
Real-time Motion Planning for Interaction between

Human Arm and Robot Manipulator

Hong Liu, Keming Chen, Hongbin Zha

National Lab. on Machine Perception, Peking University

Beijing, China, 100871

{liuhong, chenkm, zha}@cis.pku.edu.cn

Abstract—This paper proposes a new scheme for solving

real-time motion planning problems between a human arm

and a robot manipulator. These problems are very

important towards real-time Human-Robot Interaction. For

solving the real-time motion planning problems in dynamic

interaction environments, a new method of Obstacle Direct

Mapping (ODM) is proposed. In preprocessing phase, a

mapping from cells in workspace to nodes and edges in the

roadmap of configuration space is constructed. The roadmap

of C-space is constructed based on a PRM framework. In

query phase, some determinate points on obstacles (human

arm)’ surface are sampled, only the cells which contain at

least one sampled point are mapped into the roadmap. Based

on the points sampling on moving object’s surface,

translation and rotation of the object can be easily and

rapidly expressed. Compared with the methods using online

collision detection and A* searching technique, simulation

experiments with real parameters of Kawasaki manipulator

are implemented. The experimental results show that the

proposed scheme is efficient and feasible for motion planning

between a human arm and a robot manipulator.

Keywords—Human-Robot Interaction, Motion Planning,

Probabilistic Roadmaps(PRMs), Real Time

I. INTRODUCTION

Motion planning problems have been studied for
several decades [1]. In the past, many researches concern
with industry robots in static, structured physical
environments. In recent years, as the development of
service robots, Human-Robot Interaction problems become
more and more important and get lots of attentions. One
elementary function for the service robot is to interact with
human arms, e.g., when a nurse robot pours for the patient
with a cup in his/her hands, the nurse robot should first
interact with the patient’s arms. Two basic factors should
be considered for service robots in this kind of interaction:
real-time requirement and safety. So the manipulator
should interacts with human arms without collision in real-
time. Although this is an essential step towards real-time
Human-Robot Interaction in dynamic environments, there
is still little work done to cope with. Also, as an
application, it could help solving motion planning
problems between two/multiple robot arms [2, 3].

Many traditional approaches to solve real-time motion
planning problems are based on online collision detection
and various searching techniques. To speed up the online

performance, some focus on multi-directional search and
parallel planning [4]. But the traditional methods have two
disadvantages. The first is that the searching space is
usually large, especially in high dimensional C-space; the
second is that during the searching process, collision
detection is unavoidable, which could cost much time.
Both may cause the method inefficient for real-time
interaction. Some other real-time motion planning
techniques are decomposition-based [5, 6]. They try to
decompose the original planning problem into simpler sub-
problems, whose successive solutions result in a large
reduction of the overall complexity. The searching space is
reduced, or the sub-problems can be solved using other
basic planning methods quickly. However, these methods
are usually task oriented, they are more suitable for solving
the motion planning problems with complex tasks.

In recent years, probabilistic roadmaps based methods
(PRMs) [7, 8] have been used by many path planners.
These methods use a roadmap in configuration space
instead of the whole C-space to search a path in query
phase, so the searching space is remarkably reduced. But
the complexity of a motion planner not only lies in the
searching space, but also lies in the collision detection.
Although collision detection between some kinds of basic
geometry shapes have been studied, until now, there’re
still no systemic and effective method to solve general
collision detection problems in real-time. So the cost of
collision detection has hindered the progress of dynamic
interaction between human arms and robots.

To decrease the complexity of traditional methods, in
this paper, a new method of Obstacle Direct Mapping
(ODM) is proposed, combining with a PRM based
framework, to avoid online collision detection, online
workspace cell decomposition [9] and reduce the searching
space. The proposed scheme is promising to solve the
motion planning problem between simplified models of a
human arm and a manipulator in real-time.

The remainder of this paper is organized as follows:
Section II briefly describes the models representing the
Kawasaki manipulator and the human arm. Then the PRM
based framework, including graph construction, mapping
construction is described in section III. The new idea and
method of obstacle direct mapping is described in section
IV. The scheme of motion planning is explained in Section
V. Experiments and conclusions are given in section VI
and section VII, respectively.

0-7803-8641-8/04/$20.00 ©2004 IEEE 169

Proceedings of the 2004 IEEE

International Conference on Robotics and Biomimetics

August 22 - 26, 2004, Shenyang, China

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 23,2010 at 12:53:05 UTC from IEEE Xplore. Restrictions apply.

II. MANIPULATOR AND OBSTACLE REPRESENTATION

A model of Kawasaki FS003N manipulator is
considered in our system (see Fig. 1). This manipulator has
6 DOFs, but only the first 3 links are for the gross motion
planning, the last 3 links are for the trivial planning of the
end effector. So only the first 3 links are considered in our
experiments, and the configuration space’s dimension is 3.
Each link of the manipulator is represented as combination
of polyhedrons and cylinders.

Figure 1.

III.

A.

B.

IV.

Manipulator, human arm and their models

The human arm is represented as another manipulator
with two links. Each link of the human arm is modeled as a
cylinder. Now the collision detection problem is the
combination of such basic procedures: to determine
whether a cylinder (the human arm) collides with a
polyhedron or a cylinder in 3D workspace. In our system,
motion parameters of the moving human arm are given by
keyboard input, select different keys to control arms
motion on line.

GRAPH CONSTRUCTION AND MAPPING

CONSTRUCTION

The motivation to utilize a PRM based framework is
that it can reduce the searching space remarkably.
Searching in a graph with several thousands nodes is more
efficient than in the whole C-space or millions of discrete
configuration points. We can use a determinate graph with
nodes evenly distributed in the C-space, which makes little
difference in final performance, but for the robustness of
the planning system, a probabilistic graph is preferred.

Graph Construction

First, a roadmap (denoted as a graph G) in C-space is
constructed. Because our system runs in dynamic
environments, the position of obstacle (human arm) will
change frequently, this graph should be built in the whole
configuration space independent from any certain obstacle,
which is very different from the graph construction in
static environments. This graph is denoted as G ,

where represents the node set of graph G, G

represents the edge set of G. The details of construction
will be described in Section V. Because effects on the

graph caused by obstacle in any position of the workspace
should be considered, a mapping from workspace to graph
G in C-space should be constructed.

),(en GG

enG

Mapping Construction

After discretizing the workspace into basic cube cells
with a given size, a mapping from cells in workspace to
nodes and edges in graph G of C-space is constructed.
There are two kinds of mapping: from cells in workspace
to nodes in the graph; and from cells in workspace to edges
in the graph. Which are formalized as follows:

ee

nn

GzyxWf

GzyxWf

),,(:

),,(:

Here represents a cube cell in workspace

with as its center. The mapping and

describe which nodes and edges of graph G will be
invalidated caused by the cell W in workspace,

respectively, i.e., the manipulator whose configuration lies
in the edge or equal to the node will collide with the cell.

),,(zyxW

),, zy(x nf ef

),,(zyx

Given a configuration of the manipulator, it’s easy and
direct to find the cells colliding with it, but given a cell in
workspace, it’s not easy to find the nodes of graph G in
which the manipulator collides with this cell. So

calculating the inverse mapping and is easier and

more efficient. The inverse mapping of can be

expressed as:

1

nf 1

ef

nf

WAGf kjinn)(: ,,

1

For a node A (here i, j, k represent the three joint

coordinates of point A in C-space) in G , its inverse

mapping indicates the cells in workspace occupied

by the manipulator with joint coordinates i, j, k. The

inverse mapping of can be expressed as:

kji ,,

)(1 A

n

f n

ef

WBAGf ee),(:1

For an edge (in , to calculate its inverse

mapping, first calculate the inverse mapping of node A and
B, i.e. and , then use a dichotomy scheme,

iteratively calculate the inverse mapping of the middle
point for each current edge. The recursion process stops
when no more cells are added after calculating the inverse
mapping of one middle point.

), BA

(1fn

eG

)(1 Afn)B

OBSTACLE DIRECT MAPPING

To avoid the complex on-line collision detection, a
new method of Obstacle Direct Mapping (ODM) is
proposed in this section. It contains three basic parts: (1)
collision detection model calculated off-line; (2) mapping
from cells in workspace to graph G; (3) surface points
sampling method to quickly decompose the obstacle.

170

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 23,2010 at 12:53:05 UTC from IEEE Xplore. Restrictions apply.

During interaction, when the obstacle moves, the nodes
and edges invalidated by the obstacle also change. Using
the mapping from workspace to C-space, the invalidated
nodes and edges in graph G can be updated. But it's not so
easy to directly map the obstacle to its corresponding
nodes and edges in real time, because of the size (and
shape complexity in some cases) of the obstacle.

There are two steps for calculating the direct mapping
of the obstacle in common way. First is to divide the
obstacle into basic cells, the second is to calculate each
cell's mapping and cumulate them, the union of each
mapping is the mapping of the obstacle. A direct method to
calculate the cells occupied by the obstacle is the region
expand method, starting with a cell in the center of the
model of the human arm. In the expanding process, for
each current cell, a collision detection should be carried
out between the cell and the obstacle model. But this
method is not efficient enough, because the number of
cells occupied by the obstacle is not small enough (about
one thousand in our system), such that the number of
nodes and edges traversed is not small enough either.
These two factors make it hard for real-time requirement.

Figure 2. Determinate sampled points on obstacle’s surface

To avoid performing such collision detection on-line,
and to reduce the cells used for finding corresponding
nodes and edges, an efficient method to decompose the
moving obstacle and track the cells is proposed.
Determinate points are sampled only on the surface of the
obstacle model (see Fig. 2), denoted as . The

distance of neighboring points is about the same as the
cell's side length. When the obstacle moves with some

translation vector v and rotation matrix R, the sampled

points also move with the same translation

and rotation vector. Let denotes the new position of ,

formulated as follows:

Nppp ,,, 21

)1(Nipi

'

ip ip

)1(,

1000

333231

232221

131211

' Nip
vrrr

vrrr

vrrr

p i
z

y

x

i (1)

Given each sampled point’s new position, it's very easy
and fast to find the cell which contains this sampled point.
Only these cells will be used to find the corresponding
nodes and edges in query phase.

Using the continuity of the obstacle, the validity of this

method can be proved. If there exists a node in graph G
corresponding to a cell C inside the obstacle, i.e. the cell

collides with the manipulator whose configuration is

, which can be formalized as A . According

to the continuity of the obstacle, there also exists a cell C

on the surface of the obstacle, which collides with the

manipulator of configuration . So . In fact,

this method is feasible as long as the neighborhood
distance of sampled points is less than the size of the
manipulator. With this observation, the number of sampled
points needed can be reduced, which will further improve
the performance of our system.

A

1

1C

A)(1Cf n

(CfA n

2

A)2

The sampled points can be gotten through geometric
model or direct measurement. In recent years, as the
development of the 3D scanner, 3D range data of the
object’s surface can be obtained easily. ODM scheme is
also very efficient when the obstacle data are 3D range
data. This will be very practical because in many cases the
shapes of obstacles are anomalistic.

Figure 3.

V.

ODM based motion planning framework for interaction

SCHEME OF MOTION PLANNING

The framework for motion planning is shown in Fig. 3.
In the preprocessing phase, first a given number of nodes
are sampled in C-space, then the nodes are used to
construct the graph G. Using the representations of
manipulator and human arm, the mapping from cells to the
graph G is calculated and saved. In the query phase, when
the human body moves, the ODM scheme is used to
update graph G. A local planner is used to connect start
and goal configurations to graph G. The last main step is
graph searching to find a collision free path, the
manipulator will move along this path for interaction.
Some implementation details are discussed in the
following subsections.

171

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 23,2010 at 12:53:05 UTC from IEEE Xplore. Restrictions apply.

A.

B.

C.

VI.

Sampling Nodes and Graph Construction

For maximizing the workspace occupied by the
manipulator in nodes of graph G, first some fixed points
are equably sampled in C-space. Because of the interior
restriction of the manipulator (e.g., self collision), there are
some constraint regions in the C-space, where no nodes
should be sampled. Then the left ones are generated under
uniform distribution. Here we don’t use any factor to bias
the sampling (e.g., use manipulability [10]), because the
environments are sparse, which cause little difference. The
sampled nodes are connected according to the k-nearest
rule. The path between two neighboring nodes is generated
using a local planner, which directly connects them with
discrete points lying on the line segment of the two nodes.

Mapping from W-Space to C-Space

The mapping from workspace to C-space is
implemented as two arrays of chained list. As the memory
needed for storing them is large, the symmetry of the
Kawasaki manipulator is used to reduce them. Using this
technique, without losing the efficiency, the memory used
for preserving the mapping is halved.

Object Direct Mapping and Graph Searching

When calculating the mapping of the obstacle in query
phase, it is not necessary to generate the union set of the
cells’ respective mapping. Just traverse each cell’s
corresponding nodes and edges, mark each one traversed
no matter whether it’s been marked before.

In graph searching step, an A* based method is used.
When the path is found, different from gross motion
planning in static environments, because our system is
dynamic, there’s no enough time and no need to perform
an overall optimization. Here we simply smooth the local
path in the path optimization step. If no path can be found
as the obstacle moves, it’s usually because the number of

nodes in graph G is not big enough. The planner will try to
enhance the graph by adding some nodes near the path
found previously. If after some periods the rescue still fails
to find a path, the planner waits until the obstacle moves
again.

EXPERIMENTS

For evaluating the proposed scheme, the simulation
experiments with real parameters of Kawasaki manipulator
are implemented. Firstly, the C-space is discretized into
161×71×121 configurations. As to the number of nodes in
graph G, we choose 5000 as a trade-off. More nodes will
cause the path generated smoother and make the system
more robust but will cost more memory and influence real-
time performance, vice versa. For sampling nodes, first
16×10×8 evenly distributed fixed nodes are sampled, then
the left nodes are sampled according to uniform
distribution. The nodes with configurations where the
angle between link 2 and link 3 is too small are not
sampled due to interior constraint. The workspace is
discretized into 38×72×58 basic cube cells, whose side
lengths are about 13 mm. The system runs on a Pentium III
700Hz PC with 512MB memory.

The performance of dynamic planner are based on the
performance of individual static replanner, so a set of
experiments with the fixed human arm in given positions
are performed and analyzed firstly. To evaluate the planner
using the ODM method, the results of the eight
experiments (E1, E2, … E8, see Fig. 4) with different
positions of goal point (noted as white point) and different
configurations of manipulator and human arms are
summarized in Table I. To analysis and compare the
performance, the results of region expand method and the
traditional method using online collision detection and A*
searching technique are also include in Fig. 5 and Table I,
respectively.

E1 E2 E3 E4

E5 E6 E7 E8

Figure 4. Eight experiments with different configurations

172

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 23,2010 at 12:53:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I. COMPARISION OF ODM METHOD AND TRADITIONAL METHOD

ODM method (surface points sampling) Traditional method

Experiments Number of nodes

corresponding to

the human arm

Number of edges

corresponding to

the human arm

Number of times

traversing nodes

and edges

Planning

time (ms)

Planning

time (ms)

Number of collision

detectoin

E1 700 2142 43028 291 421 2892

E2 423 1321 23012 70 190 741

E3 788 2251 42727 260 501 3086

E4 433 1347 25331 80 200 743

E5 510 1505 28653 96 245 1253

E6 383 1162 23319 71 451 2901

E7 610 1788 31358 152 401 2011

E8 534 1559 27719 110 661 4465

Average 548 1634 30643 141 383 2261

Figure 5. Planning time for eight experiments

The planning time of the eight experiments for the
three implemented methods in our experiments are showed
in Fig. 5. It can be seen that the performance of region
expand method is not advantaged over the traditional
method, but the performances using surface points
sampling method are much better than the traditional
method (the planning speeds are 2 to 3 times faster
averagely). From table I, we can see that the number of
times traversing nodes and edges (denoted as) is a very

important factor for the system performance. N depends

on the number of cells used (or divided in region expand

method) and the average of (

tN

t

)C()(fCf en
) for these

cells (here C denotes each cell of them). For the whole

workspace, the average of ()C()(fCf en
) in our

experiments is about 250, but its value differs in different
positions. Generally, its value should be bigger when the
cell C is near the manipulator, vice versa. When using the
surface points sampling method, because the cells used are
reduced remarkably compared with region expand method,
the value of N also reduces remarkably. Along with the

unnecessary to perform collide detection between cells and
human arms, much less planning time are used.

t

Figure 6. Planning time for different number of nodes in graph G

Experiments with different number of nodes for the
eight sets of parameters are given in Fig.6. It can be seen
that the planning time for each experiment decreases as the
number of nodes decreases. The reason is that also

decreases along with the number of nodes. We found that
when 4000 is chosen for graph G, the system is still rather
robust, and the efficiency advantage is more obvious.

tN

Interactive motion planning in dynamic environments
is composed of a series of static planning for each moment,
the performance of each static planner directly affects the
efficiency of the interactive planning. So the above 8
experiments are analyzed in details firstly. For testing the
dynamic planning performance of the proposed scheme,
some interactive motion planning experiments are
implemented. The graphic interface for the planner is
shown in Fig.7. A set of interactive planning results are
given in Fig.8. The human arm first stretch out on right
side to make the manipulator move back Fig.8 (a) ~ (d),
then draw back so as the manipulator can find a path
acrossed to reach the goal point, shown in Fig.8 (e) ~ (f).
The human arm stretch out on the left side again to hinder
the movement of the manipulator Fig.8 (g) ~ (h), at last the

173

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 23,2010 at 12:53:05 UTC from IEEE Xplore. Restrictions apply.

human arm draw back for the second time, the manipulator
reaches the goal point ((i) ~ (j)). Motion of human arm is
controlled by keyboard randomly.

CONCLUSIONSVII.

This paper proposes a new scheme to solve real-time
motion planning problems between a human arm and a
robot manipulator. Using a PRM based framework, the
searching space is remarkably reduced. What makes it
possible for real-time requirements is the implementation
of the proposed ODM scheme. Two key factors are
important for the ODM scheme. One is the decomposition
speed of the obstacle, another is the cumulate number of
traversing nodes and edges in query phase. Experiments
comparing with the traditional method are given. It can be
expected that the combination of PRM framework and the
proposed ODM method will be a promising scheme to
solve motion planning problems between human arms and
robot manipulators.

Figure 7. Graphic interface of the experimental system. The left part is

for workspace, the white point near the human’s head is for goal point.

The right part is for C-space, the dark nodes and edges denote the

mapping of the human arm, and the thick light polyline denotes the

planned path.

 (a) (b) (c) (d) (e)

 (f) (g) (h) (i) (j)

Figure 8. Planning results of interaction between a human arm and a robot manipulator

ACKNOWLEDGMENT

This work is supported by National Natural Science
foundation of China (NSFC, Project No. 60175025).

REFERENCES

[1] Y. G. Hwang and N. Ahuja, “Gross Motion Planning - A Survey,”
ACM Computing Surveys, vol. 24, no 3, pp. 219–291, September 1992.

[2] F. Chen, F. Q. Ding, and X. F. Zhao, “Collision-free Path Planning of
dual-arm Robot”, ROBOT, vol. 24, pp. 112-115, March 2002.

[3] G. Hirano, M. Yamamoto and A. Mohri, “Trajectory Planning for
Cooperative Multiple Manipulators with Passive Joints,” In Proc. IROS,
pp. 2339–2344, 2000.

[4] D. Henrich, C. Wurll, and H. Worn, “Multi-directional search with goal
switching for robot path planning,” IEA/AIE, vol. 2, pp. 75-84, 1998.

[5] O. Brock and L. E. Kavraki, “Decomposition-based motion planning: A
framework for real-time motion planning in high-dimensional
configuration spaces,” In Proc. ICRA, vol. 2, pp. 1469-1474, 2001.

[6] M. Mediavilla, J. L. Gonzalez, J. C. Fraile, and J. R. Peran, “On-line
Motion Planning for Robotic Arms: New Approach Based on the
Reduction of the Search Space,” In Proc. ICRA, pp. 3825–3830, May
2002.

[7] L. E. Kavraki and J. -C. Latombe, “Randomized preprocessing of
configuration space for fast planning,” Proc. IEEE Conf. Robotics and
Automation, vol. 3, pp. 2138–2145, 1994.

[8] M. H. Overmars and P. Svestka, “A probabilistic learning approach to
motion planning,” In Proc. Workshop Algorithmic Foundations
Robotics, pp. 19-37, 1994.

[9] P. Leven and S. Hutchinson, “Toward real-time path planning in
changing environments,” In Proc. Workshop Algorithmic Foundations
Robotics, pp. 363-376, 2000.

[10] P. Leven and S. Hutchinson, “Using Manipulability to Bias Sampling
During the Construction of Probabilistic Roadmaps,” IEEE
Transactions on Robotics and Automation, vol. 19, no. 6, pp. 1020–
1026, December 2003.

174

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on July 23,2010 at 12:53:05 UTC from IEEE Xplore. Restrictions apply.

