
A Dynamic Bridge Builder to Identify Difficult Regions
for Path Planning in Changing Environments

Ding Ding 1 , Hong Liu 1,2 , Xuezhi Deng 1 and Hongbin Zha1
1 State Key Laboratory of Machine Perception, Peking University, Beijing, China

2 Shenzhen Graduate School, Peking University, Shenzhen, China
{dingding, liuhong,dengxz, zha}@cis.pku.edu.cn

 Abstract –This paper presents an efficient path planner to
identify difficult regions for path planning in changing
environments, in which obstacles can move randomly. The
difficult regions consist of narrow passages and the boundaries
of obstacles in robot Configuration Space (C-space). These
regions exert significantly negative influence on finding a valid
path in static environments. The problem becomes more
complicated in changing environments, because that the
regions will change their positions when obstacles move.
Besides, it is necessary to identify difficult regions in real time
since obstacles may move frequently. To identify difficult
regions fast when they change their positions, a dynamic
bridge builder is proposed based on a W-C nodes mapping
and a Bridge planner method. The W-C nodes mapping is
used not only to conserve the validity of nodes in C-space, but
also to provide the information about where a “bridge” should
be built, i.e. the positions of narrow passages, and where the
boundaries of obstacles are. Furthermore, a hierarchy
sampling strategy is employed to boost the density of nodes in
difficult regions efficiently. In the query phase, a Lazy-edges
evaluation method is adopted to validate the edges in a found
path. Simulated experiments for a dual-manipulator system
show that our method is efficient for path planning in
changing environments.

 Index Terms – Path Planning, Changing Environments,
PRM, Dynamic Roadmaps, Lazy Evaluation.

I. INTRODUCTION

As a challenging problem of path planning, difficult regions
exert significantly negative influence on the aspect of
finding a valid path in the query phase. Traditionally, the
difficult regions consist of narrow passages and the
boundaries of obstacles in C-space, which is also named C-
obstacles. The problem in static environments has been
studied extensively in the past. However, the problem still
exists in changing environments, especially in the cluttered
environments. In the changing environments, when
obstacles change their positions or orientations in the
workspace (W-space) of a robot, C-obstacles also change
accordingly. Consequently, there are mainly two difficulties
to solve the difficult region problem in the changing
environments. Firstly, difficult regions may change their
positions in C-space when obstacles move. Secondly, real
time of identifying the difficult regions and increasing the
density of nodes inside them is required when obstacles
move frequently.

 Although many sampling-based methods [1-4] can solve
many challenging problems including ones with many
degrees of freedom (DOFs), their efficiencies are not
satisfying when C-space has difficult regions. Therefore,
many non-uniform sampling strategies that sample nodes in
difficult regions have been proposed. Such as the Bridge
planner [5], the Obstacles-based PRM planner
(OBPRM)[6], the Gaussian sampling [7], and the medial-
axis sampling[8]. However, they don't consider the difficult
region problem in changing environments. There also exist
some planning algorithms to solve the path planning
problem in changing environments or dynamic
environments [9-15]. The most important one is Dynamic
Roadmap Method (DRM) [16-17], which is a Multi-query
approach. DRM can answer queries fast in changing
environments, since it preserves two kinds of mappings
from W-space to C-space. However, DRM initially samples
nodes randomly and adopts an enhancement step, which
consumes even several days [16], to preserve the
connectivity of the roadmap when environments change.
Some Single-query methods can also be used in changing
environments, such as the Lazy-PRM[18]. However, when
difficult regions are found in the query phase, Lazy-PRM
costs much time to generate more nodes in these regions.

This paper aims to design a planner which can identify
the difficult regions fast and find a path successfully in the
changing environments. To achieve these goals: (1) a
dynamic bridge builder is presented for identifying difficult
regions fast in changing environments. The bridge builder
can update the positions of difficult regions dynamically
when obstacles move. (2) An efficient hierarchy sampling
strategy is proposed for increasing the density of nodes
inside difficult regions.

The rest of this paper is organized as follows: Section II
describes the motivation of our method and some related
work. Details of our method are presented in Section III
and Section IV. In Section V experimental results are
shown, and conclusions are given in Section VI.

II. MOTIVATION AND RELATED WORK

The typical approaches concentrate on difficult regions
are non-uniform sampling strategies in static environments.
They can be divided into three catalogues. The first kind of
approaches, such as Gaussian sampling and OBPRM, focus

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

ThA3.4

1-4244-0912-8/07/$25.00 ©2007 IEEE. 2925

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:06 from IEEE Xplore. Restrictions apply.

on increasing the sampling density near C-obstacles, since
narrow passages can be considered as thin corridors near
the boundaries of C-obstacles [19]. The second kind of
approaches pays attention to sampling inside narrow
passages, such as Bridge planner, which employs a bridge
test to locate narrow passages. The last kind of approaches
uses W-space information to find narrow passages, since
narrow passages in the workspace often indicate the
presence and the location of narrow passages in C-space
[20]. All the sample strategies above primarily generate
nodes in difficult regions, i.e. narrow passages and the
boundaries of C-obstacles. As a result, a planner has high
probability to pass difficult regions. However, the strategies
are hard to adapt to changing environments since collision
checks are repeated many times in order to identify the
difficult areas, which is time consuming and can’t satisfy
the requirement of a real-time system. For example, the
Bridge planner employs at least three times of collision
check algorithm to sample a node in narrow passages.
Some related work will be introduced firstly in the
following parts in order to fully explain our method.

A. Bridge Planner
Bridge planner is a non-uniform sampling method in

static environments. The core of Bridge planner is a
Randomized Bridge Builder (RBB) algorithm. In the course
of RBB, two adjacent points q and 'q are randomly
selected. If they are both in collision, their middle
point mq will be added to the roadmap if it is collision free.
The line segment s between q and 'q is called a bridge,
since it resembles a bridge across the narrow passage and
the end-points of s serve as pies, which contribute mq to
hover over the free space. The Bridge planner will sample
nodes in the narrow passages since it captures the
geometric character of narrow passages. However, RBB
employs three times of the CLEARANCE algorithm [25],
which uses collision checks, to obtain a configuration.
Therefore, if obstacles move, the time cost of finding
narrow passages again becomes intolerable for a real-time
system.

B. DRM
DRM is a kind of variation of PRM to solve path

planning problems in changing environments. DRM
generates nodes randomly since there are no obstacles
initially. The core of DRM is to represent the relationship
between W-space and a roadmap in C-space by means of
constructing two kinds of mappings, a nodes mapping (1)
and an edges mapping (2):

{ }() | ()n nw q G q wΦ = ∈ Ω ≠ ∅∩ (1)
{ }() | () for somea aw G q w qγ γΦ = ∈ Ω ≠ ∅ ∈∩ (2)

Here, (,)n aG G G= is the roadmap constructed in C-
space; nG is a set of nodes and aG is a set of edges.

()n wΦ and ()a wΦ indicate which nodes and edges of
the roadmap are invalid caused by the basic cell w of W-

space occupied by obstacles, respectively. ()qΩ denotes a
subset of basic cells occupied by the robot whose
configuration is q .

Instead of computing the complex mapping ()n wΦ and
()a wΦ , the inverse mapping 1

n
−Φ and 1

a
−Φ are

computed. For example, to compute the 1
n
−Φ , the robot in

the W-space is first set to the configuration in C-space, and
then a “seed” cell is put inside the robot and expanded in
each direction until all cells ()qΩ occupied by the robot are
found by collision checks. The computing of 1

a
−Φ is to

make the edge γ discrete recursively until a required
resolution is reached. Generally speaking, it is time
consuming to compute edges mapping in order to ensure
that the robot will be collision free when they move along
the edges.

In contrast with the W-C nodes mapping, the W-C edges
mapping is time consuming and less important as proved in
our previous work [21], where instead of the W-C edges
mapping, a Lazy-edges evaluation approach enables the
query phase fast and reduces time cost of the preprocessing
phase significantly. However, since DRM has no bias when
it comes to sampling in the difficult regions initially, the
rate of finding free path is low in the case that there exist
narrow passages in C-space.

C. Lazy Evaluation Approaches.
Lazy evaluation is adopted by several PRM variants [22-

23]. The idea behind it is to delay collision checks for some
or all nodes (denoted by Lazy-nodes evaluation) and edges
(denoted by Lazy-edges evaluation) until they are needed in
the query phase. The reason for postponing collision checks
is that only a small part of C-space is explored and a few
collision checks are needed for answering a certain query.
Lazy-PRM is the representation of Lazy evaluation
approach. It generates initially nodes randomly and
assumes all nodes and edges to be valid during the roadmap
construction. After the shortest path is found, all nodes and
edges along the path are checked to determine whether they
are valid or not. If no path returned, an enhancement step
will be carried out. The enhancement step of Lazy-PRM
considers the middle point of the set of edges which have at
least one end-point in C-obstacles as “seeds”. Then Lazy-
PRM increases the number of nodes around the “seeds”
online. Lazy PRM can be used as Single-query or Multi-
query since more information of C-space can be obtained
during subsequent queries.

By analysing DRM and the Bridge Planner method, two
conclusions can be obtained: first, W-C nodes mapping of
DRM, which maps every basic cell in W-space to nodes in
a roadmap, can conserve the validity of nodes in C-space
for each query. Second, compared with other sampling
strategies, the Bridge planner can identify narrow passages
relying only on the validity of nodes in C-space. Therefore,
we combine the W-C nodes mapping and the idea behind
the Bridge planner to propose a new and efficient

2926

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:06 from IEEE Xplore. Restrictions apply.

algorithm, named Dynamic Bridge Builder (DBB), to
identify difficult regions in changing environments fast.
When obstacles move, DBB can update the positions of
difficult regions dynamically. In our method, the W-C
nodes mapping not only preserves the validity of nodes in
C-space, but also provides our planner with the information
where a “bridge” can be built, i.e. the location of narrow
passages, and where the boundaries of C-obstacles are.
Based on the W-C nodes mapping, a Hierarchy Sampling
Strategy (HSS) is introduced to increase the number of
nodes inside the difficult regions efficiently. Moreover, a
Lazy-edges evaluation is adopted to check the validity of
edges in a found path instead of the time-consuming W-C
edges mapping process of DRM.

III. DYNAMIC BRIDGE BUILDER

A. Overview of Our Method
Identifying difficult regions in changing environments

should be real time, since these regions may change their
positions in a short time. Initially, the nodes in a roadmap
of C-space are divided into two levels.

The objective of our method is to find a flags in narrow
passages or near the boundaries of C-obstacles, and then to
exploit it to obtain more valid and valuable nodes, which
can aid the planner to pass difficult regions during the
query phase. For example, a region is classified to be
narrow passages if it contains at least one flag, and then the
density of nodes around the flags is increased. In each
query, some nodes of the second level serve as flags
according to the DBB algorithm in the Updating Phase.
Then, HSS serves to increase the density of nodes in the
difficult regions efficiently even if obstacles move
frequently. After that, the shortest path will be searched in
the roadmap by means of Lazy-edges evaluation. Our
method consists of three phases as illustrated in Fig.1.

B. Initial Roadmap Building with Two Levels and W-C
Nodes Mapping Computing

The roadmap is initialized with a set of nodes generated
by uniform random sampling. In our method, all points are
collision free since there are no obstacles at the beginning.
These points belong to nodes of the first level. Then, a
straight-line local planner is used to connect 10-nearest
neighbours for each node. Once the nodes have been
connected, middle points, i.e. nodes of the second level, are
sampled for each edge of the initial roadmap. This roadmap
is denoted by { (,), }n aG G P M G= = , in which P is the
set of nodes of the first level and M is the set of nodes of
the second level. aG is the set of edges in the roadmap. If a
node m M∈ on an edge ae G∈ , it is denoted by m e∈ .

W-C nodes mapping is computed by the following steps:
(1) decomposing W-space into basic cells; (2) computing

1 ()n q−Φ for all nq G∈ . The computation of 1 ()n q−Φ has

been described in part B of Section II. In our experiments,
the “seed” cube used for expansion is located in the base of
the manipulator.

Fig. 1 Overview of our method

C. DBB Algorithm
When obstacles move to new positions and change their

orientations, difficult regions of C-space will change
accordingly. Validity of each node in nG can be obtained
from the W-C nodes mapping immediately according to our
previous work [24]. Consequently, four kinds of edges of

aG can be used to identify regions where additional samples
are needed based on which kind of edges they have in our
method. The first kind of edge, denoted by aN , is that its
two end points are both invalid while its middle point is
valid. The second kind of edge, denoted by aB , is the same
as the first kind except that its middle point is invalid. The
third kind of edge with one end point being invalid and the
other being valid will be denoted by aS . If one edge’s two
end points are both valid, they will be denoted by aO , as
shown in Figure 2. Difficult regions are then identified by
the edges inside them. Clearly, edges of aN indicate where
narrow passages are. Edges of aS show locations of
boundaries of C-obstacles. Edges of aB and aO point out
positions of blocked areas and large open areas
respectively. The regions contain aN and aS indicate the
difficult regions. The algorithm to classify edges above is
called Dynamic Bridge Builder. The details are shown in
Algorithm-1.

2927

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:06 from IEEE Xplore. Restrictions apply.

Fig. 2 Illustration of types of edges classified by the DBB algorithm. The
green nodes m are the flags in the narrow passages and boundaries of C-

obstacles.

Algorithm-1 Dynamic Bridge Builder (DBB)
Required: W-C nodes mapping for P and M .
1: while there exists an unmarked edge in aG do
2: Pick an edge e from aG , which has two end
points 1 2,p p P∈ and middle point m e∈ .
3: if 1()Validity p return False and 2()Validity p return
False and ()Validity m return True then
4: ae N∈
5: else if ()Validity m return False then
6: ae B∈
7: if 1()Validity p return True and 2()Validity p return
True then.
8: ae O∈
9: if one of 1()Validity p and 2()Validity p return True
and the other return False then
10: ae S∈
11: mark e
12: end while

Fig. 3 Dynamic Bridge Builder Algorithm

As the function which costs most time of DBB,
()Validity is able to run without any collision check. It is

resulted from the fact that the W-C nodes mapping has
recorded the validity of each node in the preprocessing
phase. Further, when obstacles move, the approach
introduced in our previous work [24] can update validity of
each node efficiently. Therefore, DBB Algorithm can
update the positions of difficult regions efficiently and
dynamically in the changing environments. In our method,
the middle points in narrow passages can be considered as
the flags mentioned above. Besides, if the middle points of
edges ae S∈ are valid, they are also valuable and serve as
flags to help the planner to pass the difficult regions, since
they lie near the boundaries of C-obstacles. It is impractical
to sample countless nodes in the preprocessing phase to
identify all narrow passages for a certain query. Moreover,
narrow passages can be considered as thin corridors near
the boundaries of C-obstacles. Therefore, points near C-
obstacles can help the planner find some narrow passages
in the query phase. Part IV will give the details about how
to make use of the flags.

IV. HIERARCHY SAMPLING STRATEGY

A. Hierarchy Sampling Strategy
Based on the first level nodes P and the second level

nodes M, nodes are sampled around each node of M in the
preprocessing phase by means of Gaussian distribution.
They will be denoted by set T, i.e. nodes of the third level.
There are two steps to connect them. Firstly, each node is
connected to their centres which are the nodes of M. Then
each node of T is connected to its k-nearest neighbours.
Roadmap G is then modified and shown as

' '{ (, ,), }n aG G P M T G= = , , andP M T indicate the first,
second and third level nodes of roadmap 'G respectively.

Also, W-C nodes mapping for nodes of T should be
computed in the preprocessing phase, so as to update their
validity fast for each query.

At the beginning, all nodes of T will be marked as
inactive, which means they will be ignored in the course of
searching a path. Once narrow passages or the boundaries
of C-obstacles are identified, valid nodes of T around the
flags, will be activated and aid to increase the number of
nodes in difficult regions. The details of the Hierarchy
Sampling Strategy described above are shown in
Algorithm-2.

Algorithm-2 Hierarchy Sampling Strategy (HSS)
Preprocessing phase
Required: { (,), }n aG G P M G= =
1: Set T = {nodes around each node m M∈ }
2: Compute W-C nodes mapping for T
3: Connect t T∈ to their centres m M∈
4: for each t T∈ connect k-nearest neighbours of nG
5: return ' '{ (, ,), }n aG G P M T G= =
Updating phase
Required: aN , aS from DBB
1: while there exists an unmarked node am N∈ or

am S∈ do
2: for each t around m
3 if ()Validity t return True then
4: ()Activate t
5: end for
6: mark t
7: end while

Fig. 4 Hierarchy Sampling Strategy
HSS fully exploits the information provided by DBB.

Whenever obstacles move, HSS will increase the number of
nodes in narrow passages and near the boundaries of C-
obstacles with the help of DBB. The valid middle points in

2928

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:06 from IEEE Xplore. Restrictions apply.

the narrow passages and those on the line segments
intersecting with the boundaries of C-obstacles, i.e. am S∈ ,
are both used in HSS. Similarly to DBB, HSS employs the
W-C mapping to avoid collision checking in updating
phase, which significantly reduces the time cost of
increasing the number of nodes in difficult regions.

V. EXPERIMENTS AND ANALYSES

In order to evaluate our method, several simulated
experiments have been implemented in 3D workspace with
two manipulators modelled by parameters of practical 6-
DOF Kawasaki manipulators (FS03N). The manipulators
are mounted on two fixed bases which amount to 12 DOFs.
Instead of planning two manipulators respectively, we
consider that collision avoidance and coordination for the
dual-manipulators are more important. Therefore, 12-DOFs
of two manipulators are planned simultaneously. In other
words, a 12-dimensional C-space is constructed using
weighted Euclidean metric. The weights are chosen as
described in our previous work [21]. The reachable
workspace of the dual-manipulators approximates a cuboid
with the size of 1.60×2.44×1.36 3m . This cuboid is
decomposed into 40×61×34 grids. Each grid is a cube with
the size of 4×4×4 3cm . A free 3D Collision Detection
Library, ColDet 1.1, serves as the collision check algorithm
in our system. All experiments are performed on a Pentium
IV 2.8GHz PC with 512MB memory.

Two cluttered environments are designed where narrow
passages in C-space are ensured, as shown in Figure 5. A
moveable wall with two holes is regarded as an obstacle in
Environment 1. It can move up and down when two
manipulators try to traverse the narrow passages to get a
goal position. In Environment 2, five moveable cubes with
the size of 0.25×0.25×0.25 3m are considered as obstacles.
Compared with Environment 1, the difficult regions of
Environment 2 are more volatile since obstacles can
translate and rotate in any direction. Table I shows the
experimental results, which evaluate the time cost of DBB
to find difficult regions in both of the two environments.
Comparisons between our method and DRM (without
enhancement), Lazy-PRM (both with enhancement and
without it) are given in Table II and III. The DRM with
enhancement isn’t included for the reason that it will cost
even several days as described in [16].

(a)

(b)

(c)
Fig. 5. Illustration of Environments. (a) and (b) is the initial configuration
and goal configuration in Environment 1. (c) is Environment 2.

A. DBB results
The time cost of DBB algorithm is tested in both two

environments. Nodes of P are randomly generated since
there are no obstacles in W-space initially. “Num of P” is
the number of the first level nodes. Obstacles of both two
environments move randomly. Then the time cost, number
of edges belong to narrow passages (Num of aN), and
those intersecting with boundaries of obstacles (Num of

aS) are recorded. The results are averaged over 100 runs.
Table I shows that DBB costs negligible time to identify the
difficult regions with three different sizes of roadmaps. It is
attributed to the W-C nodes mapping in the preprocessing
phase. Therefore, no collision check is needed for the DBB
algorithm. Moreover, the time cost in the more complex
one Environment 2, increases very slightly than that of
Environment 1, which indicates that DBB is effective and
fast in the cluttered environments.

B. Comparison results
HSS is implemented in different sizes of roadmaps to

increase the number of nodes in difficult regions. “Num of
T” is the number of samples around each node of M.
“Time” is the total time spent in the updating phase and the
path searching process. For the enhancement step of Lazy-
PRM, 40 nodes are sampled in each difficult region. In
order to have the same difficult regions when environments
change, obstacles are set to move in a certain path in both
of the two environments. However, our planner doesn’t
acquire this information during planning phase. The results
are averaged of 100 times runs.

By comparing column 5 with column 11 in Table II and
III, our planner has higher probability (nearly 20%) in
finding a valid path than DRM and Lazy-PRM without
enhancement. The reason is that our method can increase

2929

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:06 from IEEE Xplore. Restrictions apply.

the density of nodes in difficult regions effectively, which
helps the planner pass narrow passages successfully.
Although Lazy-PRM with enhancement is also effective in
dealing with difficult regions, the time efficiency is much
worse than our method. It costs more than 60 times longer
than DBB+HSS in row 7 of Table II and row 12 of Table
III. Besides, row 7 of Table III shows that DBB+HSS has
more chances to find a valid path than Lazy-PRM with
enhancement. It is attributed to our planner’s ability to
increase number of nodes both in narrow passages and the
boundaries of C-obstacles, while Lazy-PRM only samples
nodes in the latter case. DBB+HSS is as efficiency as
DRM, which indicates that DBB+HSS can be used in
changing environments, even with frequently moving
obstacles.

Moreover, the comparative results about time cost of
computing the W-C mapping are given in column 4 and 9
of Table II and III. In our method, only the W-C nodes
mapping is computed. In contrast, DRM computes both the
W-C nodes mapping and the W-C edges mapping. It is time
consuming to compute edges mapping in order to ensure
that the robot will be collision free when they move along
the edges. Therefore, HSS costs less time than DRM in
obtaining W-C nodes mapping though a number of nodes
which should be mapped in our method.

VI. CONCLUSIONS

This paper presents a new path planner aiming at
identifying difficult regions fast, which can be used for path
planing in changing environments. Dynamic Bridge Builder
is designed to identify difficult regions efficiently, since the
W-C nodes mapping preserves enough information to
validate the nodes of roadmap and provides the information
where “bridges” should be built dynamically when
obstacles move. Hierarchy Sampling Strategy is used to
boost the density of nodes in difficult regions in order to
ensure the planner to find a path. Lots of simulated
experiments show that our method is fast and effective for
changing environments, even in the case that obstacles
move frequently. In the future, some compression
methods for the third level nodes will be investigated in
order to reduce the size of W-C nodes mapping. As a
promising attempt, we believe that the W-C nodes mapping
can be used in other ways to solve narrow passage problem
in changing environments.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China (NSFC 60675025) and the National
High Technology Research and Development Program of
China (863 Program, No.2006AA04Z247).

TABLE I RESULTS OF DYNAMIC BRIDGE BUILDER ALGORITHM
Num of Na Num of Sa

DBB Num of P
Max Min Ave Max Min Ave

Time cost of
DBB(s)

Environment 1 1000 184 62 106 1037 479 653 0.0045
 2000 456 197 233 1512 851 1176 0.0053
 3000 589 216 289 2349 1034 1628 0.0067

Environment 2 1000 215 117 153 1498 632 856 0.0049
 2000 513 232 274 1975 967 1354 0.0061
 3000 681 276 357 3086 1324 2011 0.0072

TABLE II COMPARATIVE RESULTS BETWEEN OUR APPROACH AND DRM, LAZY-PRM IN ENVIRONMENT 1

Environment
1

Num of
P

Num of
T

Time for
Computing
W-C nodes
mapping(h)

Rate for
 successful

finding a free path
Time(s) Environment

1
Num of

P

Time for
Computing

 W-C mapping
(h)

Enhancement
Rate for

successful
finding a free path

Time(s)

DBB+HSS 1000 8 0.574 90% 0.0414 DRM 1000 3.51 no 69% 0.0227

 10 0.805 93% 0.0531 2000 7.68 no 72% 0.0481

 15 1.207 94% 0.0628 3000 12.9 no 75% 0.0554

 2000 5 0.629 91% 0.0839 6000 22.8 no 80% 0.207

 8 1.117 94% 0.0912 Lazy PRM 1000 0 no 70% 0.192

 10 1.463 96% 0.1248 0 yes 96% 6.563

 3000 5 0.923 95% 0.0954 2000 0 no 76% 0.305

 10 1.941 97% 0.1367 0 yes 99% 8.427

2930

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:06 from IEEE Xplore. Restrictions apply.

TABLE III COMPARATIVE RESULTS BETWEEN OUR APPROACH AND DRM, LAZY-PRM IN ENVIRONMENT 2
Environment

2
Num of

P
Num of

T

Time for
Computing

W-C mapping

Rate for
successful

finding a free path
Time(s) Environment

2
Num of

P

Time for
Computing

W-C mapping
Enhancement

Rate for
successful

finding a free path
Time(s)

DBB+HSS 1000 8 0.574 89% 0.0457 DRM 1000 3.51 no 65% 0.0231

 10 0.805 91% 0.0553 2000 7.68 no 69% 0.0499

 15 1.207 92% 0.0679 3000 12.9 no 72% 0.0852

 2000 6 0.693 90% 0.0912 6000 22.8 no 79% 0.234

 10 1.385 94% 0.1082 Lazy PRM 1000 0 no 64% 0.287

 12 1.517 95% 0.1461 0 yes 93% 7.126

 3000 5 0.923 94% 0.0983 2000 0 no 76% 0.383

 10 1.941 96% 0.1485 0 yes 95% 8.871

 12 2.672 97% 0.1502 3000 0 yes 97% 11.365

REFERENCES
[1] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,

"Probabilistic roadmaps for fast path planning in high-dimensional
configuration spaces", IEEE Transactions on Robotics and
Automation, pp. 566-580, 1996.

[2] R. Geraerts and M. H. Overmars. "A comparative study of
probabilistic roadmap Planners ", Proceedings of the Fifth
International Workshop on the Algorithmic Foundations of Robotics,
pp. 249-264, 2002.

[3] S. M. LaValle. "Rapidly-exploring random trees: a new tool for path
planing", Technical Report TR 98-11, Computer Science Dept., Iowa
State University, 1998.

[4] J. J. Kuffner and S. M. LaValle, "RRT-connect: an efficient approach
to single-query path planning", IEEE International Conference on
Robotics and Automation, pp. 995-1001, 2000.

[5] D. Hsu, T. Jiang, R. John, and Z. Sun, "The bridge test for sampling
narrow passages with probabilistic roadmap planners", IEEE
International Conference on Robotics and Automation, pp. 4420-
4426, 2003.

[6] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
"OBPRM: an obstacle-based PRM for 3D workspaces", Proceedings
of the Third International Workshop on the Algorithmic Foundations
of Robotics, pp. 155-168, 1998.

[7] V. Boor, M. H. Overmars, and A. F. Van Der Stappen, "The Gaussian
sampling strategy for probabilistic roadmap planners", IEEE
International Conference on Robotics and Automation, pp. 1018-
1023, 1999.

[8] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, "MAPRM: a
probabilistic roadmap planner with sampling on the medial axis of the
free space", IEEE International Conference on Robotics and
Automation, pp. 1024-1031, 1999.

[9] J. P. van den Berg, and M. H. Overmars, "Roadmap-based motion
planning in dynamic environments", IEEE Transactions on Robotics,
Vol.21, pp. 885-897, 2005.

[10] D. Hsu, R Kindel, J. C. Latombe, and S. Rock, "Randomized
kinodynamic motion planning with moving obstacles", International
Journal of Robotics Research, pp. 233-255, 2002.

[11] J. P. van den Berg, D. Nieuwenhuisen, L. Jaillet, and M. H.
Overmars, "Creating robust roadmaps for motion planning in
changing environments", IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2415-2421, 2005.

[12] L. Jaillet and T. Simeon, "A PRM-based motion planner for
dynamically changing environments", IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1606-1611, 2004.

[13] E. Mazer, J. M. Ahuactzin, and P. Bessiere, "The ariadne’s clew
algorithm", Journal of Artificial Intelligence Research, 9:295-316,
1998.

[14] Y. Kitamura, F. Kishino, T. Tanaka, and W. Yachida, "Real-time path
planning in a dynamic 3-D environment", IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 925-931, 1996.

[15] O. Brock, and O. Khatib, "Real-time re-planning in high-dimensional
configuration spaces using sets of homotopic paths", IEEE
Transactions on Robotics and Automation, pp. 550-555, 2000.

[16] P. Leven, and S. Hutchinson, "A framework for real-time path
planning in changing environments", The International Journal of
Robotics Research, Vol. 21, pp. 999-1030, 2002.

[17] M. Kallmann, and M. Mataric, "Motion planning using dynamic
roadmaps", IEEE Transactions on Robotics and Automation, pp.
4399-4404, 2004.

[18] R. Bohlin and L. E. Kavraki, "Path planning using Lazy PRM", IEEE
International Conference on Robotics and Automation, pp. 521-528,
2000.

[19] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.
Kavraki, and S. Thrun, "Principles of Robot Motion Theory,
Algorithms, and Implementation", The MIT Press, pp 216, 2005.

[20] J. P. van den Berg, and M. H. Overmars, "Using workspace
information as a guide to non-uniform sampling in probabilistic
roadmap planners", IEEE International Conference on Robotics and
Automation, pp. 453-460, 2004.

[21] H. Liu, X. Deng, H. Zha, and D. Ding, "A path planner in changing
environments by using W-C Nodes Mapping coupled with Lazy
Edges Evaluation", IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.4078-4083, 2006.

[22] C. L. Nielsen. and L. E. Kavraki, "A two level fuzzy PRM for
manipulation planning", Technical Report TR2000-365, Computer
Science Dept, Rice University, 2000.

[23] .G. Song, S. L. Miller, and N. M. Amato, “Customizing PRM
roadmaps at query time”, IEEE International Conference on Robotics
and Automation, pp. 1500-1505, 2001.

[24] H. Liu, X. Deng, and H. Zha, "A planning method for safe interaction
between human arms and robot manipulators", IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
1814-1820, 2005.

[25] S. Gottschalk, M. Lin, and D. Manocha. “OBB-Tree: A hierarchical
structure for rapid interference detection”, Proceedings of
SIGGRAPH, pp. 171-180, 1996.

2931

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:06 from IEEE Xplore. Restrictions apply.

