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Abstract: Hand-biometric-based personal identification is considered to be an effective method for automatic
recognition. However, existing systems require strict constraints during data acquisition, such as costly devices,
specified postures, simple background, and stable illumination. In this paper, a contactless personal identification
system is proposed based on matching hand geometry features and color features. An inexpensive Kinect sensor
is used to acquire depth and color images of the hand. During image acquisition, no pegs or surfaces are used to
constrain hand position or posture. We segment the hand from the background through depth images through a
process which is insensitive to illumination and background. Then finger orientations and landmark points, like
finger tips or finger valleys, are obtained by geodesic hand contour analysis. Geometric features are extracted from
depth images and palmprint features from intensity images. In previous systems, hand features like finger length and
width are normalized, which results in the loss of the original geometric features. In our system, we transform 2D
image points into real world coordinates, so that the geometric features remain invariant to distance and perspective
effects. Extensive experiments demonstrate that the proposed hand-biometric-based personal identification system
is effective and robust in various practical situations.
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1 Introduction

With rapid development in information technol-
ogy, biometrics have emerged to provide a greater
degree of security for personal identification sys-
tems. Among the various biometric systems, hand-
biometric-based systems have received increasing in-
terest because of their user acceptability for biomet-
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ric traits (Kanhangad et al., 2010; Ramalho et al.,
2011; Michael et al., 2012).

Shape features extracted from the hand carried
only limited information for discrimination. Over
the years, various approaches have been proposed
to address this problem. Some systems have been
developed to eliminate the use of pegs and avoid
the need for the user to make contact with a flat
surface. These hand-biometric-based identification
systems can be grouped into three categories based
on the method of image acquisition, as described by
Kanhangad et al. (2011a):

1. Constrained and contact based: This kind of
system employs pegs and a flat surface to constrain
the position of the user’s hand. Many commercial
systems and early research systems fall in this cat-
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egory (Sanchez-Reillo et al., 2000; Sanchez-Reillo,
2000). Sanchez-Reillo et al. (2000) and Sanchez-
Reillo (2000) used six pegs for hand geometry imple-
mentation. They measured 25 geometric sizes of a
hand, obtaining an equal error rate (EER) of 4.9%.
Although pegs provide consistent measuring posi-
tions, they also cause user inconvenience and raise
public-health concerns.

2. Unconstrained and contact based: This kind
of system also requires the user to put his/her hand
on a flat surface (Woodard and Flynn, 2005; Methani
and Namboodiri, 2009) or a digital scanner (Ribaric
and Fratric, 2005; Xiong et al., 2005). These systems
do not constrain position or posture, which is more
user friendly. Woodard and Flynn (2005) extracted
3D finger surface features from 3D range images of
hands placed on a flat surface. Ribaric and Fratric
(2005) scanned images of the hand using a low-cost
scanner. However, contact based image acquisition
still brings hygiene and public-health concerns.

3. Unconstrained and contact-free: This kind of
system requires no peg or flat surface during hand
image acquisition. It is believed to be more user-
friendly and has therefore attracted much attention
recently (Zhang et al., 2003; Kanhangad et al., 2010;
2011a; Dai et al., 2012; Morales et al., 2012). A typ-
ical peg-free hand geometry technique uses optical
devices to capture the image of a hand. An expen-
sive 3D digitizer is used to capture 3D hand images
(Kanhangad et al., 2010; 2011a; 2011b). Although
the systems are unconstrained and contact-free, the
expensive device makes these systems inapplicable in
real environments. Moreover, clear and simple back-
grounds are required for hand segmentation. Skin-
like and bad illumination conditions pose difficulties
for these systems. In this study, we focus on eliminat-
ing these illumination and background constraints
by means of an inexpensive Kinect sensor (Microsoft
Corporation, Kinect for Xbox 360).

Another problem to be addressed is the segmen-
tation of hands. Many existing systems cannot seg-
ment a hand from the background accurately. Kan-
hangad et al. (2011b) used an expensive 3D scanning
digitizer to acquire color and depth images of hands,
but this method also requires a clean and simple
background. Morales et al. (2008) modified a web-
cam to receive infrared emissions. Maximizing con-
trast and brightness with a low value achieves a very
high contrast between the hand and the background,

so the hand can be separated easily. In our system,
an inexpensive Kinect sensor is used to acquire color
and depths image of a hand. Hand segmentation is
implemented based on the depth image of a hand,
which is insensitive to changes in illumination and
background distractions. So, unlike many other sys-
tems, our system can still work in poor illumination
environments with cluttered backgrounds.

The main contribution of our work lies in two
aspects. First, a novel geodesic contour analysis
method is proposed to localize landmark points of
the hand and extract its geometric features. Be-
sides explicit features like finger length widely used
in previous systems, implicit geometric features can
also be obtained by analyzing a curvature matrix
which contains details of all hand contour features.
Second, 3D hand registration is conducted to ensure
that features extracted from hand regions are kept
rotation, pose, and depth invariant. This greatly re-
duces the intra-class difference when describing the
same hand with different poses and distances. Exten-
sive experiments were conducted which validate the
effectiveness and robustness of the proposed frame-
work for describing hand biometric features and its
practicality for personal identification.

2 System description

2.1 Data acquisition

An illustration of the proposed hand-biometric-
based identification system framework given in
Fig. 1. The first step in our system is to acquire
data from the hand. A Kinect sensor is used to cap-
ture color and depth images of the hand. During
image acquisition, the user is requested to position
his/her palm in front of the Kinect sensor. Fingers
are slightly and casually stretched apart. There are
no guide pegs or flat surfaces to constrain the user’s
hand. The user can put his/her hand naturally above
the sensor in various postures. The optimal interac-
tion region in our system is set as 60–100 cm from
the Kinect sensor. The background and illumination
conditions in our system are not strictly constrained.

2.2 Hand segmentation

The second step in our system is to segment the
hand for subsequent feature extraction.

In our system, given depth data captured from
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Fig. 1 A summary illustration of the proposed biometric-feature-based human hand identification system

the Kinect sensor, the hand region will be segmented
and its contour will be extracted for the following
analysis.

In this framework, a weighted-depth-histogram-
based first-peak hand segmentation method is
adopted to segment the hand in front of the depth
sensor. Suppose the depth histogram of the depth
map is Hd = (h1

d, h
2
d, · · · , hNd

d ). The weighted depth
histogram Hw can be given as

Hw = (h1
w, h

2
w, · · · , hNd

w ), hk
w =

ωd

k
hk
d, (1)

where ωd is a weight controlling parameter and
hk
w (k = 1, 2, · · · , Nd) indicates the histogram value

in the kth bin. Based on the weighted histogram,
the first peak is extracted, which is regarded as
the hand region. A brief illustration is given in
Fig. 2. Fig. 2b is the original depth histogram and
Fig. 2c the weighted histogram. The histogram value
around the hand region becomes larger after weight-
ing, so the first peak is obvious and the hand region
can be separated more accurately and robustly from
noise.

After the hand is segmented on the 2D depth
image, its contour is extracted based on Canny edge
extraction, denoted as Ĉh = {p̂1, p̂2, · · · , p̂N}, where
p̂k (k = 1, 2, · · · , N) is the kth contour point of the
hand with 2D coordinates (uk, vk) on the depth im-
age. In this framework, a depth-invariant transfor-
mation (DIT) is adopted to transform 2D points on
the image plane into 3D camera coordinates, formu-
lated as

xc = d · u− u0

fu
, yc = d · v − v0

fv
, zc = d, (2)

where u0, v0, fu, fv are intrinsic parameters of the
sensor and d is the depth value of pixel (u, v) on the
depth map. DIT transforms a point (u, v) in the
depth map with depth value d to a point (xc, yc, zc)

in the 3D camera coordinates. Fig. 2d shows the
segmented hand from Fig. 2a transformed to camera
coordinates.

DIT is simple but important for subsequent geo-
metric feature extraction in our framework. It trans-
forms the hand contour to the same scale as the real
world length metric, which keeps all geometric fea-
tures of the hand real and makes them invariant to
depth changes or perspective effects.

2.3 Geodesic contour analysis

Based on the hand segmentation described
above, geodesic contour analysis is conducted to ex-
tract geometric features of the hand, which is based
on our previous work in Wang et al. (2013). Let
Rh denote the segmented hand region and Ch its 3D
contour. Suppose there are N points on Ch. Let
pi denote a contour point. The contour Ch can be
represented by Ch = {p1,p2, · · · ,pN}.

Given any point pi on the hand region contour
Ch, a geodesic curve Γ

sj
i around pi at step sj is de-

fined as a point set:

Γ
sj
i = χ(pi, sj) = {pk|i− sj ≤ k ≤ i+ sj}, (3)

where step sj determines the length span of local
geodesic curve Γ

sj
i .

For each contour point pi, its geodesic curve set
Si is defined, which consists of local geodesic curves
in M steps, formulated as

Si = {Γ sj
i = χ(pi, sj)|1 ≤ j ≤ M}. (4)

Given any local geodesic curve Γ
sj
i on the hand

contour, we calculate its curvature for biometric fea-
ture representation. Let κsj

i denote the curvature of
curve Γ

sj
i , formulated as

κ
sj
i = δ · l

sj
pi

|pi−sj ,pi+sj |
, (5)
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Fig. 2 An illustration of the weighted-depth-
histogram based first-peak hand segmentation
method: (a) original depth map; (b) its depth his-
togram; (c) weighted depth histogram; (d) 3D hand
contour transformed to the camera coordinates

where |pi,pj| is defined as the Euclidean distance
between any two points pi and pj , and l

sj
i denotes

the geodesic length of curve Γ
sj
i :

lsjpi
=

i+sj−1∑

k=i−sj

|pk,pk+1|. (6)

To avoid repeated calculation of the Euclidean dis-
tance between two points in Eqs. (5) and (6), a Eu-
clidean distance look-up table is adopted in our im-
plementation, which ensures that all Euclidean dis-
tances between each two points used in curvature
calculation are calculated only once.

In Eq. (5) δ is defined to indicate whether local
curve Γ

sj
i is concave or convex:

δ =

{
1, [pi−sj ,pi+sj ] ∈ Rh,

−1, otherwise,
(7)

where [pi,pj] indicates a line segment between points
pi and pj . The term [pi,pj ] ∈ Rh indicates that the
line segment [pi,pj ] is inside the hand region Rh. In
our framework, for simplicity, the middle point p

iSj
m

is used to judge whether the line segment between
points pi and pj is in the hand region. Thus, Eq. (7)
can be reformulated as

δ =

{
1, p

iSj
m ∈ Rh,

−1, otherwise.
(8)

Based on Eqs. (3) and (5), given any point pi on the
hand contour Ch, at a certain step si, the correspond-
ing geodesic curve is denoted as Γ

sj
i with curvature

value κ
sj
i . For its geodesic curve set Si in Eq. (4),

let Ki denote its corresponding curvature set as Si,
formulated as

Ki = {κsj
i |1 ≤ sj ≤ M}. (9)

For N contour points {p1,p2, · · · ,pN}, their curva-
ture set {K1,K2, · · · ,KN} constitutes a 2D curva-
ture matrix with M rows and N columns, denoted
as Mc. The element on the jth row and ith col-
umn of Mc is actually the curvature κ

sj
i of the local

geodesic curve of the ith contour point pi, denoted
as Mji

c . A curvature map with pseudo color is given
in Fig. 3. The values vary due to different curvatures
of contour points at different curvature steps.

Then, the 2D curvature matrix Mc is analyzed
to find contour points on finger tips and finger val-
leys. A curvature histogram H is constructed to give
statistics of curvatures on various steps for every con-
tour point:

H = {h1, h2, · · · , hN},

hi =

N∑

j=1

Mij
c =

N∑

j=1

κ
sj
i , (10)
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where hi is the mean value of the curvatures of con-
tour point pi at various steps. A curvature histogram
is shown in Fig. 3b.

Given the curvature histogram H , a 1D Gaus-
sian kernel is first adopted to smooth it, and then
the candidate points on finger tips and valleys are
selected according to the following criteria:

P̂tip = {pi|hi > hi−1 and hi+1 > hi},
P̂val = {pi|hi < hi−1 and hi+1 < hi}. (11)

Based on point sets Ptip and Pval, five points
with the largest histogram values are selected as the
final finger tip points (Ptip), and four points with
the smallest histogram values are selected as fin-
ger valley points (Pval) (Fig. 3). The five finger tip
points and four finger valley points can be ordered
by their indexes on the contour. The finger length
Lf = {l(1)f , l

(2)
f , · · · , l(5)f } can be obtained by calcu-

lating the geodesic distance from finger tips to finger
valleys:

Ptip = {p(1)
tip ,p

(2)
tip ,p

(3)
tip ,p

(4)
tip ,p

(5)
tip},

Pval = {p(1)
val,p

(2)
val,p

(3)
val,p

(4)
val},

l
(1)
f = |p(1)

tip − p
(1)
val|, l(5)f = |p(5)

tip − p
(4)
val|,

l
(k)
f = min{|p(k)

tip − p
(k−1)
val |, |p(k)

tip − p
(k)
val |}, k = 2, 3, 4.

(12)

The order {p(1)
tip ,p

(2)
tip ,p

(3)
tip ,p

(4)
tip ,p

(5)
tip} is little finger,

ring finger, middle finger, forefinger, and thumb.
Based on this order, the curvature matrixMh of

the hand contour can be re-formulated with the last
column corresponding to the thumb’s tip point p(5)

tip .
After the five finger tips are determined (Fig. 3d),
the curvature matrix in Fig. 3a is re-formulated us-
ing p

(5)
tip as reference. Thus, all hand contours can

be represented by this geodesic curve curvature ma-
trix Mh, which contains details of the hand’s bio-
metric contour features. Geometric features are ex-
tracted by analyzing the hand’s curvature matrix in
our framework, which will be described in detail in
Section 2.5.1.

2.4 Three-dimensional hand registration

2.4.1 Hand rotation invariance

To achieve hand rotation invariance which is a
prerequisite for the subsequent hand feature extrac-
tion, the orientation of the hand must be calculated

Fig. 3 (a) Original curvature matrix; (b) Curvature
histogram with five peak points and four valley points
marked by circles; (c) Illustration of the tip and valley
points found along the length of the finger; (d) Re-
formulated curvature matrix
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first. Given any point pi on boundary Ch, and sup-
posing p

sj
m is the middle point between points pi−sj

and pi+sj , the orientation of point pi is calculated
by averaging local orientations of a contour point at
various steps:

oi =
1

M

M∑

j=1

pi − p
sj
m

|pi − p
sj
m | . (13)

In our framework, the orientation of point p
(3)
tip

on the middle finger tip is defined as the principal
orientation of the hand, denoted as oh (Fig. 4a).

In this hand rotation invariant module, we con-
sider only 2D in-plane rotation. Suppose the 2D
orientation of the hand can be formulated as oh =

(ox, oy). The rotation matrix can be given as

Rθ =

⎛

⎝
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎞

⎠ , θ = arctan(
ox
oy

). (14)

The rotation matrix Rθ is then used to correct
the rotation of the hand on the intensity images.
Suppose the original intensity data in the 2D image
plane can be represented as

I2D =

⎡

⎣
x1 x2 · · · xn

y1 y2 · · · yn
i1 i2 · · · in

⎤

⎦ , (15)

where ik (k = 1, 2, · · · , n) indicates the intensity
value of pixel (uk, vk) of intensity image I2D, and
(xk, yk) the corresponding coordinates in the cam-
era coordinates after DIT (Eq. (2)). The rotation
invariant hand data can be given by

Î2D = RθI2D. (16)

2.4.2 Hand pose invariance

To achieve an invariant description of a hand
from all view points, besides 2D in-plane rotation
invariance, 3D out-of-plane rotation caused by dif-
ferent hand poses must be corrected. In our frame-
work, hand pose invariance is achieved by rotating
3D hand points according to the normal vector of the
palm plane. Four valley points {p(1)

val,p
(2)
val,p

(3)
val,p

(4)
val}

are used for palm plane fitting (Fig. 4). The fit-
ting results and normal vector of the palm plane are
shown (Fig. 4c).

Let n = (nx, ny, nz) denote the normal vector
of the palm plane. The 3D rotation matrix can be

z

Fig. 4 (a) Hand 2D orientation; (b) Hand 3D orien-
tation and the normal vector of the palm plane; (c)
Plane fitting for the palm; (d) The final results of the
segmented hand with finger tips (red circles), finger
valleys (green circles), finger orientations (yellow ar-
rows) and the palm’s 3D orientation (purple arrow).
References to color refer to the online version of this
figure

formulated as

Rn =

⎛

⎜⎜⎝

cos θy 0 sin θ 0

sin θx sin θy cos θx − sin θx cos θy 0

− cos θx sin θy sin θx cos θx cos θy 0

0 0 0 1

⎞

⎟⎟⎠ ,

(17)
where

θx = − arctan

(
ny

nz

)
, θy = arctan

(
nx

nz

)
. (18)

Suppose the 3D hand points with intensity
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values can be represented as

I3D =

⎡

⎢⎢⎣

x1 x2 · · · xn

y1 y2 · · · yn
z1 z2 · · · zn
i1 i2 · · · in

⎤

⎥⎥⎦ , (19)

where (xk, yk, zk) (k = 1, 2, · · · , n) are the 3D co-
ordinates of any point in hand regions and ik its
corresponding intensity value. Then, hand pose in-
variance can be achieved by the following 3D rotation
transformation:

Î3D = RnI3D. (20)

Thus, through 2D in-plane rotation and 3D out-
of-plane rotation, hands with various poses are regis-
tered to the same view. The hand registration results
of our framework will be evaluated in Section 3.2.
The next step is to extract hand biometric features
from the registered hand.

2.5 Biometric feature extraction

2.5.1 Geometric features

Geometric features can be applied in recognition
as described by Malassiotis et al. (2006) and Kumar
and Zhang (2007). As mentioned in Section 2.3,
a hand contour can be represented by the geodesic
curve curvature matrix Mh, which contains details
of the hand’s geometric contour features. In this
framework, we extract the main geometric features of
the hand by conducting singular value decomposition
(SVD), formulated as follows:

Mh = U

(
Δ 0

0 0

)
V H, (21)

where U and V H are unitary matrices and Δ is a
diagonal matrix with singular values of Mh, denoted
as

Δ = diag{δ1, δ2, · · · , δr}, δi =
√
λi, i = 1, 2, · · · , r.

(22)
Here r is the rank of Mh and λi is one of its singular
values.

Based on the SVD of Mh, an implicit geomet-
ric feature vector vg is formulated as a normalized
vector:

vg =
(
δ̂1, δ̂2, · · · , δ̂r

)
, δ̂i =

δi∑r
k=1 δk

. (23)

Besides the implicit geometric feature vector vg,
an explicit geometric feature vector vf considering
finger length is used in our framework:

vf =
(
l̂
(1)
f , l̂

(2)
f , · · · , l̂(n)f

)
, l̂

(i)
f =

l
(i)
f∑r

k=1 l
(k)
f

, (24)

where l
(k)
f is the finger length as given in Eq. (12).

The final geometric feature of a hand can be de-
scribed as a concatenated vector obtained by weight-
ing two normalized feature vectors vg and vf , formu-
lated as

vgf = ωgvg + ωfvf , ωg+ωf=1. (25)

2.5.2 Intensity features

To increase the robustness of our system, sim-
ilar to many previous studies (Choras and Choras,
2006; Kanhangad et al., 2011b; Michael et al., 2012),
we combine hand geometry features with palmprint
features for hand biometric feature description.

In this framework, geometric features are ex-
tracted through geodesic contour analysis using
depth data. Through the hand registration module,
depth data and intensity data in the hand region are
registered with rotation and pose invariance. The
next step is to extract palmprint features from inten-
sity data after hand registration, which ensures the
palmprint features remain invariant to various hand
poses and orientations. There is another problem
worthy of consideration, which is the scale problem:
due to perspective effects, the projection scale of an
object on the 2D image plane changes when its depth
changes. To eliminate the scale problem, the hand
region is often normalized to the same scale. How-
ever, this leads unavoidably to a loss of biometric
features in the hand description, as different hands
inherently have different sizes.

In our framework, to handle the scale problem
for better hand feature extraction, rather than sim-
ply normalizing all hands to the same scale, we con-
vert hand regions on the image plane to depth in-
variant image coordinates which have the same scale
as the real world coordinates. For any point (ui, vi)

on the intensity image plane, the transformation is
conducted by

ui
DI = α′

(
Woff + di(ui − u0)

1

fu

)
,

viDI = α′
(
Hoff + di(vi − v0)

1

fv

)
, (26)
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where (u0, v0, fu, fv) are the camera’s intrinsic pa-
rameters and α′ is the scale factor. Here, Woff and
Hoff are set to make sure the minimum values of
ui
DI and viDI are 1. di is the corresponding depth of

(ui, vi). This is similar to the DIT in Eq. (2) which
transforms the point (ui, vi) on the image plane to
the 3D camera coordinates. Actually, this transfor-
mation can be regarded as projecting the 3D points
with intensity data of the hand region onto a 2D im-
age plane, without any perspective effects. That is
to say, the size of hand projection on the transformed
image plane depends only on its real size in the real
world, which is depth-invariant.

Based on this useful attribute, palmprint fea-
tures are extracted following the method proposed by
Kong and Zhang (2004). This method uses a compet-
itive coding scheme for palmprint verification. The
competitive coding scheme uses multiple 2D Gabor
filters to extract orientation information from palm
lines. This information is then stored in a feature
vector called the ‘competitive code’. The angular
matching with an effective implementation is then
defined for comparing the proposed codes in nearly
real time.

In our framework, feature vectors for hands of
the same person can be simply trained and tested
using the K-nearest-neighbors (KNN) method, for
both geometric and palmprint features. As this mod-
ule is not the main contribution of our work, details
will not be described, but the results of experiments
using geometric and palmprint features will be given
in the experiments section.

3 Experiments and discussion

To demonstrate the effectiveness of our pro-
posed method, extensive experiments were con-
ducted on a PC connected to a Kinect sensor. The
algorithm was processed on a Pentium i3-2100 3.10
GHz CPU with 2 GB RAM.

As discussed in Section 2.1, since there is no
publicly available 3D hand database where hand
images are obtained in a contactless and posture-
unconstrained manner, we have developed our
database using an inexpensive Kinect sensor. Par-
ticipants in the data collection process conducted in
our experiments included 30 students in our labo-
ratory who volunteered to have their hand biomet-
ric features analyzed by our system. Left and right

hand images were acquired from these 30 students.
To test our approach under different pose variations,
students were instructed to present their left hands
in various poses.

For all experiments, parameters were set as fol-
lows: in Eq. (1) ωd = 1000, in Eq. (9) M = N/16,
in Eq. (25) ωg = ωf = 0.5, in Eq. (26) α′ = 0.05,
and in Eq. (27) (Section 3.3), N1 = 30. Size of the
depth image was 640×480, and of the color image
was 1280×960.

3.1 Orientation and landmark point detection

The first group of experiments evaluated the
performances of finger orientation and landmark
point detection. As discussed in Section 2.3, geodesic
contour analysis is conducted before extracting hand
geometry features. Landmark points and finger ori-
entations were obtained through geodesic contour
analysis for hand registration. No strict illumina-
tion or background conditions are required in our
personal identification system (Fig. 5). The com-
plex and challenging conditions in our testing se-
quences included unstable illumination, cluttered
background, and various 2D rotation and out-of-
plane poses.

Finger orientations and landmark points were
detected in depth images and then plotted on the
color images in Fig. 5. Finger orientations and land-
mark points were well detected even in poorly illumi-
nated and cluttered backgrounds with hands rotated.
As in the last sequence in Fig. 5, the user’s finger
orientations and landmark points were detected out-
doors with poor illumination. This is a tough prob-
lem for many state-of-the-art systems lacking depth
information. With finger orientations and landmark
points accurately obtained, hand registration and ge-
ometric feature extraction can be well conducted.

3.2 Performance of hand registration

The second group of experiments evaluated the
performance of hand registration with 2D rotation
and various poses. To make the hand geometry ex-
traction more accurate, hand registration was con-
ducted before feature extraction. For various hand
rotations in a plane, we rotated the hand back to a
position with the hand pointing upwards. An exam-
ple of hand registration is illustrated in Fig. 6.
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Fig. 5 Finger orientation and landmark point detection in six real and challenging environments. Orientations
of fingers are plotted with a yellow arrow. Landmark points like finger tips and finger valleys are plotted as
red and yellow circles, respectively. References to color refer to the online version of this figure
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3.3 Hand geometry features

The third group of experiments evaluated the
performance of hand geometry feature extraction.
The geometric features extracted in our system are
the length of the fingers and the SVD of the hand
curvature matrix. To evaluate the accuracy of finger
length calculation, we define an accuracy rate R as

R =
1

N1

N1∑

i=1

(
1− |lri − lci |

lri

)
, (27)

where N1 is the number of users in our experiments,
lci is the calculated length of a finger of the ith user,
and lri is the real length of the finger.

To evaluate the effectiveness of the proposed ap-
proach, verification experiments were performed on
the acquired database. In the first set of experi-
ments, we evaluated the improvement of hand pose
registration. Hand geometry features and palmprint
features were evaluated before and after registration.

Table 1 gives the accuracy rates of four fingers of

Fig. 6 Hand registration based on finger orientation. Twelve real registration examples are given; hands are
rotated to face the camera and point upwards. The subfigures on the left are the original color images and
those on the right are the color images being rotated with the hand pointing upwards. To show clearly the
performance of 2D rotation registration, we rotated the whole color image to illustrate the hand registration
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the left hand, including the little finger, ring finger,
middle finger, and forefinger. To evaluate the depth
invariant performance of our system, we determined
to test the accuracy rates with different distances be-
tween the hand and the Kinect sensor. The distance
did not affect the performance of the finger length
calculation (Table 1). The reason is that we have
projected the coordinates of points on the hand to
the real world, so the length calculation uses real-
world coordinates instead of camera coordinates.

Table 1 Accuracy rates R of hand finger length cal-
culations at various distances between the hand and
the camera

Distance Accuracy rate (%)

(cm) Little finger Ring finger Middle finger Forefinger

60 95.1 94.5 92.7 96.2
70 96.2 95.4 94.6 93.8
80 94.7 93.6 92.9 97.1
90 95.5 94.7 94.4 93.6

100 93.2 95.2 95.8 95.7

To test the discrimination ability of geometric
features, the identification rates for six challenging
sequences are given in Table 2. The identification
rate is an average identification rate in a sequence,
calculated as p = nc/n, where nc is the number of
correct identifications and n is the number of tests.
From Table 2, we find that fusion of features can
increase robustness, as concluded by Michael et al.
(2012).

Table 2 The identification rates based on different
geometric features for six challenging sequences

Sequence
Identification rate (%)

Finger length Hand curvature Fused

1 81.2 80.4 81.5
2 79.4 82.7 82.4
3 81.1 82.7 83.8
4 84.5 83.8 84.2
5 83.5 84.6 84.7
6 82.3 81.4 82.9

3.4 Performance of the identification system

The fourth group of experiments evaluated the
performance of our hand-biometric-based identifica-
tion system. The correct identification rates p for
our hand geometry and color features based identi-
fication system are given in Fig. 7. All experiments

1 2 3 4 5 6
index

Fig. 7 Performance of the hand-biometric-based per-
sonal identification system. Geometric features, RGB
features, and fused features were applied to identify
people in six sequences

followed a leave-one-out strategy. We performed a
full matching test on all the hand images, and each
experiment was conducted five times.

We evaluated the performance of geometric fea-
tures based, color features based, and fused features
based identification systems. A system based on the
fusion of features is more robust than systems based
on geometric or color features (Fig. 7). Geometric
features give better results than color features, as ge-
ometric features are not sensitive to illumination or
background conditions.

4 Conclusions and future work

In this paper, a contactless personal identifica-
tion system is proposed based on matching hand ge-
ometry features and color features. An inexpensive
Kinect sensor is used to acquire depth and color im-
ages of hands. Previous hand-biometric-based per-
sonal identification systems were severely limited by
factors such as distance, background, illumination,
and viewpoint. In our method, these limitations
can be overcome. Extensive experiments have shown
that hands can be registered and normalized based
on finger and palm orientations. Real hand geom-
etry data can be obtained, unaffected by the dis-
tance or viewpoint of the camera. Hand geome-
try features and color features used in our system
show good discrimination ability. In future work, we
will focus on developing a more natural and robust
hand-biometric-based personal identification system
for real environments. More robust features will be
extracted to discriminate hands better.
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