
Predictive Model for Path Planning by Using K-near Dynamic Bridge
Builder and Inner Parzen Window

Hong Liu, Ding Ding, Weiwei Wan, and Hongbin Zha
Key Laboratory of Machine Perception and Intelligence

Peking University, China
hongliu@pku.edu.cn, {dingding, wanweiwei, zha}@cis.pku.edu.cn

Abstract— Robotic path planning in changing environments
with difficult regions is an extremely challenge. Since the struc-
ture of configuration space (C-space) will change when obstacles
move in workspace (W-space), the planner should have the
capacity of building approximate structure of C-space, while
avoiding intense computational complexity. Further, difficult
regions will also change their positions, which requires the
planner should be able to identify them fast and increase
the free nodes inside them efficiently. This paper presents a
novel approach for path planning in changing environments
using predictive model, which is inspired by the idea of active
learning. With the help of W-C nodes mapping, this predictive
model is built to capture the approximate structure of C-space,
while avoiding intense computational complexity. This model
include two steps: K-near Dynamic Bridge Builder (K-near
DBB) is proposed to identify difficult passages in the space first,
and then Inner Parzen Window is adopted to sample points in
these difficult regions without invoking any collision checker.
Experiments are carried out with two 6-DOF manipulators, and
our approach can find a path with high time efficiency and low
error rate, even if the environment is complex.

I. INTRODUCTION

In static environments, complete motion planning algo-
rithms require total understanding of robot’s configuration
space (C-space). However, they are rarely used in practice
because they are computational infeasible [1][2]. The gener-
alized motion planning problem has been proved PSPACE-
hard [3]. Therefore, attention has turned to sampling-based
algorithms that sacrifice completeness for computational
feasibility. The most successful sampling-based planner is
PRM [4] in static environments. The key idea behind PRM
is to construct a connective graph which implicitly approx-
imates the structure of the C-space. Nevertheless, difficult
regions, i.e. the positions of narrow passages and where
the boundaries of obstacles (C-obstacle) are, pose significant
difficulty for PRM planners. Since uniform sampling that
adopted by PRM implicity assumes C-space is uniformly
complex. Therefore, in static environments, much research
has focused on increasing the probability of sampling points
in difficult regions [5][6][7][8].

In changing environments, difficult regions problem is still
extremely chanllenging in motion planning area, especially in
complex environments [9]. When obstacles change their po-
sitions or orientations in the workspace (W-space) of a robot,
C-obstacles also change accordingly. Consequently, there
are two difficult issues to solve difficult regions problem
in changing environments. Firstly, how to identify difficult

regions instantly, since difficult regions may change their
positions in C-space when obstacles move. Secondly, how
to increase the density of free configurations inside them
efficiently and effectively, since their volumes are small and
their structures are changeful.

In this paper, a predictive model is proposed to try to
solve the difficult regions problem in changing environments.
Our approach is motivated by the insight that an efficient
and practical planner in changing environments, should have
the capacity of building approximate structure of C-space,
while avoiding intense computational complexity. This model
includes two steps: K-near Dynamic Bridge Builder(K-near
DBB) and Inner Parzen Window. As obstacles move in W-
space, K-near DBB could indicate the areas of C-space
which are complex and the areas which are simple. Then,
the resolution of nodes will change accordingly relied on
Inner Parzen Window. Further, our approach is able to make
prediction about the state of each new sampled node in
difficult regions, which avoid unnecessary invocations of a
collision checker.

Our contributions are as follows.
(1) K-near Dynamic Bridge Builder (K-near DBB) is

presented not only to identify difficult regions instantly, but
also to preserve local information of difficult regions.

(2) Based on K-near DBB, Inner Parzen Window is
proposed. to make predictive decisions about how and where
to sample nodes in difficult regions without invoking any
collision checker.

There are also other works based on predictive
models[10][11]. However, we focused on difficulty regions
and a quite different model is built in our work to improve
time efficiency.

The rest of this paper is organized as follows: Section II
describes the related work. Details of two steps of predictive
model are presented in Section III and Section IV. In Section
V experimental results are shown, and conclusions are drawn
in Section VI.

II. RELATED WORK

Currently, several non-uniform sampling strategies that
sample nodes in difficult regions have been proposed.
OBPRM and Gaussian methods sample more nodes near
surfaces of C-obstacles [5][7]. Bridge test method generates
each node inside narrow passages by calling at least three
times of collision checker [6]. And MAPRM retracts nodes

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 2133

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:20 from IEEE Xplore. Restrictions apply.

to the medial axis of the free space [8]. All of these methods
are hard to be used in changing environments directly, since
they cost many collision checker to identify difficult regions,
during which the obstacles may move in the W-space. Also,
Dynamic Roadmap Method (DRM) [12][13] is proposed to
resolve path planning problem in changing environments. As
a classic Multi-query approach, DRM can answer queries
fast in changing environments because it preserves two kinds
of mappings from W-space to C-space. However, DRM
employs uniform sampling strategy at first, and then adopts
an enhancement step to deal with difficult regions problem,
which consumes even several days [14]. Some Single-query
methods can also be used in changing environments, such
as the Lazy-PRM [15]. However, when difficult regions are
found in the query phase, Lazy-PRM costs much time to
generate more nodes in these regions.

A. Parzen Window Density Estimation

The task of generating new sample points can be viewed as
pattern classification, in which a newly sampled point will be
classified as free or obstructed. In this way, various machine
learning algorithms [16] can be applied to predict the state of
a certain point. In this paper, active learning algorithms are
considered since the learner can select the data from which it
learns. If selection of data is done in the preprocessing phase,
plenty of time will be saved because of fewer samples for
learning.

K-nearest and Parzen-Window are both algorithms of
active learning. As a well-known density estimation method,
Parzen-Window is extensively used in pattern recognition,
classification, image registration and so on. Given an in-
stance of the random sample x, Parzen-window estimates the
Probability Density Function (PDF) from which the sample
was derived. Firstly, a window function can be placed at
x and be used to determine how many observations fall
within the window or, rather, what is the contribution of each
observation xi to this window. Then, the PDF value P (x) is
then the sum total of the contributions from the observations
to this window. The Parzen-window estimates is defined as

P (x) =
1
n

n∑
i=0

1
hd

n

K(
x− xi

hn
) (1)

where K(x) is the window function in d-dimensions,
and hn > 0 is the window width. However, it is possible
that relatively small Parzen Windows will actually enclose
zero points. That’s a drawback of Parzen-Window Density
Estimation.

B. DRM

DRM is a kind of variation of PRM to solve path planning
problems in changing environments. DRM generates nodes
randomly since there are no obstacles initially. The core of
DRM is to represent the relationship between W-space and a
roadmap in C-space by means of constructing two kinds of
mappings, a nodes mapping (2) and an edges mapping (3):

Φn(w) = {q ∈ Gn | Ω(q) ∩ w 6= ∅} (2)

Φa(w) = {γ ∈ Ga | Ω(q) ∩ w 6= ∅ for someq ∈ γ} (3)

Here, G = (Gn, Ga) is the roadmap constructed in C-
space. Gn is a set of nodes and Ga is a set of edges. Φn(w)
and Φa(w) indicate which nodes and edges of the roadmap
are invalid caused by the basic cell w of W-space occupied
by obstacles, respectively. Ω(q) denotes a subset of basic
cells occupied by the robot whose configuration is q.

Instead of computing the complex mapping Φn(w) and
Φa(w), the inverse mapping Φ−1

n and Φ−1
a are computed.

For example, to compute the Φ−1
n , the robot in the W-space

is first set to the configuration in C-space, and then a seed cell
is put inside the robot and expanded in each direction until
all cells Ω(q) occupied by the robot are found by collision
checks. The computing of Φ−1

a is to make the edge γ discrete
recursively until a required resolution is reached. Generally
speaking, it is time consuming to compute edges mapping
in order to ensure that the robot will be collision free when
they move along the edges.

W-C nodes mapping, the W-C edges mapping is time
consuming and less important as presented in our previous
work [17], where instead of the W-C edges mapping, a Lazy-
edges evaluation approach enables the query phase fast and
reduces time cost of the preprocessing phase significantly.
However, since DRM has no bias when it comes to sampling
in the difficult regions initially, the rate of finding free path is
low in the case that there exists narrow passages in C-space.

C. Hierarchy Sampling Strategy

Dynamic Bridge Builder (DBB) is proposed to identify
difficult regions fast in changing environments [9]. With
the assistance of DBB, hierarchy sampling strategy (HSS)
is employed to increase the number of free configurations
inside difficult regions after they are located by DBB. The
basic principle of HSS is configurations near free ones will
more likely be free. When obstacles move, HSS will activate
free configurations in difficult regions, which are sampled in
preprocessing phase. However, since it does not make use
of any information about difficult regions, the pre-sampled
configurations cannot capture the connectivity of free C-
space in difficult regions well.

Fig. 1. Samples generated using DBB

Consider the C-space in Fig.1 for example, in DBB, red
points are sampled as the first-layer points. Middle points
of first-layer points will then be generated as the second-
layer points which are black in the figure. The third layer
points will be sampled in the preprocessing phase around
these second-layer points in a predefined radius, and they are

2134

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:20 from IEEE Xplore. Restrictions apply.

Fig. 2. Sample enhancement using predictive models

denoted cyan in the figure. One drawback of this hierarchy
strategy is, since all of these samples are generated off-line, it
will not be able to adapt to every situation, see Fig.2 to fix the
idea. With predictive models, sample points can be generated
online efficiently (the blue points in the figure), which may
guide the planner through the obstacles even if all of the
other edges are obstructed. Consequently, it is hard for the
planner to find a free path through difficult regions using off-
line sampling strategy though it could indicate where difficult
regions are instantly.

Predictive models lowered the cost of time of online sam-
pling in difficult areas. As we known, the Parzen-Window
Density Estimation has the ability to estimate the samples
probability density inside the window area. It inspires us to
apply similar technique in difficult regions. If the distribution
of configurations inside difficult regions is obtained, which
actually indicates the structure of difficult regions, it could be
used to predict new samples’ probability of validity. Further,
this approach will be fast enough to be used in changing
environments due to avoidance of invoking collision checker
explicitly.

III. K-NEAR DYNAMIC BRIDGE BUILDER
To find a free path in changing environments, the

planner should identify difficult regions instantly after
obstacles move in W-space. Dynamic Bridge Builder (DBB)
is proposed in [9], which could locate difficult regions
efficiently and effectively. It is resulted from the W-C nodes
mapping in the preprocessing phase, which could be used to
update the validity of each node in C-space phase instantly
without any collision checking in the query phase [9][17].
Then, DBB exploits this information to find flags in narrow
passages or near the boundaries of C-obstacle.

However, DBB just indicates where difficult regions is,
without providing any information about their structure.
In this paper, a K-near Dynamic Bridge Builder (K-near
DBB) is presented, which could not only locate difficult
regions, but also preserve the difficult regions’ structural
information.

In the preprocessing phase, the K-near DBB begins with
generating nodes by uniform random method in C-space
without any obstacles, denoted as set P . Then, an initial
roadmap is constructed by a straight-line local planner
using manhattan distance [18]. After that, middle points are
sampled for each edge of the initial roadmap, denoted as set
M . This roadmap is denoted by G = {Gn = (P,M), Ga}.

Once the roadmap G is built, W-C nodes mapping for nodes
q belong to Gn will be computed by the following steps:
(1) Decomposing W-space into basic cells. (2) Computing
Φ−1

n (q). The computation of Φ−1
n (q) has been described in

part B of Section II. In our experiments, the ”seed” cube
used for expansion is located in the base of the manipulator.

For each node m in M , K-near neighbors are computed,
and a K-near region centered at m is built, denoted as
K = {m1, ...,mk, L}. Here, {m1, ...,mk} represents K-near
neighbors of m. L is the longest distance between m and
{m1, ...mk}. Consider Fig.3 for example.

Fig. 3. K-near Dynamic Bridge Builder

In the query phase, when obstacles move to new positions
and change their orientations, difficult regions of C-space
will change accordingly. Validity of each node in Gn can
be obtained from the W-C nodes mapping immediately
according to [17]. Then, flags in difficult regions could be
identified. For each m ∈ M , if its two endpoints are both
invalid and it’s valid, it’s in narrow passages. If it’s valid,
and one of its endpoint is invalid, the other is valid, it’s
near the surface of C-obstacle. If node m is in the difficult
regions, the structure of difficult regions will be reflected
approximately by the validity of q ∈ {Gn = (P,M)} in
K-near regions K, which will be exploited by the Inner
Parzen-Window. Set M

′
is used to denote all the nodes in

the difficult region in this paper, and we call these nodes
activate. The details are shown in Algorithm-1.

Algorithm-1 K-near Dynamic Bridge Builder (K-near DBB)

Preprocessing phase:
1: Generate G = {Gn = (P,M), Ga}
2: For each q ∈ Gn, Compute W-C nodes mapping
3: For each m ∈ Gn, Compute K-near neighbors
{m1, ...,mk} and L is the longest distance between m and
{m1, ...,mk}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Query phase:
1: For each edge e belong to Ga, two end points are p1,p2,
its middle point is m
2: If p1 and p2 is invalid, while m is valid, then m is in the
narrow passage
3: If only one of p1 and p2 is invalid, while m
is valid, then m is on the surface of C-obstacle

2135

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:20 from IEEE Xplore. Restrictions apply.

IV. INNER PARZEN WINDOW
Another difficult issue of handling difficult regions prob-

lem in changing environments is how to increase the number
of free nodes inside them. Not only due to difficult regions
have small volumes, but also they will change their positions
and shapes in changing environments, which means it is
hard to capture their structures. Therefore, efficiency of
capturing the structure and generating free nodes inside
difficult regions is significantly crucial for the planner. Based
on K-near DBB algorithm, Inner Parzen Window is proposed
in this paper. With the help of K-near DBB, Inner Parzen
Window could evaluate the probability of configuration-free
samples using information inside the K-near bounding of m,
which is inspired by the concept of Active Learning and
can be computed efficiently using the preprocessed K-near
information.

In the query phase, for each node m in difficult re-
gions, this algorithm will randomly generate nodes w with
the number of n in a SampleArea centered at m, and
then computing each w’s probability of validity P (w) in a
InnerParzenWindow(IPWindow) centered at w. P (w)
is defined as (4),

P (w) =

window∑
Nvalid(P + M)

window∑
N(P + M)

(4)

Here, Nvalid(P +M) is the number of valid nodes belong
to set P and M located in the IPWindow area. N(P +M)
is the total number belong to set P and M located in the
IPWindow area. The radius of SampleArea (rsamplearea)
is 1

2L, and the radius of IPWindow (rwindow) is 2
3L. L is

provided by K-near DBB. Due to rsamplearea > rwindow,
IPWindow will at least enclose one sample point
m. w will not be really added to the roadmap unless
P (w) > Threshold. These nodes are denoted as set W . The
new roadmap is denoted as G

′
= {G′

n = (P,M,W), G
′

a}.
An illustration of Inner Parzen-Window is shown
in Fig.4 and the details are shown in Algorithm-2.

Algorithm-2 Inner Parzen Window

Required: K-near neighbors {m1, ...,mk}, L of each m ∈ M
and i = 0
Query phase:
1: For each node m in the difficult regions
2: While(i < n) do
3: Generate w in a SampleArea, rsamplearea is 1

2L
4: Define a IPWindow centered at w, rwindow is 2

3L.

5: Compute P (w) =
window∑

Nvalid(P+M)

window∑
N(P+M)

6: if P (w) > Threshold add w to the roadmap G
7: i = i + 1
8: End while
9: End For.

Fig. 4. Inner Parzen Window

Instead of invoking collision checker, Inner Parzen-
Window makes use of the distribution of nodes in a
IPWindow area to predict the new sample’s probability of
validity. Further, the candidate nodes of P and M , which
located in IPWindow area, only could be located inside the
K-near region provided by K-near DBB. Thus, Inner Parzen-
Window could be fast enough to capture the approximate
structure of difficult regions.

V. EXPERIMENTS

For evaluating the proposed method, a lot of simula-
tion experiments are implemented in 3D workspace with
two manipulators modeled by parameters of practical 6-
DOF Kawasaki manipulators (FS03N). The two manipulators
mounted on a fixed base make up of a dual-manipulators
system. Although it is a simple idea to plan two manipula-
tors respectively, inner collision avoidance and coordination
between two manipulators are more important. Therefore, 12
DOFs of the two manipulators are considered simultaneously
and 12 dimensional C-space is constructed. The reachable
workspace of two manipulators is decomposed into 406134
grids, and each grid is a cube with the size of 4x4x4.
Collision check in our system is implemented by a free 3D
Collision Detection Library, ColDet 1.1. All the experiments
are carried out on an AMD 4200+ CPU with 2GB memory.
The experimental scenario is shown in Fig.5.

Fig. 5. Simulation Environment

2136

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:20 from IEEE Xplore. Restrictions apply.

There are ten bars as obstacles in the scenario. Eight of
them are vertical while the other two of them are horizontal.
Since narrow passages in the workspace often indicate the
presence and the location of narrow passages in C-space [19],
the distances between obstacles are set close enough to en-
sure difficult regions in C-space. They will appear from time
to time and change frequently according to the movement of
bars. Motions of obstacles (bars) are as following. One bar
is chosen randomly each time to move to a certain direction
with a small step. Once the total distance is larger than a
threshold, the direction will be changed. And the planner is
supposed to find a collision free path between a random start
point and random goal point in it.

Since the bars move up and down randomly, difficult areas
are expected to appear from time to time in C-space. In
this way, the proposed algorithm can be evaluated in quite a
lot of situations, which are enough for the estimation of its
superiority.

A. Analysis of Preprocessing Phase

The cardinality of the set P , |P |, is crucial in realization. If
it it too large, computation of sample points in rwindow will
cost too much that time efficiency would not be ensured. If it
is too small, the resolution of the final roadmap may be not
large enough for generating a collision-free path. Although
K-near computation will also cost a considerable amount of
time, we will not take it into account since all of them are
done in the preprocessing phase and will consume little time
on the query phase.

TABLE I
COMPARISION OF DIFFERENT |P |

|P | |M ′ | |W | Average Time (second)
500 403 2015 0.16
1000 871 4355 0.72
1500 1255 6275 1.93
2000 1710 8550 3.50

The number of K in K-near region and the number of
online sampling points will also affect the computation as
|P |, and both of them are chosen to be 5 in our environments,
which should be different according to the environments, i.e.
dimensions, complexity, etc. Table I shows the number of
points that needs to be sampled online around them according
to |P |. |M ′ | is the cardinality of set M

′
which denotes all

the nodes in the difficult region.

B. The Cost of Predictive Sampling

There are three files generated after the preprocessing
phase, the position of sample points in set P and M , the
mapping of these samples between W-space and C-space and
the K of the samples in set M .

Once obstacles moved, set M
′

will be changed. Steps
needed to construct the roadmap are as follows.

(1) Recompute the activity of each node m in the set M .
(2) Generate the W for every active m, and connect them

with the samples in their Parzen Windows. Then, an A∗

algorithm is introduced to find the ”collision free” path,
which has the highest probability of ”collision free”. At last,
collision detection will be invoked to check if any collision
happens along the path, which is inspired by the idea of lazy
edge detection from Lazy-PRM. Almost all of the paths are
collision free except for a few ones that need a re-searching
phase, which takes the same place as an enhancement phase
in DRM or Lazy-PRM, see Table II.

Table I gives the total number of |W | with different
|P | and their average generating time. As the initial points
increases, samples needs to be generated online will increase
accordingly. This ability of computation limited our resolu-
tion. The cost of computation depends on both complexity of
the scenario and the robot itself. 1000 initial sample points
cost 0.72s in such a complex scenario with the dual Kawasaki
manipulators. To avoid the problems referred in the previous
section, 1000 is finally chosen. Check Table II for final
results. Table III shows the results of DRM, DBB with the
same environment.

TABLE II
RESULTS USING 1000 INITIAL POINTS

ExperimentsID Regions SR RR LRT
1 narrow 61.40% 0.20% 2
2 narrow 58.80% 0.40% 3
3 difficult 94.40% 2.00% 7
4 difficult 92.20% 2.20% 12
5 difficult 90.60% 1.60% 6
6 difficult 92.40% 3.40% 7

TABLE III
RESULTS OF DRM AND DBB

ExperimentsID DRM DBB
1 79.00% 85.40%
2 74.80% 82.00%
3 66.60% 87.20%
4 70.80% 84.80%
5 69.80% 83.60%

SR
′

72.20% 84.60%

Six group of experiments are carried out with each one 500
different planning. Each 500 planning are carried out with
the same output files of the preprocessing phase respectively,
and the initial and goal points are chosen randomly. Fig.6
shows one of the randomized goal configurations.

The first two groups of the experiments are carried out
with only m in narrow areas activated, while the other four
groups takes all the m in difficult areas into consideration.
Columns SR, RR and LRT represent Average Successful
Rate, Average Re-searching Rate and Largest Re-searching
Times, respectively. For DRM and DBB, there are also
5 experiments carried out respectively with each one 500
different planning. SR

′
in Table III denotes the Average

Successful Rate of the five SRs, which are the Average
Successful rate of 500 different planning respectively.

As is shown in Table III, because of the resolution of
the premapped samples and edges, DRM is not suitable for
complex scenario in which obstacles occupied so much W-

2137

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:20 from IEEE Xplore. Restrictions apply.

Fig. 6. A randomized goal configuration

space, especially for our case, in which various situations
may be encountered. This leads to a frequent change and
appearance of difficult areas in C-space. DBB outperforms
DRM in such situation because of hierarchy, obstacle-
oriented activation of sample points. Whereas, DBB usually
needs more samples to achieve the same performance as
DRM in simple scenarios, e.g. a scenario where only one or
two obstacles exists. This made DBB less effective than the
algorithm based on predictive models proposed in this paper.
Online sampling adopted in the newly proposed algorithm
not only make sample points obstacle-oriented, but also can
find a valid path with the guidance of online sample points
in simple scenarios. See different sample regions (”narrow”
and ”difficult”) in Fig.2 to fix the idea. The experimental
results indicate that our predictive algorithm outperforms the
previous ones greatly.

VI. CONCLUSIONS

A novel predictive model is presented and implemented
in this paper, which is designed especially for path planning
in changing environments with difficult regions. This model
is motivated by the idea of machine learning and predict
the state of each newly sampled points instead of invoking
collision checker online. There are two steps in the predictive
model. One is K-near DBB, which could not only identify
difficult regions, but also preserve local information of dif-
ficult regions. The other is Inner Parzen Window, which is
inspired by active learning to sample points inside difficult
regions while avoiding instant collision detection.

In the implementation of our method, both time efficiency
and its superiority are observed. Performance of our method
is compared with traditional algorithm applied in changing
environments (DRM) and its variation (DBB). Experimental
results with a complex environment shows an outstanding
performance compared with previous works in such situation.

VII. ACKNOWLEDGMENTS

This paper is funded by the National High Technology
Research and Development Program of China (863 Program,
No.2006AA04Z247) and the National Natural Science Foun-
dation of China (NSFC 60675025).

REFERENCES

[1] J. C. Latombe, Robot motion planning, ISBN 0-7923-9206-X, Kluwer,
Academic Publishers, 1991.

[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.
Kavraki, Principles of robot motion: theory, algorithms, and imple-
mentation, ISBN 0-262-03327-5, The MIT Press, 2005.

[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations,ISBN 978-0262033275, The MIT
Press, 2005.

[4] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,
Probabilistic roadmaps for fast path planning in high-dimensional
configuration spaces, IEEE Transactions on Robotics and Automation,
pp. 566-580, 1996.

[5] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
OBPRM: an obstaclebased PRM for 3D workspaces, Proc. of the third
International Workshop on the Algorithmic Foundations of Robotics,
pp. 155-168, 1998.

[6] D. Hsu, T. Jiang, R. John, and Z. Sun, The bridge test for sampling
narrow passages with probabilistic roadmap planners, IEEE Interna-
tional Conference on Robotics and Automation, pp. 4420-4426, 2003.

[7] V. Boor, M. H. Overmars, and A. F. Van Der Stappen, The Gaussian
sampling strategy for probabilistic roadmap planners, IEEE Interna-
tional Conference on Robotics and Automation, pp. 1018-1023, 1999.

[8] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, MAPRM: a proba-
bilistic roadmap planner with sampling on the medial axis o the free
space, IEEE International Conference on Robotics and Automation,
pp. 1024-1031, 1999.

[9] D. Ding, H. Liu, X. Deng, and H. Zha, A dynamic bridge builder to
identify difficult regions for path planning in changing environments,
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2925-2931.

[10] B. Burns, O. Brock, Sampling-based Motion Planning Using Predic-
tive Models, IEEE International Conference on Robotics and Automa-
tion, pp. 3120-3125, 2005.

[11] B. Burns, O. Brock, Toward Optimal Configuration Space Sampling,
Robotics: Science and Systems, pages 105-112, MIT Press, Cam-
bridge, USA, 2005.

[12] P. Leven, and S. Hutchinson, Toward real-time path planning in
changing environments, Proc. of the fourth International Workshop
on the Algorithmic Foundations of Robotics (WAFR), pp. 363-376,
2000.

[13] M.Kalmann, and M.Mataric, Motion planning using dynamic
roadmaps, IEEE Transactions on Robotics and Automation, pp. 4399-
4404, 2004.

[14] P. Leven, and S. Hutchinson, A frame work for real-time path planning
in changing environments, The International Journal of Robotics
Research, Vol. 21, pp. 999-1030, 2002.

[15] R. Bohlin and L. E. Kavraki, Path planning using Lazy PRM, IEEE
International Conference on Robotics and Automation, pp. 521-528,
2000.

[16] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Second
Edition, ISBN 0-471-05669-3, John Wiley & Sons, Inc, 2001.

[17] H. Liu, X. Deng, H. Zha, and D. Ding, A path planner in changing
environments by using W-C Nodes Mapping coupled with Lazy Edges
Evaluation, IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4078-4083, 2006.

[18] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, Choosing
Good Distance Metrics and Local Planners for Probabilistic Roadmap
Methods, IEEE Transactions on Robotics and Automation, 16(4):442-
447, 2000.

[19] J. P. van den Berg, and M. H. Overmars, Using work space information
as a guide to non-uniform sampling in probabilistic roadmap planners,
IEEE International Conference on Robotics and Automation, pp. 453-
460, 2004.

2138

Authorized licensed use limited to: Peking University. Downloaded on January 25, 2010 at 10:20 from IEEE Xplore. Restrictions apply.

