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Abstract— This paper presents a novel method to identify
and boost difficult regions of in the configuration space (C-
space) in changing environments. Difficult regions, especially
narrow passages, change their shapes frequently in changing
environments, which result in challenging problems to find valid
and safe paths. Although a lot of research has been done to
identify difficult regions, seldom methods provide robust paths.
Moreover, they depend on frequent replanning which wastes a
lot of resources. In this paper, a bridge test method based on
workspace to configuration space ( W-C ) nodes mapping is
invoked to identify difficult regions dynamically. Consequently,
not only difficult regions are identified efficiently, but safe
regions which are less likely to be occupied temporarily, are
flagged for boosting. Furthermore, the calculated simulated
capacitance, which represents the local difficulty level is used to
lead boosting procedure. Specifically, boosting nodes would be
activated or re-closed according to the changing capacitance, so
that calculation resources are concentrate on current difficult
regions. As a result, both the total planning time and replanning
times are descended a lot. Finally, the simulation experiment
with two manipulators shows the proposed method is efficient
even in difficult changing environments.

I. INTRODUCTION

Sampling-based methods, such as Probabilistic Roadmap

Method (PRM)[1] and Rapidly exploring Random Trees

(RRT)[2], contributes a lot in robotics path planning. How-

ever, sampling-based methods show their weakness in some

special regions, such as narrow passages and obstacles’

boundaries, due to their small volumes. In recent twenty

years, plenty of variants of PRM and RRT [3], [4], [5],

[6] have been proposed to deal with these difficult region

problems and have achieved great success even in high-

dimension configuration space (C-Space). Nevertheless, there

are still challenging problems in changing environments,

because difficult regions change their shapes when obstacles

move.
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Dynamic Roadmap Method (DRM)[7] tailors the PRM

framework to make it adapt to changes occurring to the

roadmap. It re-validates points and edges by a precomputed

mapping from W-space to C-space. To deal with changing

difficult regions, DRM-based methods require more incre-

mental sampling points inside. We conclude two crucial

issues for dealing with this problem: (1) How to identify

difficult regions instantly. (2) How to effectively increase

density of C-free points in difficult regions. Many studies

have focused on the above two points [10], [19].

Although many works have achieved significant develop-

ment in dealing with difficult regions, most of them neglect

path safety, which is also very important for realtime plan-

ning [12], [13]. Specifically, method of [17] puts calculation

resource into localized subgoals to improve single planning

efficiency, and when the environment changes, replanning

is invoked to find a new path. Without considering paths

safety, the selected paths are usually invalidated by changing

obstacles, resulting in frequent replanning and poor global

planning efficiency.

In this paper, a novel Simulated Capacitor Method is

proposed to identify and boost difficult regions in chang-

ing environments. This method contains two main steps:

Simulated Capacitor Formation and Capacitance Boosting.

When obstacles move in W-space, capacitor bridges are built

between the positive and negative toggled points to locate

narrow passages and obstacle boundaries. Then, simulated

capacitors are formed and capacitances are calculated to

represent the difficulty level. Moreover, for increasing den-

sity of C-free points in difficult regions, boosting samples

which are preprocessed would be activated partly according

to the capacitance. As capacitances are updated in time,

boosting points around less difficult regions will be shut

down, so that the planner maintains an acceptable point

number, avoiding a waste of calculation resource and improv-

ing realtime planning efficiency. In addition, boosting points

are generated around positive toggled points to enhance

path safety. Therefore, safe paths with less probability to

be occupied by obstacles will be found out to avoid extra

replanning.

Main contributions of this paper can be concluded as

follows:

(1) Simulated Capacitor Method is proposed to instantly

identify difficult regions in changing environments, difficult

regions are flagged out and capacitances are calculated to

indicate the difficulty level.

(2) Capacitance Boosting Strategy is proposed to effec-

tively increase density of C-free points in difficult regions,
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providing safe paths to avoid extra replanning and regulating

the validity of boosting points to enhance planning efficiency.

The rest of this paper is organized as follows: Section II

shows related works. Details of our method are described in

Section III and Section IV. Experiments are drawn in Section

V, and conclusions are given in Section VI.

II. RELATED WORK

A. DRM

DRM is a modified variant of PRM to adapt to changing

environments. It generates nodes randomly since there is

no obstacle considered initially. The gist of DRM is to

represent the relationship between W-space and a roadmap

in C-space by means of constructing two kinds of mapping,

nodes mapping (1) and edges mapping (2):

Φn(w) = {q ∈ Gn | Ω(q)∩w 6= /0} (1)

Φa(w) = {γ ∈ Ga | Ω(q)∩w 6= /0 f or some q ∈ γ} (2)

here, G = (Gn,Ga) is the roadmap constructed in C-space.

Gn is the set of nodes and Ga is the set of edges. Φn(w) and

Φa(w) indicate the nodes and edges of the roadmap which

are invalid caused by the basic cell w of W-space occupied

by obstacles, respectively. Ω(q) denotes a subset of basic

cells occupied by robot whose configuration is q.

In contrast to computing the complex mapping Φn(w) and

Φa(w), the inverse mapping Φ−1
n and Φ−1

a are computed. For

example, to compute Φ−1
n , the robot in the W-space is first

set to the configuration in C-space, and then a seed cell is

put inside the robot and expanded in each direction until

all cells Ω(q) occupied by the robot are found by collision

checks. The computing of Φ−1
a is to make edge γ discrete

recursively until a required resolution is reached. Generally

speaking, computing edges mapping costs too much and is

less important compared with W-C nodes mapping.

In spite of the significant development of DRM in path

planning for changing environments, the probability of find-

ing free path is low in the case of existing narrow passage

in C-space, due to the fact that DRM has sampling bias in

difficult region initially.

B. Safe Planning

Safe motion planning is of importance in improving

robots’ safety and reducing planning cost. Finding a safe

path is more reliable than obstacle avoidance and replanning

manners. In [11], computation of the Regions of Inevitable

Collision (RIC) was proposed to find a safe path by predict-

ing whether a region would be occupied by obstacles or not.

The notion of Near and Potential Collisions Regions is also

introduced, which represented potentially dangerous states

that are heuristically evaluated according to planning risk.

This method shows superiority in low-dimension planning.

However, due to the complexities of approximate computa-

tion and discretization, it is too difficult to apply this method

in high dimensional problems. [18] planned out of RIC by

selecting a proper time horizon for the velocity obstacle. This

time horizon was determined by the minimum time the robot

Fig. 1. Hierarchical Sampling Points

needed to avoid collision, either by stopping or by passing

the respective obstacle. In spite of these, their planner was

sensitive to obstacle’s shape, velocity, and path curvature,

which are difficult to deal with in 3D scenarios.

Though several works focusing on safe planning, no spe-

cific or uniform criteria of path safety have been proposed.

The safe path in this paper, means not only collision-free,

but also less probable to be occupied by obstacles before

reaching the goal.

C. Hierarchical Sampling Strategy

Based on W-C nodes mapping, a hierarchical sampling

strategy is applied to describe the structure of C-space and

increase the nodes density in difficult regions which are

located. To save the calculating resource, nodes will be pre-

generated in different levels. The first and second level points

P and M are live points, which are sampled to describe

the structure of C-space. P would be used as flags in each

updating phase, and M are middle points of P. In addition,

the last level incremental points B are generated as dead

points, which would be activated after appearance of flags

during the updating phase. Although only a part of B are

maintained, the quantity of B will ascend with the robot

moving. Therefore, the planner becomes slower and slower

when the robot moves to unfamiliar places.

1) Sampling Progress: The hierarchical sampling

progress is shown in Fig.1. At first place, point set P ,

colored in red in Fig.1, are generated by uniform random

sampling without obstacles in C-space. Let P = {p1, ..., pn},

represents all the first level points. For each node p ∈ P,

connect K edges En with its K nearest neighbor nodes,

the number K is set in advance. At second place, for

each edge e ∈ En, compute the middle node m ∈ e, which

is colored in black, from its endpoints’ coordinates. Let

Mn = {m1, ...,mi}, represents middle points of pn. Number

i depends on the amount of edges of pn. Finally, the last

level green points are generated around P. For each p ∈ P,

K points bn are generated by random sampling within the

radius R. Distance R is the average distance between p

and its middle points, which makes b well-distributed. Let

Bn = {b1, ...,bk} represents boosted points belonging to
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pn. Here, Bn contains structural information of difficult

regions if pn is bridged. For each b ∈ B, connect K edges

with its K nearest P and M points. What’s more, all points

and edges generated in Step-3 will be set inactive. They

will be activated during the updating phase if their main

points pn ∈ P are selected. Distance metric has a significant

influence on sampling based methods [15], [16]. Hence, all

distances mentioned in this paper are weighted Manhattan

distances, which properly reflect the distance information

between each two C-space nodes.

2) Incremental Points Updating: The validity of main

points P and M is updated by W-C nodes mapping. As the

incremental points B are not mapped and online collision

checking is consuming, we use a predictive model, called

Inner Parzen Window [9], to predict the validity of a node

according to its mapped neighbors. In the updating phase,

for each node activated b, this algorithm will compute its

probability of validity P(b) in a Parzen Window (IPWindow)
centered at b. P(b) is defined as:

P(b) =

window

∑ Nvalid(P+M)
window

∑ N(P+M)

(3)

here, Nvalid(P+M) represents the number of valid nodes be-

longing to set P and M in Inner Parzen Window (IPWindow)
area. N(P+M) is the total number of nodes belonging to

set P and M in the IPWindow area. rwindow is the radius of

IPWindow and is set to be 2R, which has been discussed

in Part A, Section III, to ensure that IPWindow at least

encloses one sample point. Incremental point b will not be

really added to the roadmap unless P(w) > T hreshold, and

the IPWindow can be substituted by the nearest K points of

P and M.

III. SIMULATED CAPACITOR ALGORITHM

To find difficult regions in changing environment, CBB

method is proposed in [20]. It is based on a W-C nodes

mapping in the preprocessing phase, and updates each node’s

validity without collision checking in the updating phase.

In the query phase, an A* method is employed to find the

optimal path in the roadmap.

CBB provides both efficiency and accuracy for difficult

regions identification, but it doesn’t provide the difficulty

level information, which is a significant index to conduct

further boosting. If we boost all difficult regions with the

same level, a lot of calculation resource would be wasted.

A. Capacitor Bridge

In the preprocessing phase, three-level nodes are sam-

pled and then W-C mapping is built with the main nodes.

Specifically, there are two steps to build this mapping: (1)

Decompose W-space into small cells. (2) Compute Φ−1
n (q).

Computation of Φ−1
n (q) has been described in part A of

Section II.

In the updating phase, validity of each node around

the obstacle may toggles when the obstacle moves. These

transformation information can be immediately acquired with

Fig. 2. Simulated Capacitor

W-C nodes mapping. We define the point set P+, as points

which have validity toggle from false to true, and P−, as

points which have validity toggle from true to false. When

obstacles move in W-space, sample points which have been

released by them have positive toggles: validity changes from

false to true. While sample points which have been just

occupied by them have negative toggles: validity change

from true to false.

If one edge e has both P+ and P− endpoints, and m ∈ e

is valid, a simulated capacitor is formed to flag a narrow

passage. Fig.2 shows the narrow passage identify principle

of capacitor method. Specifically, when an obstacle moves to

a new position, as well as its configuration, the red shadow

region represents its previous position. By the help of W-

C nodes mapping, modification of P can be obtained. For

each p ∈ P, if p.validity toggles from false to true, add p to

P+ and colore it in purple. Otherwise, if p.validity toggles

from true to false, it will be put into P− and colored in

blue. There are four situations of a C-space narrow passage

in Fig.2. For the upper two pictures, one obstacle moves

to another, and there are only blue P− near the narrow

passage, so this narrow passage will not be flagged due to

the fact that two islands may bump together and this C-

free region is dangerous. The third situation in which two

obstacles move away from each other will not be flagged,

ether. Because there has been several available nodes and

there will be more and more later, boosting is not necessary.

Then, the last situation in which the narrow passage is

changing with the moving obstacles should be flagged. The

detail method is as follows: for each p ∈ P+, its middle

point m ∈ Mn = {m1, ...,mk} are found by edges of En =
{e1, ...,ek}. If m.validity is true, find the other endpoint p′

of e. If p′ ∈P−, a “capacitor” bridge will be built, and p will

be marked as a flag to indicate that Region D is a narrow

passage. Details are shown in Algorithm 1.

433



Algorithm 1 Simulated Capacitor Builder

Require: W-C nodes mapping for P and M

1: Updating phase:

2: for each node p ∈ P do

3: if p.validity turns from false to true then

4: p ∈ P+
5: else if p.validity turns from true to false then

6: p ∈ P−
7: end if

8: end for

9: for each node p ∈ P+ do

10: Pick each edge e connected with p, get middle point

m ∈ e

11: if m.validity is true then

12: Get the other endpoint p′ ∈ e

13: if p′ ∈ P− then

14: mark (p, p′)
15: end if

16: end if

17: end for

Region D

Fig. 3. Simulated Capacitor

B. Capacitance Calculating

As we know a simple capacitance can be calculated by:

C =
ε ·S

4πkd
(4)

In formula (4), S can be understood as charge density,

here we use the sum number of P+ and P− to describe it;

the distance d in a simulated capacitor is the weighted Man-

hattan distance, which has been calculated in preprocessing

phase; the constants are used to normalization. Therefore,

the simulated capacitance can be calculated as follows:

C = ε ·
∑(Ps+)+∑(Ps−)

[α ·∑n
i=1 |di −d′

i |
2]

1
2

(5)

For instance, in Fig.3, there are two capacitor bridges

between the narrow passage, assume the capacitance of

the central one is C1, the bottom one is C2. As discussed

above, side length d1 and d2 have been calculated in the

preprocessing phase. Here, assume d1 = d2 = d. Then, there

are two P+ points connected with C1’s positive endpoint

and one P− point connected with its negative endpoint. As a

result, C1 and C2 can be expressed as (2+1)ε/d = 3ε/d and

(1+ 1)ε/d = 2ε/d, respectively. Clearly, the central place

is harder than the bottom place in this narrow passage, and

these changing capacitance will be used to adjust the coming

boosting. The algorithm is shown in Algorithm 2.

Algorithm 2 Capacitance Calculation

Require: (p, p′) got in Algorithm 1

1: Preprocessing phase:

2: for each e ∈ E do

3: d = [α ·∑n
i=1 |di −d′

i |
2]

1
2

4: end for

5: Updating phase:

6: for each (p, p′) do

7: for each node p′′ connected with p do

8: if p′′ ∈ P+ then

9: Σ(Ps+)++
10: end if

11: end for

12: for each node p′′′ connected with p′ do

13: if p′′′ ∈ P− then

14: Σ(Ps−)++
15: end if

16: end for

17: end for

18: for each node F(p, p′) ∈ F do

19: calculate the capacitance with cn = ε · ∑(Ps+)+∑(Ps−)

[α ·∑n
i=1 |di−d′i |

2]
1
2

20: cn ∈C{C1(p1,c1), ...Cm(pm,cm)}
21: end for

IV. CAPACITANCE BOOSTING STRATEGY

As difficult regions are flagged by capacitor bridges, the

next task is to improve node density inside them. Positive

half bridge regions near P+ are less likely occupied by ob-

stacles, therefore, Capacitance Boosting Strategy is proposed

to conduct the boosting process. Incremental points of B,

which have been pre-sampled, would be activated according

to the capacitance, and the validity of B would be obtained

by a predictive model, which has been discussed in Section

II.

For each flag p ∈ P+ obtained in updating phase, only

one safe endpoint of the bridge p ∈ P+ is boosted. Since P

are generated uniformly, P+ and P− will be regenerated

as long as obstacles move. P+ always follow obstacles,

while P− always stand in the way of obstacles. Therefore,

simulated capacitors formed in each updating phase always

follow a wall of the narrow passage and avoid another one.

If two walls move toward each other, no bridges will be built

there, thus indicating the corresponding narrow passage will

disappear soon.

For example in Fig. 4, a narrow passage is marked by

capacitor bridge. The red region is the previous position of

the C-obstacle, and the gray is the new position of it. Both

left and right side have several main points, and white points
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Algorithm 3 Capacitance Boosting Strategy

Require: C{C1(p1,c1), ...Cm(pm,cm)}
1: Updating phase:

2: for each node b ∈ UpdateArray do

3: b.validity = false

4: for each e ∈ b do

5: e.validity = false

6: end for

7: end for

8: clear UpdateArray

9: for each node Cn ∈C do

10: m = 5 · cn Pick Bn ∈ pn

11: for each b ∈ B′
n{b1, ...,bm} do

12: b.validity = true

13: add b to UpdateArray

14: for each e ∈ b do

15: e.validity = true

16: end for

17: end for

18: end for

19: clear P+
20: clear P−
21: clear C

22: for each b in UpdateArray do

23: get K-nearest p1, ...pk from P and M

24: Compute P(b) =
window

∑ Nvalid(P+M)
window

∑ N(P+M)

25: if P(b)> b.T hreshold then

26: b.validity = true

27: else

28: b.validity = false

29: end if

30: end for

Region D

Fig. 4. Capacitance Boosting Strategy

do not change their validity. Three purple points belonging to

P+ are boosted, and they activate different number of green

incremental points. On the other side, three blue points are

P− points. As we have calculated in section III, the capac-

itance C1 and C2 are 3ε/d and 2ε/d. Their normalization

result are 0.65 and 0.45, respectively. Therefore, there are 3

and 2 ( at most 5) boosting points activated around them.

In addition, the other purple point in P+, which is not a

simulated capacitor any more, has all incremental points

closed to save calculation resource. The threshold of the

predictive model is set to be 0.6− 0.8. Eventually, in Fig.

4, the red path with high safety will be searched in query

phase. Actually, the positive half bridge area contains more

paths because this region has been boosted. In other words,

the positive electrode of simulated capacitors attracts paths to

safe regions, while the negative electrode excludes paths to

avoid unsafe regions. Details of the method described above

are displayed in Algorithm 3.

V. EXPERIMENT AND DISCUSSIONS

For evaluating the proposed method, hundreds of simula-

tion experiments are implemented in 3D workspace with two

manipulators modeled by parameters of a practical 6-DOF

Kawasaki FS03N manipulator. Two manipulators mounted

on a fixed base make up a dual-manipulator system. Although

it is a simple idea to plan two manipulators respectively,

mutual collision avoidance and coordination between two

manipulators are difficult to handle. Therefore, 12 DOFs of

two manipulators are considered simultaneously and 12 di-

mensional C-space is constructed. The reachable workspace

of two manipulators is decomposed into 406134 grids, and

each grid is a cube with the size of 4x4x4 mm. Collision

check in our system is implemented by a free 3D Collision

Detection Library, ColDet 1.1. All experiments are carried

out on an Intel Dual-Core 3.00 GHz CPU with 2GB memory.

The experiment scenario is shown in Fig.5.

TABLE I

SAMPLING AMOUNT OF DIFFERENT METHODS

Method P M M′ B S Time (s)

SCM 500 1537 - 2500 4537 4.02
CBB 500 1529 - 2500 4529 3.98
DBB 500 1549 466 2330 4379 3.21
DRM 4537 - - - 4537 5.38

Fig.5. shows the scenario with multiple obstacles, which

indicates that the simulated capacitor method can be used in

the multi-obstacle scene with different regions, so long as

obstacles move with inertia. There are five bars in the exper-

iment. One of them is vertical while the rest are horizontal.

Since narrow passages in workspace often indicate presence

and location of narrow passages in C-space [14], distances

between obstacles and manipulators are set close enough to

ensure difficulty. The vertical bar moves along the red axis

back and forth, the highest bar moves left and right, while

the other bars move up and down. All bars move at different

speeds. Note that bars can pass through each other, while

manipulators can not. Two manipulators are set to reach a
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TABLE II

RESULTS OF DIFFERENT METHODS

Method SPR Nn Nb ART LRT SPT AT ST

SCM 91.51% 2092 55 34.21 52 403.2 0.123 49.59
CBB 91.74% 2900 871 33.12 54 401.0 0.241 96.64
DBB 91.66% 4379 2330 49.16 72 589.4 0.520 306.49
DRM 90.71% 4537 - 59.77 89 643.5 0.548 352.64

Improvement 1 0.80% 53.89% - 42.76% 41.57% 37.34% 77.55% 85.93%
Improvement 2 -0.23% 27.86% - -3.20% 3.70% -0.55% 48.96% 48.66%

Fig. 5. Experiment Scenario

fixed destination from a random configuration for 500 times.

Fig.6. shows a running state of the experiments. Results of

different methods are shown in table II.

Table I compared the preprocessing phase of related meth-

ods: Simulated Capacitor Method (SCM), Capacitor Bridge

Builder (CBB), Dynamic Bridge Builder (DBB) and DRM.

The number of samples and sample time consuming are

illustrated. The cardinality of P is crucial in realization. If it

is too large, updating phase will be time-consuming. If it is

too small, roadmap does not contain enough information for

C-space construction. M is the number of middle nodes. S

is the sum of sampling points, each main point generates K

incremental points and edges, so parameter K influences the

size of B and E. In this paper, K is set to be 5, contributing

to a moderate point density. The method of DRM with equal

total number of points to SCM is used for comparison.

Column Time in Table I illustrates the preprocessing cost

without W-C mapping.

In Table II, column SPT represents the Sum of Planning

Times of each experiment, ART and LRT represents Av-

erage Re-searching Times and Largest Re-searching Times,

respectively. SPR is the Successful Planning Rate, which is

computed as 1− ART/SPT . Nn is the average number of

online nodes and Nb is the average number of online boosting

nodes. AT is the Average planning Time of each planning,

and ST is the average of Sum Time in each experiment.

Fig. 6. A Running State in Experiment

As shown in Table II, the proposed work SCM and

CBB show their superiority in SPT. Although these four

different methods have almost the same SPR, considering

the path safety, capacitor planner provides safer paths so

that manipulators complete task with more than one third

lower planning times. DBB [8] does well in difficult regions

identification, but provides no safe guarantee. LRT and ART

show its characters. Moreover, column Nn and Nb show the

key point of the performance of SCM. Dealing with the

same problem, SCM maintain a much smaller number of

online nodes (less than half of DRM and DBB or two thrid

of CBB) due to the capacitance boosting strategy. Clearly,

closing the unnecessary incremental points can save lots

of resource and concentrate on current difficult regions to

achieve a shorter single and sum planing time. This point

can be best illustrated by the smallest Nn, Nb, AT and ST

in Table II. The first improvement row shows the efficiency

improvement of SCM compared with DRM, and the last row

shows the improvement compared with CBB method.

VI. CONCLUSIONS

In this paper, a simulated capacitor method is proposed

to process the problem of difficult regions in changing

environments. Difficult regions such as narrow passages

are identified by the formed simulated capacitor between

positive and negative toggled nodes in C-space. The ca-

pacitance is calculated with neighborhood information and

reflects the local difficulty level. In the updating phase,

incremental points, which are pre-sampled in preprocessing

phase, are activated around positive poles of the capacitor

where are safer and less likely disturbed by obstacles. As

a result, the replanning times and total planning times are

declined efficiently. What’s more, considering the changing

local difficulty level, incremental points will be regulated
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according to the capacitance, useless points will be shut

down and attention will be concentrated on contemporary

difficult regions, so that the sum number of points maintains

acceptably and planning efficiency improves a lot. In our

experiment, the superiority of this method in solving the

difficult region problem is shown by high planning efficiency

and low replanning times, which prove that the proposed

simulated capacitor method is a promising method for path

planning in changing environments.
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