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a b s t r a c t 

Image-to-video person re-identification (I2V ReID), which aims to retrieve human targets between image- 

based queries and video-based galleries, has recently become a new research focus. However, the appear- 

ance misalignment and modality misalignment in both images and videos caused by pose variations, 

camera views, misdetections, and different data types, make I2V ReID still challenging. To this end, we 

propose a deep I2V ReID pipeline based on three-dimensional semantic appearance alignment (3D-SAA) 

and cross-modal interactive learning (CMIL) to address the aforementioned two challenges. Specifically, in 

the 3D-SAA module, the aligned local appearance images extracted by dense 3D human appearance es- 

timation are in conjunction with global image and video embedding streams to learn more fine-grained 

identity features. The aligned local appearance images are further semantically aggregated by the pro- 

posed multi-branch aggregation network to weaken the negligible body parts. Moreover, to overcome the 

influence of modality misalignment, a CMIL module enables the communication between global image 

and video streams by interactively propagating the temporal information in videos to the channels of 

image feature maps. Extensive experiments on challenging MARS, DukeMTMC-VideoReID and iLIDS-VID 

datasets, show the superiority of our approach. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Person re-identification (ReID) as a key component in multi- 

amera multi-target tracking, plays an important role in intelligent 

urveillance [1–3] and video analysis [4] . In recent years, abun- 

ant approaches have been proposed to address person ReID under 

he same modality, like image-based person ReID [5–8] and video- 

ased person ReID [9–13] . Despite the best effort s of many re- 

earchers, existing person ReID methods under the same modality 

till can not be well applied to person ReID under different modali- 

ies, such as the identification between the image-based query and 

ideo-based gallery. 

Image-to-video person re-identification (I2V ReID), is proposed 

o address problems mentioned above. In real scenarios, if only a 

ingle photo (query) of the criminal is captured, it is challenging 

o search the criminal among lots of surveillance videos (gallery). 

he main reason is the uncertainty of data due to the appearance 

nd modality misalignment, as shown in Fig. 1 . These two mis- 

lignment problems increase the intra-class variations, and make 
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he existing single modality based ReID methods unable to be di- 

ectly applied to I2V ReID task. It is well-known that the appear- 

nce information [5] and motion information [14] are crucial cues 

o identify persons in real surveillance scenarios. Therefore, how to 

ntegrate the rich temporal motion information in videos and spa- 

ial appearance information in images has become the focus of I2V 

eID. 

An intuitive solution to I2V ReID is to map both images and 

ideos into the same compact feature space for the subsequent 

atching. Existing approaches generally utilize a Convolutional 

eural Network (CNN) [16,17] based model to represent the ap- 

earance features of images, and a Long Short-Term Memory 

LSTM) [16] / 3DCNN [18] / Non-Local CNN [19] model to learn 

patio-temporal features from videos. Afterwards, a well-designed 

istance metric function is used to measure the difference among 

ifferent identities or modalities. These solutions promote the im- 

rovement of I2V ReID, but still cannot completely solve the ap- 

earance and modality misalignment problems. 

More specially, some researchers focus on extracting body part 

eatures based on human 2D joints to enhance the discrimina- 

ion ability of learned features [20] . That is a good choice to in-

roduce local features to I2V ReID. However, the 2D joints only 

oughly reflect the 2D center coordinates of key human body re- 
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Fig. 1. Illustration of appearance and modality misalignment challenges in I2V ReID 

task. The appearance cues in the same video clip are sensitive to human pose vari- 

ations, camera view variations and misdetections. We call this problem that affects 

the appearance of human as appearance misalignment. Moreover, the gallery videos 

in I2V ReID contain rich temporal motion information and appearance information, 

while the query images contain only appearance information. This kind of modality 

gap between images and videos in I2V ReID is called as modality misalignment. All 

the examples are selected from the MARS dataset [15] . 
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ions, which is not helpful to obtain detailed 3D surface informa- 

ion of the human body, especially in the case of similar poses 

21] . Inspired by the work [22] , the more dense human 3D sur-

ace information is crucial to learn discriminative semantic features 

gainst appearance misalignment. Others dedicate to further min- 

mize the distance between image and video modalities by intro- 

ucing proxy text space [23] , unsupervised domain adaption [18] , 

emporal knowledge propagation [19] , or self-attention mechanism 

24] . Although these attempts are effective, they either need to in- 

roduce additional feature space, or force the two modalities to 

e unified into one. The image and video modalities in I2V ReID 

hould be able to interactively communicate with each other while 

etaining the unique property of each modality. 

In this paper, we aim to develop a more generalizable I2V ReID 

ipeline against the challenges mentioned above. The proposed I2V 

eID pipeline contains two key components, three-dimensional se- 

antic appearance alignment (3D-SAA) and cross-modal interac- 

ive learning (CMIL) module. Given the query images and gallery 

ideo clips, all query images and gallery frames in videos are fed 

nto dense 3D human appearance estimation part in the 3D-SAA 

odule to extract aligned local appearance images. Owe to the 

nified 3D human parametric model, the body parts in all query 

mages and gallery frames are implicitly aligned. The extracted 

ligned local appearance images are further weighted and seman- 

ically aggregated to highlight more distinguished foreground tex- 

ure parts by multi-branch aggregation network (MBAN) in the 3D- 

AA module. The raw video clips, query images, and aligned local 

ppearance images are simultaneously utilized to learn deep iden- 

ity feature embeddings. Due to the diverse characteristics of dif- 

erent modalities, the image features contain rich semantics of ap- 

earances of target person, while the video features contain abun- 

ant temporal information. To this end, the CMIL module is pro- 

osed to interactively propagate modality-specific knowledge be- 

ween two modalities. With the help of an interactive similar- 

ty comparison mechanism, the relation between image and video 

odalities is constructed, and is integrated into the channels of 

mage features for the joint learning of two modalities. 

Generally, our contributions are three-fold: 

• A deep I2V ReID pipeline with two key components, three- 

dimensional semantic appearance alignment (3D-SAA) and 

cross-modal interactive learning (CMIL), is proposed to learn 

fine-grained and temporal invariant features, which achieves 
2 
superior performances than the compared baseline method on 

MARS, DukeMTMC-VideoReID and iLIDS-VID datasets. 
• To address the problem of appearance misalignment, a 3D- 

SAA module with proposed multi-branch aggregation network 

(MBAN) is designed to semantically align different body parts 

of human in the dense 3D human surface space, weaken the 

influence of negligible body parts, and aggregate different body 

parts into a unified appearance feature embedding. 
• To address the problem of modality misalignment, a CMIL mod- 

ule is developed to construct the relation between two modal- 

ities with an interactive similarity comparison mechanism, and 

integrate the relation into the channels of image features for 

the interactive learning of two modalities. 

The remainder of this paper is organized as follows. The re- 

ated work is reviewed in Section 2 . Section 3 clarifies the defini- 

ion of I2V ReID and introduces the proposed pipeline with 3D-SAA 

nd CMIL modules in detail. Experimental results and analysis are 

hown in Section 4 , and Section 5 concludes this work. 

. Related work 

.1. Image-to-video person re-identification 

Compared with single modality based person ReID tasks, like 

mage-based person ReID [1,3] and video-based person ReID [9–

3] , I2V ReID indeed belongs to a cross-modal retrieval task be- 

ween images and videos. Zhu et al. [25] and Li et al. [26] adopted

eterogeneous dictionary pair learning and salient region cluster- 

ng approach to tackle this task in a traditional manner, respec- 

ively. With the advance of deep learning, Zhang et al. [17] and 

ang et al. [16] mapped raw images and videos to the learned het- 

rogeneous deep feature space, and supervised the learning pro- 

ess by deep distance metrics. Specifically, Zhang et al. [17] utilized 

NN to extract the features of images and frames of videos, and in- 

egrated frame-level features into a video-level feature with LSTM 

odel. Wang et al. [16] also mapped images and frames of videos 

y CNN, and they designed a k-nearest neighbor triplet loss to con- 

train the relations between image-level features and frame-level 

eatures across different identities. To further map different modal- 

ties into a unified feature space, Xie et al. [23] extra introduced 

n immediate text space to minimize the heterogeneity between 

odalities. Gu et al. [19] enforced the outputs of image representa- 

ion network to fit the robust outputs of video representation net- 

ork with the Mean Square Error. Shim et al. [24] integrated image 

mbedding and video embedding into a unified feature embedding 

ith the self-attention mechanism. Porrello et al. [27] devised a 

eacher-student training strategy to learn more identity-sensitive 

eatures against camera view variations. In contrast, our method 

roposes two key modules to further improve the performance of 

2V ReID from the two aspects of solving appearance and modal- 

ty misalignment. We focus on learning more fine-grained seman- 

ic and temporal invariant features for the I2V ReID task. The I2V 

eID can also be treated as a special case of video-based person 

eID. The video-based person ReID commonly employ the tem- 

oral pooling [9,10] , optical flow [11] , Recurrent Neural Network 

12,13] and 3DCNN [28] to mine the temporal motion information 

f identities. In this work, we also aim to make use of the tempo- 

al information in videos, and dedicate to minimize the modality 

ap existed in I2V ReID. 

.2. Appearance alignment 

Existing methods typically address appearance misalignment 

roblem by partitioning human images into several parts to ex- 

ract more fine-grained local identity features. The partition meth- 

ds can be roughly divided into the explicit partition and implicit 
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Fig. 2. Overview of the proposed I2V ReID method. There are three main streams in the whole framework, including video, image and appearance embedding streams. These 

three streams can transform different kinds of inputs into high-level semantic feature space. Specially, a 3D-SAA module is proposed to generate 24-parts local semantic 

appearance images by the 3D-AG part and MBAN. A CMIL module is also designed to interactively propagate knowledge between two modalities in the feature space. The 

learned features f n j 
V 

, f n j 
F 

, f n j 
I 

, f n j 
A 

, f n j 
B 

, f n j 

f used 
are jointly trained by L TKP , identification-based loss L id , L id _ att and verification-based loss L tri , L t ri _ at t , L A 2 V . ( Best viewed in color ) 
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artition. The explicit partition leverages extern cues, such as 2D 

uman pose estimation [20] , uniform partition [5] , and dense hu- 

an surface [29] . Yu et al. [20] proposed a cross-media body-part 

ttention network for I2V ReID by extracting the cross-modal body 

art attention features based on the 2D poses of person. Sun et al. 

5] proposed a strong baseline which partitions the raw global hu- 

an images into several uniform stripes to explicitly align body 

arts of persons. Compared with [20] and [5] , our work can cap- 

ure more detailed local appearance information of persons based 

n the human 3D parametric model. Zhang et al. [29] also utilized 

he 3D surface of human to align human body parts for image- 

ased person ReID task. Compared with [29] , the proposed 3D-SAA 

odule adopts different part-level feature aggregation manner, dif- 

erent multi-grained identity feature learning method and the cru- 

ial body parts selection component. 

The essential core of implicit partition is to highlight fore- 

round human body parts with the attention mechanism [7,8,30] . 

ao et al. [8] designed a part loss network to highlight a crucial 

ody region and ignore other body regions. Zhao et al. [30] pre- 

ented a part-aligned representation learned only from person 

imilarities without the supervision information about the human 

arts. Although these methods generally perform better than the 

xplicit partition based methods, they still focus on the 2D appear- 

nce information rather than more detailed 3D information. Our 

ork not only can capture aligned 3D local information of persons 

ut also can weaken the cluttered backgrounds and negligible body 

arts with the merits of implicit partition. 

.3. Modality alignment 

Cross-modal human target analysis, such as RGB-infrared Per- 

on ReID [31–33] , RGB-D cross-modal person ReID [34] , and NLP- 

ased person search [35,36] , has been widely developed recently. 

he RGB-infrared person ReID task is utilized to realize the all-day 

erson re-identification, and the RGB-D cross-modal person ReID 

ask is proposed to ensure the privacy of pedestrians. These cross- 

odal tasks make person ReID easier to apply to the real scenarios. 

ompared with these cross-modal ReID tasks mentioned above, the 

2V ReID task utilizes the same sensor to capture images or videos 

s inputs. The modality differences in I2V ReID are less than other 

ross-modal person ReID tasks, but the I2V ReID task is more prac- 

ical and flexible in the wild. Although [19] and [24] provide the 

olutions to address the modality gap in the I2V ReID task, we pro- 

ose a more effective interactive communication manner between 

mages and videos. By integrating the relation between two modal- 
3 
ties into the channels of image features and jointly learning with 

wo embedding streams, the CMIL module can realize the commu- 

ication between two modalities. 

. The proposed method 

This section introduces the proposed deep I2V ReID pipeline to 

ddress the appearance and modality misalignment. First, the pro- 

osed whole pipeline is introduced and the relation between pro- 

osed different components are illustrated. Then, a 3D-SAA mod- 

le is designed to align different instances of the same identity by 

apping to the unified 3D parametric surface model to address the 

ppearance misalignment problem. Finally, a CMIL module is de- 

eloped to construct the relation of two modalities with an inter- 

ctive similarity comparison mechanism, and integrate the tempo- 

al information of videos to the image features for the joint learn- 

ng of two modalities. 

.1. The proposed I2V ReID pipeline 

Problem Formulation: The I2V ReID belongs to the retrieval 

ask, which needs to match pedestrian candidates between query 

nd gallery set. In contrast to the same modality-based person 

eID tasks, the I2V ReID needs to deal with heterogeneous data, 

g. query images and gallery videos. Given a query image I q and a 

allery V g = { V i g | i ∈ [1 , 2 , ..., L ] } with L videos, the goal of I2V ReID

s to compare with gallery videos V g based on the identity infor- 

ation in query image I q , and return a ranked similarity score list 

 rank = { s i 
rank 

| i ∈ [1 , 2 , ..., L ] }. To achieve this goal, it is crucial to ex-

ract accurate fine-grained human appearance features as identity 

nformation and address the heterogeneity between images and 

ideos. In this work, we propose a 3D-SAA module and a CMIL 

odule to further improve the generalization ability of the I2V 

ipeline from these two aspects mentioned above. 

Overview of Proposed Deep I2V ReID Pipeline: The proposed 

eep I2V ReID pipeline is depicted in Fig. 2 . To learn discrimina- 

ive identity representations to better match query and gallery in 

eep semantic feature space, lots of annotated video clips V train = 

 V n 
j 
| j ∈ [1 , 2 , ..., J] , n ∈ [1 , 2 , ..., N] } are used to train the proposed

eep I2V ReID pipeline. The terms J and N denote the number of 

ideo clips and human identities, respectively. Each video clip V n 
j 

n V train contains T frames with the same identity, which is formu- 

ated as: 

 

n 
j = 

{
I n j1 , ..., I 

n 
jt , ..., I 

n 
jT 

}
, t ∈ [1 , T ] , (1) 
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Fig. 3. The architecture of the proposed MBAN. The aligned 24-parts appearance images are transformed into aggregated 3D appearance semantic images with MBAN. The 

key components in MBAN, like the convolution block (CB) 1, CB 2, CB 3, mask generation part and, body prior reshape part are shown in Fig. 4 . 
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here, I n 
jt 

∈ R 

3 ×W ×H denotes the tth frame in V n 
j 

∈ R 

T ×3 ×W ×H , and

, W, H denote the channel number, width and height of I n 
jt 

and 

 

n 
j 
, respectively. 

The proposed I2V ReID pipeline has three main streams, a video 

mbedding stream and an image embedding stream for learning 

eep features from two modalities, and an additional appearance 

mbedding stream. In the training phase, the video clips are fed 

nto the video embedding stream, and all frames in input video 

lips are utilized as a image set { I n 
jt 

} to train the image embed-

ing stream correspondingly. In the video embedding stream, the 

esNet-50 [37] with non-local blocks [38] (Non-Local ResNet-50) 

nd spatial average pooling (SAP) layer is used to extract frame- 

evel features due to its ability to capture temporal information. 

he extracted frame-level features f 
n j 
F 

∈ R 

T ×D ×1 are further inte- 

rated to the video-level feature f 
n j 
V 

∈ R 

D ×1 by a temporal average 

ooling (TAP) [19] layer. The symbol D denotes the number of fea- 

ure channels. In the image embedding stream, each sample in { I n 
jt 

} 

s fed into the ResNet-50 with a SAP layer to learn corresponding 

mage feature f 
n j 
I 

∈ R 

T ×D ×1 . 

To further address appearance misalignment problem, this work 

roposes a 3D-SAA module to guide the identity feature learning. 

or each image I n 
jt 
, a 3D appearance generation (3D-AG) part is 

rstly used to estimate aligned 24-parts appearance image M 

n 
jt 

∈ 

 

3 ×4 s ×6 s of persons. The term s is the width and height of 1-part 

ppearance images. The estimated 24-parts appearance image is 

eshaped in part-level, and then fed into a designed multi-branch 

ggregation network (MBAN) to extract aggregated 3D local ap- 

earance semantic image A 

n 
jt 

∈ R 

3 ×2 τ×12 τ . The term τ is the width 

nd height of 1-part of A 

n 
jt 

. The aggregated 3D local appearance 

emantic image A 

n 
jt 

belongs to the same identity as I n 
jt 
, but A 

n 
jt 

ontains abundant aligned semantic information than I n 
jt 

. Similar 

o the image embedding stream, the 3D local appearance semantic 

mage A 

n 
jt 

is also fed into the ResNet-50 in the appearance embed- 

ing stream to extract appearance feature f 
n j 
A 

∈ R 

T ×D ×1 . The ap- 

earance feature f 
n j 
A 

is further fused with f 
n j 
I 

to obtained more 

ne-grained identity features f 
n j 

f used 
∈ R 

T ×D ×1 . 

To close the gap between image and video embedding streams, 

 CMIL module is proposed to model relations between two 

treams. The outputs of Non-Local ResNet-50 in video embedding 

tream and ResNet-50 in image embedding stream, are directly 

ed into CMIL module to interactively propagate knowledge of two 

odalities, and obtain balanced identity feature f 
n j 
B 

∈ R 

T ×D ×1 . The 

eature f 
n j 
B 

can be used to simultaneously involve the visual infor- 

ation in images and temporal information in videos. 

t

4 
Overall, the learned all features f 
n j 
V 

, f 
n j 
F 

, f 
n j 
I 

, f 
n j 
A 

, f 
n j 
B 

, f 
n j 

f used 
men-

ioned above are jointly trained by multiple loss functions 

 id , L id _ att , L tri , L t ri _ at t , L A 2 V , L T KP , as described in Section 3.4 . 

.2. 3D semantic appearance alignment 

3D Appearance Generation: As shown in Fig. 2 , the 3D-SAA 

odule is used to extract aggregated 3D appearance semantic im- 

ges for guiding the proposed I2V ReID model to learn more se- 

antically aligned identity features. For each image I n 
jt 

in the train- 

ng phase, it is fed into DensePose model [22] in proposed 3D-AG 

art to estimate UV map of persons. The UV map [39] can re- 

ect the correspondences between 3D human parametric model 

40] and 2D texture maps. Each pixel in I n 
jt 

can be classified into 

4 body parts by DensePose model, and transferred to UV coordi- 

ates as follows: 

 

∗ = argmax c P (c| I n jt (x, y )) , (2) 

 U, V ] = R 

c ∗ ((x, y )) , u = U[ x, y ] , v = V [ x, y ] , (3)

here ( x, y ) is the Cartesian coordinate of the pixel in 

 

n 
jt 
, P (c| I n 

jt 
(x, y )) is the probability of pixel I n 

jt 
(x, y ) belonging

o the c th body part, and c ∗ is the predicted body part of I n 
jt 
(x, y ) .

 regressor R c 
∗

is used to transform Cartesian coordinates to UV 

oordinates. Based on the UV map and raw color image I n 
jt 
(x, y ) , a

4 part-level appearance image M 

c ∗ can be extracted by: 

 

c ∗ [ 
(ϒ − v ) s 

ϒ
, 
(ϒ − u ) s 

ϒ
] = I c 

∗
(x, y ) , (4) 

here I c 
∗
(x, y ) denotes the region of the c ∗th body part in I n 

jt 
,

nd ϒ denotes the maximum value of the UV map. With For- 

ula (4) , we can obtain aligned 24-parts appearance image M 

n 
jt 

= 

M 

c ∗ | c ∗ ∈ [1 , 24] 
}
, and 24 body parts are well aligned for further 

xtracting semantic appearance images. The backgrounds of M 

n 
jt 

re set to the mean value of I n 
jt 

[29] , and 24 parts in M 

n 
jt 

are ar-

anged in the size of 6 × 4 . From Fig. 2 , it can be seen that the

stimated image M 

n 
jt 

is uniformly partitioned into body parts in 

D appearance space. This transform can minimize the influence 

y pose variations and other visual interferences. 

Multi-Branch Aggregation Network: Although the extracted 

ppearance image M 

n 
jt 

by 3D-AG part is aligned along the part- 

evel, the same attention with more crucial body parts, like head 

nd torso, is also paid to some negligible body parts and irrele- 

ant backgrounds. To this end, a MBAN model is designed to deal 

ith different body parts, and learn a mask to calculate the impor- 

ance of different body parts. The architecture of MBAN is shown in 
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Fig. 4. The key components in MBAN. The CB module contains a convolution layer, a batch normalization (BN) layer and a ReLU layer. Specifically, the “Conv 5 ×5 2_1 @ 3” in 

CB 3 denotes the convolution layer with the kernel size of 5 ×5, the stride of 2, the padding number of 1, and 3 output channels. The meanings of other convolution layers 

in MBAN are similar to “Conv 5 ×5 2_1 @ 3”. The mask generation part contains a convolution layer, a normalization layer and a Softmax layer. The body prior reshape part 

shows how the 24 part-level features are concatenated to 6 block-level features. 
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a memory matrix. By calculating the similarity between query and memory, a mask 

can be obtained. Finally a balanced feature is obtained by introducing a residual 

learning scheme, and pooling by a GAP layer. 
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a

ig. 3 . Firstly, the aligned 24-parts appearance image M 

n 
jt 

estimated 

y 3D-AG part is reshaped to the 24 part-level appearance images 

 

c ∗ . These images are mapped to semantic spaces by convolution 

lock (CB) 1, and reshaped to block-level features with body prior 

eshape part. As shown in Fig. 4 , the body reshape part reshapes 

he human body parts in the order of head, torso, arms, legs, hands 

nd feet from top to bottom. This kind of reshape operation can 

inimize the gap between local appearance images and raw global 

olor images with the help of the geometric information of hu- 

an body structure [41] . Then, after encoding block-level features 

y CB 2, all block-level features are concatenated to an image-level 

eature P n 
jt 

. The image-level feature P n 
jt 

is used to generate a mask 

(P n 
jt 
) by a mask generation part in Fig. 4 , and obtain the masked

mage-level feature H 

n 
jt 

by multiplication and addition operations. 

he generation process of H 

n 
jt 

is as follows: 

[ P n jt (x, y )] = 

e g(P n 
jt 
(x,y )) / �

∑ 

z∈ Z e 
g(P n 

jt 
(z)) / �

, (5) 

 

n 
jt = P n jt + P n jt � �[ P n jt (x, y )] , (6) 

here, Z = (x, y ) | x = 1 , ..., 2 s ; y = 1 , ..., 12 s, g(·) represents a convo-

ution operation of 1 × 1 kernel size, and � = || P n 
jt 
|| is the L2 norm

f P n 
jt 

. The symbol � represents the channel-wise Hadamard matrix 

roduct operation. The masked image-level features can weaken 

he influence of negligible body parts and backgrounds. Finally, H 

n 
jt 

s utilized to generate aggregated 3D local appearance semantic 

mage A 

n 
jt 

by CB 3 and a global max pooling (GMP) layer. The rea-

on why we adopt GMP layer rather than global average pooling 

GAP) layer here is that the GMP layer is more helpful to only pre-

erve the largest response values for a local view [42] . 

After the semantic alignment, both I n 
jt 

and A 

n 
jt 

will be fed into 

he weights-irrelevant ResNet-50 model to extract features as f 
n j 
I 

nd f 
n j 
A 

. The proposed MBAN and ResNet-50 in appearance embed- 

ing stream are jointly trained in an end-to-end manner, which 

an reduce the information loss of MBAN while the identity fea- 

ures are learned. To further guide the learning of f 
n j 
I 

, we fuse f 
n j 
I 

nd f 
n j 
A 

by: 

f n j 

f used 
= f n j 

I 
+ f n j 

A 
. (7) 

The fusion between f 
n j 
I 

and f 
n j 
A 

as an additional branch is help- 

ul to make global color images and local appearance images com- 

ensate each other. 
5 
.3. Cross-modal interactive learning 

To solve the problem of modality misalignment, this work pro- 

oses a CMIL module as shown in Fig. 5 . An interactive similarity 

omparison mechanism in the CMIL module is adopted to build 

he relation between images and videos by calculating the similar- 

ty of features. Compared with the image features, the video fea- 

ures contain the abundant temporal information. To enhance the 

epresentation ability of video features, the video features are se- 

ected along the spatial and temporal domain by multiplying the 

imilarity. The enhanced video features are integrated into one- 

imensional features with the length of channel number, and fused 

ith image features as the balanced identity features. By jointly 

raining the balanced identity features, image features and video 

eatures, the gap between two modalities are further minimized. 

Specifically, after passing the Non-local ResNet-50 in video em- 

edding stream and ResNet-50 in image embedding stream, we 

an obtain frame-level feature maps F V ∈ R 

T ×h ×w ×D of videos, and 

mage feature maps F I ∈ R 

T ×h ×w ×D , respectively. The items h and w 

re the height and width of feature maps. For each image in { I n 
jt 

},

ts feature map is squeezed to an image feature vector ˜ F t 
I 

by a GAP 

ayer. The mean vector ˜ F V of F V is calculated by a mean operation 

n temporal domain and a GAP layer in spatial domain. To enhance 

he relations between image and video modalities, we construct a 

uery vector F t 
Q 

by the weighted sum operation. The features F V 
nd F are indeed extracted from the same video clip. By fusing 
I 
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 V and F I as the query, the more robust spatial appearance infor- 

ation and temporal motion information are integrated into the 

uery vector for the subsequent effective similarity modeling be- 

ween two modalities. The query vector F t 
Q 

is defined as: 

 

t 
Q = α ˜ F V + (1 − α) ̃  F t 

I 
, (8) 

here α ∈ [0 , 1] is used to balance the importance of two modali-

ies for constructing query F t 
Q 

. Moreover, F V is reshaped to R 

R ×D as 

 memory matrix ˆ F V , and R = T × h × w . The construction of query

ector and memory matrix is convenient for calculating the simi- 

arity between frames in video clips and training images. Based on 

he ˆ F V and F t 
Q 
, a similarity map � is calculated by: 

( ̂  F i 
V 
, F t Q ) = 

e 
ˆ F i 
V 

F t Q 

∑ 

j∈ [1 ,R ] e 
ˆ 

F j 
V 

F t 
Q 

, (9) 

here �( ̂  F i 
V 
, F t 

Q 
) is the i th item in the similarity map. All feature

aps in F I will be repeated by the operations in Formula (8) and 

ormula (9) . Utilizing the learned similarity map � and raw image 

eature map F I , we can obtain an interactive feature map F B with a

esidual learning scheme. 

 B = 

ˆ F � V � + F I , (10) 

here the term 

ˆ F � 
V 

� is repeated as a tensor with the size of 

 × W × D along the spatial domain. The feature map F B can be 

urther integrated to compact balanced identity feature f 
n j 
B 

by a 

AP layer. The balanced identity feature f 
n j 
B 

contains the knowl- 

dge in both image and video modalities by interactive learning. 

hen, the feature f 
n j 
B 

is in conjunction with f 
n j 
V 

and f 
n j 
I 

to train the

2V ReID model. The reason why we use ˆ F V as the memory rather 

han image features is that the video modality contains abundant 

emporal information. 

.4. Joint training 

In this paper, the work [19] is utilized as the baseline with 

he guidance of identification loss L id , triplet loss L tri and temporal 

nowledge propagation (TKP) loss L T KP [19] . The features f 
n j 
V 

, and 

f 
n j 
I 

are supervised by: 

 id = −log( 
e p 

n 
id 

∑ 

k ∈ [1 ,N] e 
p k 

id 

) , (11) 

 tri = [ m + max 
f p ∈ S + a 

d( f a , f p ) − max 
f ng ∈ S −a 

d( f a , f ng )] + , (12)

here p n 
id 

∈ { w 

� 
I f 

n j 
I 

, w 

� 
V f 

n j 
V 

}, and { w I , w V } represents the clas-

ifiers in image and video embedding streams. The term 

p n 
id 

denotes the classification score of classifying correspond- 

ng features into the n th class with the classifier. In For- 

ula (12) , the features 〈 f a , f p , f ng 〉 of identity triplets belong to 

 〈 f I , f I , f I 〉 , 〈 f V , f V , f V 〉 , 〈 f I , f V , f V 〉 , 〈 f V , f I , f I 〉 }, m is a pre-defined 

argin, and d(·) denotes the Euclidean distance. The feature f a is 

n anchor in training batch, S + a is positive set with the same iden- 

ity of f a , and S −a is negative set with the different identity of f a .

n other words, f p ∈ S + a and f ng ∈ S −a denote the features of pos-

tive and negative samples of f a , respectively. The features f I and 

f V are shorthand for image-level features learned by image embed- 

ing stream and video-level features learned by video embedding 

tream, respectively. 

The essence of TKP loss is to minimize the Mean Square Error 

MSE) [43] between f 
n j 
I 

and f 
n j 
F 

, which is formulated as: 

 T KP = 

1 

NT 

N,T ∑ 

n,t=1 , 1 

∥∥ f n jt 
I 

− f n jt 
F 

∥∥ + ‖ 

D I − D V ‖ F , (13) 
6 
here ‖ ·‖ denotes the square of the L2 norm, and ‖ ·‖ F denotes the 

quare of Frobenius norm. The terms D I , D V ∈ R 

N T ×N T represent the 

uclidean distance matrices cross different samples in image and 

ideo embedding streams. 

For f 
n j 
A 

and f 
n j 

f used 
, the Formula (11) with 

p n 
id 

∈ { w 

� 
A 

f 
n j 
A 

, w 

� 
f used 

f 
n j 

f used 
} is also utilized to learn identity-sensitive

eatures, and w A and w f used are corresponding classifiers. To model 

he relations between appearance and video embedding streams, a 

riplet-based loss L A 2 V is introduced, which is implemented by For- 

ula (12) with 〈 f A , f V , f V 〉 . The symbol f A is short for appearance 

eatures learned by appearance embedding stream. Moreover, the 

alanced identity feature f 
n j 
B 

is supervised by L id _ att and L t ri _ at t . 

he loss L id _ att is implemented by L id with p n 
id 

= w 

� 
B f 

n j 
B 

, and w B 

s the corresponding classifier. The loss L t ri _ at t is implemented by 

 tri with 〈 f B , f B , f B 〉 , while f B is shorthand for balanced features 

earned by CMIL module. The final loss function is formulated as: 

 = L id + L id _ att + L T KP + λ(L tri + L t ri _ at t + L A 2 V ) , (14)

here λ is set to 1.5 following [19] . The larger λ is set for triplet 

oss than identification loss, since the I2V ReID indeed belongs to 

erification-based task. 

. Experiments and discussions 

.1. Datasets and settings 

MARS Dataset: This dataset [15] contains 1,261 identities and 

0,478 tracklets captured by 6 cameras. We follow the baseline 

19] to split the dataset into the training and test splits. The train- 

ng split contains 625 identities and 8,298 tracklets, while the test 

plit contains 635 identities and 11,310 tracklets. 

DukeMTMC-VideoReID Dataset: This dataset [10] contains 

,404 identities and 5,534 tracklets captured by 8 cameras in to- 

al. We follow the baseline [19] to split the dataset into two splits 

or training and testing. The training split contains 702 identities 

nd 2,196 tracklets, while the test split contains 702 identities for 

esting, 408 distractors and 2,636 tracklets. 

iLIDS-VID Dataset: This dataset [44] contains 300 identities and 

00 tracklets captured by 2 cameras. We follow the baseline [19] to 

plit the dataset into two splits for training and testing. The train- 

ng split contains 150 identities and 300 tracklets, while the test 

plit contains 150 identities and 300 tracklets. 

Implementing Details: In the training phase, we randomly 

ample 4 frames with a stride of 8 frames from the raw full-length 

ideo to form a training video clip. If the length of the raw video 

s less than 32, we duplicate it to meet the required length. The 

esNet-50 and Non-Local ResNet-50 in three different streams are 

nitialized by the ImageNet pre-trained weights and initialization 

ethod in [38] . The input video frames are resized to 256 ×128, 

nd the training batch size is set to 14, which depends on the 

omputation ability of the GPU used in our work. The horizontal 

ip is used for data augmentation. The parameters s = 32 , α = 0 . 5

n Formula (8) , and m = 0 . 3 in Formula (12) are set in our work.

he dimension D of features is set to 2048. In the backpropaga- 

ion process, the proposed pipeline is trained with Adam optimizer 

45] with weight decay 0.0 0 05, and the initial learning rate is set 

o 0.0 0 03. In the test phase, we only utilize the raw video and im-

ge embedding streams, and the appearance embedding stream is 

iscarded in order not to add extra computation cost and keep the 

airness of the evaluation. The setting adopted in the test phase is 

ame as the work [19] . This work is implemented by PyTorch with 

ne NVIDIA GeForce RTX 2080 Ti GPU. 

Evaluation Metrics: The task setting [16] is adopted in this 

ork. The Cumulative Matching Characteristics (CMC) [46] and 
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Table 1 

Evaluation of proposed methods with the settings of I2V, I2I and V2V ReID on the 

MARS dataset. The I2I ReID denotes the image-based person ReID, which is imple- 

mented by only using the first frames of query and gallery samples. The V2V ReID 

denotes the video-based person ReID, which is implemented by using full-length 

query and gallery videos. 

Method 

MARS 

I2V ReID I2I ReID V2V ReID 

top-1 mAP top-1 mAP top-1 mAP 

TKP (Baseline) [19] 75.6 65.1 71.0 55.0 84.0 73.3 

TKP (ReRun) 75.4 64.1 71.1 54.6 82.4 72.2 

TKP + 3D-SAA 78.5 67.1 72.2 57.0 85.6 75.1 

TKP + CMIL 77.3 67.2 71.4 56.1 85.0 75.6 

TKP + 3D-SAA+CMIL ( Ours ) 79.1 69.0 72.6 58.1 86.1 76.9 

Table 2 

Evaluation of proposed methods with the settings of I2V, I2I and V2V ReID on the 

DukeMTMC-VideoReID dataset. 

Method 

DukeMTMC-VideoReID 

I2V ReID I2I ReID V2V ReID 

top-1 mAP top-1 mAP top-1 mAP 

TKP (Baseline) [19] 77.9 75.9 63.4 54.8 94.0 91.7 

TKP (ReRun) 76.2 74.2 63.5 54.5 94.0 91.8 

TKP + 3D-SAA 79.3 77.2 65.5 57.8 93.9 92.2 

TKP + CMIL 77.2 76.1 66.7 57.8 94.0 92.7 

TKP + 3D-SAA+CMIL ( Ours ) 81.2 79.1 68.4 60.0 94.9 92.6 
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ean Average Precision (mAP) [47] are used to evaluate the per- 

ormance of proposed methods. These two metrics can well reflect 

he precision and recall of proposed methods over whole datasets, 

hich has been widely used for many ReID tasks [5,9,48] . 

.2. Effectiveness of proposed methods 

Settings: The performances of our proposed methods on MARS 

ataset and DukeMTMC-VideoReID dataset are depicted in Table 1 

nd Table 2 . In our experiments, the work TKP [19] is utilized as

ur baseline, and all improvements are built on this baseline. Due 

o the limitation of the computation source, we cannot meet the 

equirements of training batch size equal to 16 in [19] . The training 

atch size is set to 14 up to the maximum of the video memory. As

hown in Tables 1 and 2 , the TKP method is rerun with the batch

ize of 14, and the results slightly drop compared with the results 

f “TKP (Baseline)”. The “TKP + 3D-SAA”, “TKP + CMIL” and “TKP 

 3D-SAA + CMIL” denote the baseline with only proposed 3D-SAA 

odule, only proposed CMIL module, and both 3D-SAA and CMIL 

odules, respectively. 

Results of Proposed Methods on I2V ReID: From comparisons 

etween “TKP + 3D-SAA” and baseline under the setting for I2V 

eID, it can be seen that the 3D-SAA module has 2.9% top-1 and 

.0% mAP improvements on MARS dataset, and 1.4% top-1 and 1.3% 

AP improvements on DukeMTMC-VideoReID dataset. These sta- 

le improvements are attributed to the more fine-grained align- 

ent from the 3D-SAA module. From comparisons between “TKP 

 CMIL” and baseline under the I2V ReID setting, it can be seen 

hat the CMIL module has 1.7% top-1 and 2.1% mAP improvements 

n MARS dataset. Though “TKP + CMIL” does not have obvious 

mprovements on DukeMTMC-VideoReID dataset, it can work well 

ith the proposed 3D-SAA module. It can be seen that the CMIL 

odule can play an important role due to its interactive communi- 

ation between two heterogeneous modalities. By comparing “TKP 

 3D-SAA + CMIL” with baseline, it can be observed that the fusion 

f two proposed modules can further improve the performance of 

2V ReID on two datasets. These two modules are complementary 

o each other by addressing two kinds of misalignment problems. 
7 
Comparison among I2I, I2V and V2V ReID: Tables 1, 2 and 

ig. 6 show the results of proposed methods under different ReID 

ettings, including I2I, I2V and V2V ReID settings. It can be seen 

hat both 3D-SAA and CMIL modules can improve performances 

nder different settings. For all methods, the performances for I2I 

eID are worse than I2V ReID, and the performances for I2V ReID 

re worse than V2V ReID. The reason is that V2V ReID adopts extra 

emporal information than I2V ReID, and I2V ReID considers abun- 

ant visual information than I2I ReID. It is important to address the 

nformation loss caused by modality misalignment. As depicted in 

ig. 6 , our proposed method performs better than baseline under 

hree different ReID settings, since the learned features are more 

dentity-sensitive. 

It can be also seen that both 3D-SAA and CMIL modules have 

ertain performance improvements on both mAP and top-1 ac- 

uracy. Compared with the method “TKP+3D-SAA”, the method 

TKP+3D-SAA+CMIL” increases the mAP accuracy by 1.9%, 1.1%, 1.8% 

nder the I2V, I2I and V2V ReID settings, respectively. However, the 

MIL module only increases the top-1 accuracy by 0.6%, 0.4%, 0.5% 

nder the I2V, I2I and V2V ReID settings, respectively. By contrast, 

he CMIL module increases the top-1 accuracy by 0.9%, 2.9%, 1.9% 

nder the I2V, I2I and V2V ReID settings on DukeMTMC-VideoReID 

ataset, respectively. The differences on two datasets are mainly 

aused by the dataset characteristics. In [19] , the authors give the 

ataset statistics of two datasets, and the average lengths of per- 

on videos in MARS and DukeMTMC-VideoReID datasets are 58 and 

68, respectively. The longer person videos help to obtain more 

obust identity features from person videos. Moreover, the higher 

AP performance gain than the top-1 means that the top-1 results 

re not easily be found on the MARS dataset. Relatively speaking, 

he shorter person videos in the MARS dataset has more noises 

han the longer person videos. The proposed CMIL module aims to 

ropagate the temporal motion information from videos to images 

n order to minimize the modality gap. The temporal motion in- 

ormation in shorter person videos is less than the longer person 

ideos. 

.3. Comparisons with state-of-the-arts 

Settings: Tables 3 and 4 show the comparisons between 

roposed method and state-of-the-art methods on MARS and 

ukeMTMC-VideoReID datasets, respectively. Table 5 shows the 

omparisons with other I2V ReID methods on the iLIDS-VID 

ataset. The comparisons in Tables 3, 4 and 5 are based on the 

ame setting following [19] , while the methods with different 

ataset settings are not reported for fairness. The term “#avgID”

entioned in [24] represents the mean number of identities used 

n each training batch. As illustrated in [24] , the term “#avgID” will 

nfluence the performance of the proposed algorithm, so we report 

he results which have the most similar settings to ours for fair- 

ess. To evaluate the effectiveness of the proposed method, we re- 

ort the results which have the same “#avgID” as the baseline. 

Analysis of Competitiveness: From the comparisons in 

ables 3 and 4 , the proposed method outperforms “P2SNet [16] ”, 

ResNet-50 + XQDA [49] ”, and “TKP [19] ” methods in a large mar- 

in on two datasets. The improvements are attributed to the ap- 

earance and modality alignment addressed by our proposed I2V 

eID pipeline. Compared with the method “READ [24] ”, our work 

lso performs better than its with the similar settings. The larger 

#avgID” is helpful to obtain better results, because more sam- 

les with more identities can be introduced to each training batch 

24] . However, the results of our proposed method are still com- 

etitive with a smaller “#avgID”. Although both “TKP” and “READ”

ontain a cross-modal learning module, they either only transfer 

nowledge in one direction or integrate two modalities into one 

ntermediate modality. The CMIL module in our pipeline not only 
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Fig. 6. Comparisons among three settings on MARS and DukeMTMC-VideoReID datasets. The results of TKP baseline, our proposed method, and the improvements are shown. 

Table 3 

Comparisons between our proposed method and the state-of-arts on MARS dataset. 

Method Source #avgID top-1 top-5 top-10 mAP 

P2SNet [16] TCSVT 2017 - 55.3 72.9 78.7 - 

ResNet-50 + XQDA [49] - - 67.2 81.9 86.1 54.9 

TKP (Baseline) [19] ICCV 2019 4 75.6 87.6 90.9 65.1 

TKP (ReRun) [19] ICCV 2019 4 75.4 87.4 90.7 64.1 

DSA [29] - 4 78.3 88.9 91.4 68.7 

STE-NVAN [50] BMVC 2019 - 80.3 - - 68.8 

NVAN [50] BMVC 2019 - 80.1 - - 70.2 

MGAT [51] CVPRW 2019 - 81.1 92.2 - 71.8 

READ [24] ECCV 2020 32 81.5 91.2 93.3 69.9 

ResNet-50 � [27] ECCV 2020 8 82.2 - - 73.4 

ResVKD-50 [27] ECCV 2020 8 83.9 93.2 - 77.3 

Ours - 4 79.1 89.4 91.9 69.0 

Ours - 8 80.2 90.7 92.7 70.8 

Ours - 32 81.3 91.7 93.8 72.6 

Table 4 

Comparisons between our proposed method and state-of-the-art method on 

DukeMTMC-VideoReID dataset with the same dataset setting following [19] . 

Method Source #avgID top-1 top-5 top-10 mAP 

TKP (Baseline) [19] ICCV 2019 4 77.9 - - 75.9 

TKP (ReRun) [19] ICCV 2019 4 76.2 88.6 91.6 74.2 

NVAN [50] BMVC 2019 - 78.4 - - 76.7 

ResNet-50 � [27] ECCV 2020 8 82.3 - - 80.2 

ResVKD-50 [27] ECCV 2020 8 85.6 93.9 - 83.8 

Ours - 4 81.2 91.3 93.9 79.1 

Ours - 8 80.9 91.9 93.9 79.4 

Ours - 32 82.8 92.0 94.7 81.0 

Table 5 

Comparisons with other I2V ReID methods on the iLIDS-VID dataset. 

Method Source top-1 top-5 top-10 top-20 

MPHDL [25] TIFS 2017 32.6 55.8 69.3 83.2 

TMSL [17] TCSVT 2017 39.5 66.9 79.6 86.6 

P2SNet [16] TCSVT 2017 40.0 68.5 78.1 90.0 

Xie et al. [23] PRL 2020 40.1 67.2 79.7 86.7 

TKP (Baseline) [19] ECCV 2020 54.6 79.4 86.9 93.5 

Ours - 54.7 78.0 87.3 92.7 
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an interactively transfer knowledge between two modalities but 

lso can preserve its own domain knowledge in each modality. 

ere, we also show the results of state-of-the-art methods, “STE- 

VAN” [50] , “NVAN” [50] , and “MGAT” [51] , which validates the 

ffectiveness of the proposed method. The work [27] proposed a 

elf-distillation based method, which is totally different from the 

otivation of our work. From Tables 3 and 4 , it can be seen that

he commonly used ResNet-50 model can achieve state-of-the-art 

erformances with the help of [27] . The ResNet-50 model used 

or teacher model in [27] is called “ResNet-50 � ”, while the stu- 

ent model with the view knowledge distillation in [27] is called 
8 
ResVKD-50”. Although the self-distillation learning manner is not 

sed in our work, the proposed method can still achieve the com- 

etitive results compared with [27] . The main contributions in this 

ork are dedicated to provide a solution to learn the identity- 

ensitive features and address two misalignment problems, rather 

han strive for achieving the highest mAP and top-K accuracy. The 

SA method [29] also introduces the 3D human surface model to 

he ReID task, however, the motivation and implementation are 

ot the same as our 3D-SAA module. Table 3 shows the results 

f “DSA” on the MARS dataset by replacing the 3D-SAA module in 

he proposed pipeline. The improvements verify the effectiveness 

f the proposed 3D-SAA module. 

Compared with MARS and DukeMTMC-VideoReID datasets, the 

LIDS-VID dataset has fewer identities and tracklets. The results of 

he TKP method reported in Table 5 are first pre-trained on the 

arge-scale MARS dataset following [19] . From Table 5 , it can be 

een that the proposed method can overhead many I2V ReID meth- 

ds, like MPHDL [25] , TMSL [17] , P2SNet [16] and Xie et al. [23] .

rom the comparisons between the baseline and our method, it 

an be observed that though our method does not achieve the 

arge performance gain, the results are still competitive. The re- 

ults are caused by the limited training data, while the proposed 
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Table 6 

Analysis of key components in MBAN on MARS dataset. 

Method top-1 top-5 top-10 mAP 

TKP (Baseline) [19] 75.6 87.6 90.9 65.1 

TKP + 3D-SAA w/o MBAN 76.0 88.4 91.1 65.7 

TKP + 3D-SAA w/o Body prior 76.9 89.1 92.1 66.7 

TKP + 3D-SAA w/o Mask 77.0 88.4 91.2 66.7 

TKP + 3D-SAA 78.5 89.2 92.0 67.1 

Fig. 7. Some toy examples of raw images, 24-parts appearance images, and masks 

learned by MBAN. The samples in Row 1 and Row 2 are captured from MARS 

dataset, while the sample in Row 3 is captured from DukeMTMC-VideoReID dataset. 
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Table 7 

Evaluation of loss functions for 3D-SAA module on 

MARS dataset. 

Loss Combinations 

L id ( f A ) � � � � � 

L id ( f f used ) � � � 

L A 2 V _ MSE � 

L A 2 V � � 

top-1 76.0 75.2 75.9 75.0 78.5 

mAP 65.3 64.1 66.0 64.5 67.1 

Fig. 8. The visualization of feature maps learned by ResNet-50 in image embedding 

stream with different communication methods of CMIL module on MARS dataset. 

The “∗_F” represents the mapping between raw images and heatmaps for the corre- 

sponding method “∗”. The “READ”, “CMIL_V” and “Ours” denote the methods “Ours 

with READ”, “Ours with CMIL_V” and “Ours” in Table 8 , respectively. ( Best viewed 

in color ) 

Table 8 

Evaluation of different communication ways of CMIL module 

on MARS dataset. 

Method top-1 top-5 top-10 mAP 

Ours with READ 72.9 85.6 89.6 60.5 

Ours with CMIL_V 77.0 88.7 91.6 66.7 

Ours 79.1 89.4 91.9 69.0 
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ethod has more parameters needing to be trained than the base- 

ine. 

.4. Ablation study 

Analysis of MBAN Part: The analysis of key components in 

BAN on MARS dataset is depicted in Table 6 . From Table 6 , it

an be seen that the 3D-SAA module improves the mAP and top-1 

ccuracy by 2.0% and 2.9% in total. If the MBAN is removed, the 

AP and top-1 accuracy can only be improved by 0.6% and 0.4%. If 

he body prior reshape part is removed, the mAP and top-1 accu- 

acy can be improved by 1.6% and 1.3%. The local appearance im- 

ges with body prior can minimize the gap between appearance 

ranch and image branch with the help of the geometric informa- 

ion of human body structure. Moreover, from the results of “TKP + 

D-SAA w/o Mask”, it can be observed that the mAP and top-1 ac- 

uracy can only be improved by 1.6% and 1.4%. Fig. 7 shows some 

xamples of learned masks by MBAN. The more dark the color of 

he mask figure is, the larger the value of the mask is. It can be

een that the learned masks can further decrease the influence of 

he negligible body parts and backgrounds. By observing the esti- 

ated appearance images in Fig. 7 , we can also see that the body

arts can reflect more detailed appearance information than 2D 

ey joints of the human body. Compared with the improvements 

btained from Alp Güler et al. [22] , the proposed MBAN and key 

omponents in MBAN are more crucial for the performance im- 

rovements of 3D-SAA module. 

Evaluation of Loss Functions in 3D-SAA Module: The 3D-SAA 

odule is trained with multiple loss functions. Table 7 depicts the 

nfluence of different loss functions used for training 3D-SAA mod- 

le on MARS dataset. The items L id ( f A ) and L id ( f f used ) denote the

dentification loss for features f 
n j 
A 

and f 
n j 

f used 
, respectively. The item 

 A 2 V _ MSE means that the loss L A 2 V is replaced by MSE loss. From 

able 7 , it can be seen that the fusion of f 
n j 
I 

and f 
n j 
A 

results in a

erformance degradation if the L A 2 V is not utilized. It implies that 

he loss L A 2 V can further guide the fused features to learn more 

emantic features. If L is replaced by MSE loss, the performance 
A 2 V 

9 
ith MSE loss cannot achieve the performance of L A 2 V , since L A 2 V 
elongs to a triplet loss which can better constrain distances be- 

ween videos and appearance images. 

Different Communication Ways in CMIL Module: To evalu- 

te the effectiveness of the CMIL module, different communica- 

ion ways are compared in Table 8 . Compared with the method 

24] , our proposed method interactively communicates between 

mage modality and video modality. However, compared with im- 

ge modality, the video modality has more abundant temporal in- 

ormation. To this end, an extra branch is added by propagating 

he learned mutual information to image modality. In Table 8 , the 

ethod “Ours with READ” means that the CMIL module in our 

2V ReID pipeline is replaced with Reciprocal Attention Discrimi- 

ator (READ) in [24] . We implement this by replacing the fully- 

onnected layer of READ with the GAP layer and adopting the 

ame training batch size as ours, due to the limited computational 

bility. It can be seen that the READ cannot perform well in our 

ipeline, when we do not utilize plenties of training identities in 

ach batch, the specially designed sampling strategy, and the recip- 

ocal attention based loss in [24] . The method “Ours with CMIL_V”

eans the inverse way that it adopts an extra branch by propagat- 

ng the learned mutual information to video modality. It can be 

een that the results of our method are better than “Ours with 

MIL_V”, since the mutual information can compensate for more 

nformation loss of image modality. 

Fig. 8 depicts the visualization results of feature maps learned 

y ResNet-50 in image embedding stream with different commu- 

ication methods in the CMIL module. It can be observed that the 

eatures learned by “Ours with READ” are not centralized enough, 
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Fig. 9. Performances on variable clip size T conducted with MARS dataset. 
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Fig. 10. Evaluation of the parameter α on MARS dataset. 
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hile our method can focus more on the crucial body regions, like 

he lower torso in Row 1 and upper torso in Row 2. These regions

re not easily affected by external interferences, such as clothes 

hanges and occlusion. Compared “Ours with CMIL_V” with ours, it 

an be seen that the learned features are more fine-grained, since 

he video clips have more temporal information than images. 

Influence by Different Clip Size: Fig. 9 shows the performances 

n different clip size T conducted with MARS dataset. We evaluate 

ve variants of T from 2 to 6, and the best results are achieved

hen T is 4. The performance of T = 6 drops obviously, since the 

omputation ability of hardware limits the training batch size. The 

raining batch size can only be set to 8 when T is 6, which seri-

usly influences the diversity of training identities in each batch. 

Evaluation of the parameter α: The evaluation of the param- 

ter α in Formula (8) is shown in Fig. 10 . It can be seen that

he top-1 accuracy achieves the best when α = 0 . 5 , and the mAP

ccuracy achieves the best when α = 0 . 6 . The results reflect the 

ntegration of both image and frame features in videos is more 

elpful to construct the relation between two modalities. If only 

mage features or frame features are treated as the query in the 

MIL module when α = 0 or α = 1 , the query simply preserves the 

nowledge of one modality, which is not optimal. In this paper, the 

arameter α is set to 0.5 if not specified. 
ig. 11. The visualization of feature maps learned by ResNet-50 in image embedding str

y the corresponding method “∗”, while “∗_F” represents the mapping between raw imag

Ours” denote the baseline TKP method [19] , proposed 3D-SAA module, proposed CMIL 

iewed in color ) 

10 
.5. Visualization 

To further analyze the effectiveness of proposed methods, we 

lso give the visualization results of feature maps learned by 

esNet-50 in image embedding stream with different proposed 

ethods, as shown in Fig. 11 . Overall, it can be seen that our 

ethod focuses on the more robust body-shoulder region of per- 

ons. The body-shoulder region is currently considered to be a 

ey cue for representing identity information [52] . By contrast, al- 

hough the TKP method can learn representative features, the fea- 

ures are still not centralized enough. The 3D-SAA module can fo- 

us more on the crucial appearances of persons due to its fine- 

rained semantic alignment property. The CMIL module is impor- 

ant to find temporal domain invariant information. It can be seen 

hat the features learned by our method are more fine-grained and 

emporal domain invariant. 

In Row 2 and Column 2 in Fig. 11 , the person is occluded which

esults in the appearance misalignment. It can be observed that 

oth the TKP method and our 3D-SAA module focus on the bags of 

he target-unrelated pedestrian. However, the 3D-SAA module pays 

ore attention on the more robust head-shoulder region. Our CMIL 

odule can ignore the influence of cluttered backgrounds by tem- 

oral compensation. From the examples in Row 3, it can also be 

een that our proposed method is less susceptible to the changes 

n the camera view and other appearance information. 
eam with different proposed methods. The “∗_H” represents the learned heatmap 

es and heatmaps for the corresponding method “∗”. The “TKP”, “SAA”, “CMIL” and 

module, and Our proposed I2V ReID pipeline with both 3D-SAA and CMIL. ( Best 
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. Conclusion 

This paper presents a deep I2V ReID pipeline based on proposed 

D-SAA and CMIL modules to address appearance and modal- 

ty misalignment problems. The 3D-SAA module can semantically 

lign local body parts of persons and weaken the influence of the 

egligible body parts and cluttered backgrounds. The CMIL mod- 

le can interactively propagate the modality knowledge of each 

odality to each other, which can minimize the gap between two 

odalities. Two complementary modules can guide the deep I2V 

eID pipeline to learn more fine-grained and temporal domain in- 

ariant feature embedding. This property indicates the generaliza- 

ion ability of our method against misdetections, pose, and camera 

iew variations, for the I2V ReID task. Extensive quantitative and 

ualitative experiments validate the effectiveness of the proposed 

ethod. Although this paper can weaken the influence of the ap- 

earance misalignment problem, the proposed I2V ReID pipeline 

s still affected by the 3D human surface estimation results. The 

ight-weight 3D human surface model, and joint learning of both 

D human surface estimation and I2V ReID can be investigated in 

he future. 
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