M. 
“Time” is the total time spent in the updating phase and the 
path searching process. For the enhancement step of Lazy-
PRM, 40 nodes are sampled in each difficult region. In 
order to have the same difficult regions when environments 
change, obstacles are set to move in a certain path in both 
of the two environments. However, our planner doesn’t 
acquire this information during planning phase. The results 
are averaged of 100 times runs. 

By comparing column 5 with column 11 in Table II and 
III, our planner has higher probability (nearly 20%) in 
finding a valid path than DRM and Lazy-PRM without 
enhancement. The reason is that our method can increase 
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the density of nodes in difficult regions effectively, which 
helps the planner pass narrow passages successfully. 
Although Lazy-PRM with enhancement is also effective in 
dealing with difficult regions, the time efficiency is much 
worse than our method. It costs more than 60 times longer 
than DBB+HSS in row 7 of Table II and row 12 of Table 
III. Besides, row 7 of Table III shows that DBB+HSS has 
more chances to find a valid path than Lazy-PRM with 
enhancement. It is attributed to our planner’s ability to 
increase number of nodes both in narrow passages and the 
boundaries of C-obstacles, while Lazy-PRM only samples 
nodes in the latter case. DBB+HSS is as efficiency as 
DRM, which indicates that DBB+HSS can be used in 
changing environments, even with frequently moving 
obstacles. 

Moreover, the comparative results about time cost of 
computing the W-C mapping are given in column 4 and 9 
of Table II and III. In our method, only the W-C nodes 
mapping is computed. In contrast, DRM computes both the 
W-C nodes mapping and the W-C edges mapping. It is time 
consuming to compute edges mapping in order to ensure 
that the robot will be collision free when they move along 
the edges. Therefore, HSS costs less time than DRM in 
obtaining W-C nodes mapping though a number of nodes 
which should be mapped in our method. 

 

VI. CONCLUSIONS 

This paper presents a new path planner aiming at 
identifying difficult regions fast, which can be used for path 
planing in changing environments. Dynamic Bridge Builder 
is designed to identify difficult regions efficiently, since the 
W-C nodes mapping preserves enough information to 
validate the nodes of roadmap and provides the information 
where “bridges” should be built dynamically when 
obstacles move. Hierarchy Sampling Strategy is used to 
boost the density of nodes in difficult regions in order to 
ensure the planner to find a path. Lots of simulated 
experiments show that our method is fast and effective for 
changing environments, even in the case that obstacles 
move frequently.  In the future, some compression 
methods for the third level nodes will be investigated in 
order to reduce the size of W-C nodes mapping. As a 
promising attempt, we believe that the W-C nodes mapping 
can be used in other ways to solve narrow passage problem 
in changing environments. 
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TABLE I RESULTS OF DYNAMIC BRIDGE BUILDER ALGORITHM 
Num of Na  Num of Sa  

DBB  Num of P  
Max Min Ave Max Min  Ave 

Time cost of 
DBB(s) 

Environment 1 1000  184 62 106 1037 479 653  0.0045  
  2000  456 197 233 1512 851 1176 0.0053  
  3000  589 216 289 2349 1034 1628 0.0067  

Environment 2 1000  215 117 153 1498 632  856  0.0049  
  2000  513 232 274 1975 967  1354 0.0061  
  3000  681 276 357 3086 1324  2011 0.0072  

 
TABLE II COMPARATIVE RESULTS BETWEEN OUR APPROACH AND DRM, LAZY-PRM IN ENVIRONMENT 1 

Environment 
1 

Num of 
P  

Num of 
T 

Time for 
Computing 
W-C nodes 
mapping(h) 

Rate for 
 successful 

finding a free path
Time(s) Environment

1 
Num of 

P 

Time for 
Computing 

 W-C mapping
(h) 

Enhancement  
Rate for  

successful  
finding a free path

Time(s)

DBB+HSS 1000 8 0.574 90% 0.0414 DRM 1000 3.51 no 69% 0.0227

  10 0.805 93% 0.0531  2000 7.68 no 72% 0.0481

  15 1.207 94% 0.0628  3000 12.9 no 75% 0.0554

 2000 5 0.629 91% 0.0839  6000 22.8 no 80% 0.207

  8 1.117 94% 0.0912 Lazy PRM 1000 0 no 70% 0.192

  10 1.463 96% 0.1248   0 yes 96% 6.563

 3000 5 0.923 95% 0.0954  2000 0 no 76% 0.305

  10 1.941 97% 0.1367   0 yes 99% 8.427
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TABLE III COMPARATIVE RESULTS BETWEEN OUR APPROACH AND DRM, LAZY-PRM IN ENVIRONMENT 2 
Environment 

2 
Num of 

P 
Num of 

T 

Time for 
Computing 

W-C mapping 

Rate for  
successful 

finding a free path
Time(s) Environment 

2 
Num of 

P 

Time for 
Computing 

W-C mapping
Enhancement 

Rate for  
successful 

finding a free path
Time(s)

DBB+HSS 1000 8  0.574 89% 0.0457 DRM 1000 3.51 no 65% 0.0231

  10  0.805 91% 0.0553  2000 7.68 no 69% 0.0499

  15  1.207 92% 0.0679  3000 12.9 no 72% 0.0852

 2000 6 0.693 90% 0.0912  6000 22.8 no 79% 0.234

  10 1.385 94% 0.1082 Lazy PRM 1000 0 no 64% 0.287

  12 1.517 95% 0.1461   0 yes 93% 7.126

 3000 5 0.923 94% 0.0983  2000 0 no 76% 0.383

  10 1.941 96% 0.1485   0 yes 95% 8.871

  12 2.672 97% 0.1502  3000 0 yes 97% 11.365
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