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Abstract— Robot audition is a natural and convenient way
for robot to interact with outside. Binaural sound source
localization for robot audition plays an important role in
human-robot interaction, speech capturing, enhancement and
communication, etc. For the issue, interaural time difference
(ITD) and interaural level difference (ILD) are two essential
binaural (interaural) cues, yet they are still difficult to extract
in complex environments. In this context, this paper proposes a
new scenario to simultaneously estimate the ITD and ILD based
on Interaural Matching Filter (IMF). The IMF is an optimal
filter in view of eliminating the disparity of binaural signals
so that it implies some information of binaural cues. Firstly,
the IMF is decomposed into a minimum phase component and
an all-pass component by homomorphic filtering. Subsequently,
ITD is evaluated from the phase response of all-pass component,
and ILD is yielded by the amplitude response of minimum
phase component. Experiments verify the effectiveness of our
method to preserve binaural cues, and it is robust for sound
localization.

I. INTRODUCTION

As an important part of artificial intelligence and human-
robot interaction, robot audition has reached an undisput-
ed level thanks to varieties of studies dealing with sound
source localization, speech recognition and so on in the last
decade. Sound source localization for robot audition is to
point the sound source accurately using the received signals
on microphone arrays of robot in many applications such
as speech capturing, speech enhancement, communication
and human-robot interaction [1]. To estimate the location
of sound source, it is often stated that more than two
microphones are needed [2]. One of the primary abilities
of human auditory system is to localize sources by two ears.
Thus as an important trend of sound localization, binaural
or dual-channel sound source localization has become quite
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attractive and interesting since it uses only two sensors to
capture signals to act as human-like auditive system [3], [4].

A large amount of binaural localization algorithms have
been developed in various experimental environments like
[5], [6] since “Duplex Theory” [7] was proposed, and most
of them often used binaural cues to determine the relative
position of a sound source. Similar to the fact that we
cognise sound position by loudness, tone and orientation,
there are two significant binaural (interaural) cues based on
differences in time and level of the sound arriving at two
ears called interaural time difference (ITD) and interaural
level difference (ILD) [8], [9]. The ITD, which is caused by
the different distances from the sound source to sensors, is
commonly used in the time difference of arrival (TDOA)-
based approaches [10], and ILD is often brought about by
the distinct attenuation ratios of two ears. Exact estimation
of binaural cues is the key to accurately localizing the sound
source but ITD and ILD estimates are still very challenging
and significative. Among the ITD approaches, the most
popular is the generalized cross-correlation (GCC) method,
and ILD is usually defined by the logarithmic energy ratio
of two ears, which namely means that two free-running
progresses are required to reckon binaural cues.

The paper proposes to model the difference between left
and right ear signals through Interaural Matching Filter
(IMF), which was proposed in [11]. The IMF is an optimal
filter that takes the signal of left (right) ear as the input of
a Wiener filter and the other one as the expectation signal.
The principle of this design is to eliminate the disparities
between binaural signals using the famous Minimum Means
Square Error (MMSE) criterion. As the disparities are mainly
reflected in delay and multiplier units, it is confirmed that
the coefficients of IMF imply the ITD and ILD. Therefore,
we try to estimate the ITD and ILD based on the IMF
so that an integrated method is presented to binaural cues
estimates simultaneously instead of the GCC or logarithmic
energy ratio. Specifically, the IMF is decomposed into a
minimum phase component and an all-pass component using
homomorphic filtering [12]. Then, the ITD is obtained from
the phase response of all-pass component, who has the
unit amplitude response. The ILD can be derived form the
amplitude response of minimum phase component as well,
all of whose poles and zeros are located in the unit circle as
it does not influence the phase of IMF. For the localization
procedure, this paper locates sound source by a new joint
estimation of ITD and ILD, since joint estimation of ITD
and ILD has less time consumption in real-time [8], [13]–
[15]. Accordingly, the novelty of our method lies in fore-
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most coming up with an original scheme for binaural cues
simultaneous estimates to reduce the realization complexity
of sound localization. The experiments has demonstrated
the robustness of our method in both noisy and reverberant
environments.

The rest of this paper is organized as follows: The IMF
is discussed in Sec. II. The binaural cues estimates and lo-
calization are presented in Sec. III and Sec. IV, respectively.
Experiments and discussions are shown in Sec. V. At last,
the conclusions are drawn in Sec. VI.

II. INTERAURAL MATCHING FILTER

To obtain binaural cues means collecting the interaural
differences between binaural signals. Here we do not intend
to extract the interaural differences directly, but compose an
Interaural Matching Filter (IMF) to eliminate the disparities
between binaural signal first. With the MMSE criterion
the impulse response of IMF which includes delay and
attenuation is acquired and the details of the IMF will be
introduced in this section.

If we denote the received signals on the two ears as
xi(n), i ∈ {l,r} when there is a sound source signal s(n),
then the acoustic propagation model can be formulated as

xi(n) = hi(θ ,φ,n)∗ s(n), i ∈ {l,r}, (1)

where θ and φ represent the azimuth and elevation of the
sound source, and the interaural differences are characterized
by hi(θ ,φ ,n). In order to eliminate the disparity between
binaural signal xi(n), i ∈ {l,r}, we compose an optimal filter
derived from the Wiener filter as Fig. 1 shows. Here the left
ear signal xl(n) is taken as the input of IMF to predict the
right ear signal xr(n), and our goal is to make the output
y(n) be the best prediction.

Fig. 1. Linear discrete time Interaural Matching Filter. Taking xl(n) as
the input of IMF and xr(n) as the expectation is equivalent to the contrast
situation in theory.

Let www = [w0,w1, . . . ,wM−1] be the impulse response of
IMF in the time domain such that M is the frame length of
xi(n), i∈ {l,r}. Hereby the output of IMF is easily expressed
as

y(n) =
M−1

∑
i=0

w∗i xl(n− i), n = 0,1, . . . ,M, (2)

where ∗ denotes the conjugate operator. By the way, we
define the error function of IMF as

e(n) = xr(n)− y(n). (3)

If the recorded binaural signals are pre-normalized, the error
function defined above often acts as Gaussian noise with unit

mean. In the context, we can calculate the cost function of
IMF using its variance as

J(n) = E{|e(n)|2}= E{e(n)e∗(n)}, (4)

where E is the expectation operator. The famous Wiener-
Hopf equation is solved by the Maximum Likelihood esti-
mate as

∞

∑
i=0

wiRxl ,xl (i− k) = Rxl ,xr(−k), k = 0,1, . . . ,M−1, (5)

where Rxl ,xl is the autocorrelation matrix of xl and Rxl ,xr is
the cross-correlation vector between the binaural signals. If
the left ear signal is set as

xxxl(n) = [xl(n),xl(n−1), . . . ,xl(n−M+1)]T , (6)

then the autocorrelation matrix Rxl ,xl of xl(n) is given by

RRRxl ,xl = E{xl(n)xH
l (n)}

=


Rxl ,xl (0) Rxl ,xl (1) . . . Rxl ,xl (M−1)
R∗xl ,xl

(1) Rxl ,xl (0) . . . Rxl ,xl (M−2)
...

...
...

...
R∗xl ,xl

(M−1) R∗xl ,xl
(M−2) . . . Rxl ,xl (0)

 .

(7)
Similarly, the cross-correlation vector is calculated as

rrrxl ,xr = E{xl(n)x∗r (n)}
= [Rxl ,xr(0),Rxl ,xr(−1), . . . ,Rxl ,xr(−M+1)]T .

(8)

Therefore, the coefficients of IMF can be solved by the
Wiener-Holf equation in the time domain as

www = RRR−1
xl ,xl

rrrxl ,xr . (9)

So far, we have accomplished the design of IMF and comput-
ed its impulse response, i.e., obtained disparity information
between binaural signals. In the following, the emphasis
should be concentrated on how to resolve the binaural cues
from it.

III. BINAURAL CUES ESTIMATION

As the interaural differences are generally characterized
by the ITD and ILD, the function of IMF can be thought
as the combination of delayers and multiplicators as well.
Thereout, the IMF is an linear time invariant system such
that it can be decomposed into a minimum phase component
(MPC) and an all-pass component (APC) [12]. Intuitively,
the MPC has zero-phase, which does not influence the time-
delay of interaural signals but the intensity difference. At
the same time, the APC has unit amplitude response, which
does not affect the intensity difference but the time-delay
only. Thus, we can estimate the ITD and ILD by evaluating
the phase response of the APC and the amplitude of the
MPC, respectively.

Based on the theories in signal processing, the impulse
response w(n) of IMF can be decomposed in the time domain
as

w(n) = wmin(n)∗wall(n), n = 0,1, . . . ,M−1. (10)
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where ∗ represents the convolution, wmin(n) is the minimum
phase component (MPC) of w(n) and wall(n) is the all-pass
component (APC). In the frequency domain, Eq. (10) can be
rewritten as

W ( f ) =Wmin( f )Wall( f ), (11)

where W ( f ), Wmin( f ) and Wall( f ) are the fast Fourier trans-
forms (FFTs) of w(n), wmin(n) and wall(n), respectively. On
one hand, the MPC contains all poles and zeros within the
unit circle, thus the amplitude response of IMF is merely
caused by the MPC, i.e.

|W ( f )|= |Wmin( f )|. (12)

On the other hand, the APC has the image symmetrical zero-
pole pairs and the unit amplitude response, thus the phase
response of IMF is merely induced by the APC, i.e.

arg
(
W ( f )

)
= arg

(
Wall( f )

)
. (13)

Using the homomorphic filtering [12] to decompose w(n)
into its MPC and APC, and the detailed processes are
depicted in Fig. 2. Firstly we compute the FFT of w(n)
to get W ( f ), then calculate its complex logarithm which
is expressed by WR( f ). And calculating the inverse FFT of
WR( f ), we can produce the cepstrum sequence c(n). These
above three steps are shown in the red box of Fig. 2. The
complex cepstrum of MPC cmin(n) is obtained by multiplying
c(n) with 2u(n)− δ (n), where u(n) and δ (n) are the unit
step and Dirac delta functions, respectively. Then, we begin
the following three steps as shown in the blue box which
is inverse operation of the red box. Conducting the FFT
of cmin(n) and then exponentiating, Wmin( f ) is settled, that
is the MPC wmin(n) in the time domain can be deduced
by the inverse FFT of Wmin( f ). Finally, the APC in the
frequency domain Wall( f ) is divided W ( f ) by Wmin( f ), and
the corresponding form wall(n) can be also easily obtained.
In the next, the ITD and ILD will be evaluated from wall(n)
and wmin(n), respectively.

FFT ln|.|

exp(.)

IFFT

FFT

w (n) W ( f ) WR ( f ) c (n)

c min(n)

Wall ( f )

=W ( f ) Wmin ( f ) 

IFFTIFFT

wmin (n)wall (n)

Wmin ( f )

2u(n)-δ(n)

Fig. 2. Decomposition of minimum phase component and all-pass
component using homomorphic filtering.

A. ITD Estimation
According to the aforehand analysis, the interaural phase

difference (IPD) can be calculated first using the phase
response of the APC as

IPD = arg
(
Wall( f )

)
. (14)

Then since the ITD is the slope coefficient of unwrapped
phase difference, the time-delay estimate (TDE) can be
realized by unwrapping IPD, i.e.

IT D =
1

2π
f+IPD, (15)

where f is the frequency of binaural signals and (.)+ denotes
the Moore-Penrose pseudo inverse. Actually, the ITDs are
obtained by a least square operator performed on the IPD.

A comparison of binaural estimates of CIPIC Head-
Related Transfer Functions (HRTFs) [16] for the office envi-
ronment between the proposed method and typical research
is shown in Fig. 3. The CIPIC database includes 1250
directions (25 azimuths × 50 elevations). From Fig. 3 it
can be seen that the ITDs obtained by our method vary
systematically and have less fluctuation such that they are
more robust and adaptive to the challenging environments.

Fig. 3. Comparisons for ITD. Up: obtained by our proposed method.
Down: attained by GCC-PHAT.

B. ILD Estimation
The ILD is directionally independent, and it does not

have a salient geometrical distribution with the azimuth or
elevation. Yet it is a frequency dependent cue that reflects
the intensity difference of the signals reaching the two ears.
We can extract the ILD from the amplitude response of the
MPC of IMF using the Eq. (12) as

ILD = 20log10 |Wmin( f )|, (16)
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where Wmin( f ) has already been estimated. And from Fig. 4 it
can be concluded that the ILDs solved by the two methods
have the approximate envelopes, that is, the ILDs decom-
posed from the IMF are able to represent the realistic ILDs
(i.e. denoted by the logarithmic energy ratio).

Fig. 4. Comparisons for ILD. Up: obtained by our proposed method.
Down: attained by the logarithmic energy ratio.

IV. JOINT AZIMUTH LOCALIZATION

In most practical applications, the azimuth localization
is much more significant than elevation localization. For
instance, we control a robot to rotate horizontally so as
to interact with human beings according to the localization
results. And the azimuth of a desired speech is needed to
assured to be enhanced or separated from other sources.
Besides, the elevation localization is much more difficult
than the other one, because it is only related with the ILDs
which has little robustness to the environment elements.
Fortunately, the azimuth localization has already satisfied the
realistic requirements, thus we mainly concentrate on the
localization of sounds situated on the azimuth plane.

If the ITD is only used for orientation, we can train the
ITDs offline for all directions using the HRTFs or recorded
binaural audio. And then we store them as templates. Fur-
thermore, it is obvious that the similarity between the ITDs
obtained from the binaural signals and the ITD templates can
be utilized to describe the spatial distance between the sound
source and an arbitrary direction. Thus, it means that if the
ITD of the received binaural signals resembles a certain one,
the sound source is localized. Here a simple but effective
cosine-based similarity is adopted as

α =
< IT D1, IT D2 >

∥IT D1∥∥IT D2∥
, (17)

where <,> denotes the inner product of vectors and ∥ · ∥
denotes 2nd order norm. If IT D1 is from the templates and
IT D2 is computed from the received sound, α will be the
probabilistic distribution of the ITDs. Thereby, the ITDs
can be only involved in localization . Similarly, we can
also consider merely using the ILD for localization, and the
cosine-based similarity of ILD is given by

β =
< ILD1, ILD2 >

∥ILD1∥∥ILD2∥
, (18)

where the ILD1 and ILD2 should be the ILD templates and
ILD of binaural signals, respectively.

Once ITD and ILD templates are stored, the azimuth
localization is simplified as matching the received binaural
cues with templates. Since the ITD and ILD are mostly
based on the STFT spectra of the input signals, they should
be estimated for each spectral coefficient. On one hand,
the ILD-based acoustic localization has a relatively large
standard deviation, especially at low frequencies. On the
other hand, the ITD-based acoustic localization has smaller
standard deviation, but is ambiguous due to phase wrapping
in the Fourier transform. Since both the ILD and the ITD are
related to the azimuth, they can also be related to each other.
Therefore, for practice jointly evaluating of these quantities
would be more effective in order to provide good source
estimations. The ILDs are used to resolve the ITD ambigu-
ities, and the ITDs are taken to overcome the invisible ILD
distribution. This joint evaluation for azimuth localization
can be formulated by

θ = argmax
θ

αβ . (19)

Then the detailed sound source localization process is
drawn in Algorithm 1.

Algorithm 1: Sound Source Localization based on IMF
Input: left ear signal xl(n), right ear signal xr(n)
Output: azimuth θ

1 Templates: IT Ds, ILDs ;
2 Design Interaural Matching Filter ;
3 wmin(n), wall(n) ← decompose w(n) into MPC and

APC;
4 IPD← arg

(
Wall( f )

)
, IT D← 1

2π f+IPD;
5 ILD← 20log10 |Wmin( f )| ;
6 while θi exists do
7 αi =

<IT Di,IT D>
∥IT Di∥∥IT D∥ ;

8 βi =
<ILDi,ILD>
∥ILDi∥∥ILD∥ ;

9 end
10 θ = argmaxθi αiβi;
11 return θ

V. EXPERIMENTS AND DISCUSSIONS

The CIPIC database [16] is used in experiments to verify
the performance of our method. The database is measured by
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the U. C. Davis CIPIC Interface Laboratory, which includes
head-related impulse responses (HRIRs) for 45 different
subjects (including 27 males, 16 females, and 2 KENARs
with large and small pinna). The HRIRs are tested at 1m with
25 azimuths and 50 elevations, i.e. totally 1250 directions for
each subject. In experiments, the sound source is sampled
at 44.1kHz and enframed to 256 sample points for each
frame, because the fact that binaural signals with long frame
length will make designing IMF more difficult as well as
the unavoidable increasing computational complexity. The
detailed parameters used here are shown in TABLE I.

TABLE I
PARAMETERS USED IN EXPERIMENTS

Parameter Value
Sampling frequency 44.1kHz

Frame length (STFT length) 256 points
Frame shift 128 points

Block length (observation time) 2 s
Processor type i5-2320 @ 3.00GHz

A. Efficiency of Joint Method

Firstly, we should analyze the influence of different bin-
aural cues on the localization correct rate. As mentioned
in Sec. IV, the ITD-based azimuth estimates are ambigu-
ous and there is a larger standard deviation for ILD-based
localization. Thus we select three methods, i.e. IT D, ILD
and IT D+ ILD, for azimuth estimate. Fig. 5 compares the
localization accuracy between ILD, ITD and the joint of
ILD and ITD. The noise used in our experiments is white
Gaussian noise and the signal-to-noise ratio (SNR) ranges
from 0dB to 40dB. We can see that all of the correct rates
increase along with the increases of SNR. On one hand,
the ITD-based method achieves more preferable effects than
the ILD-based one, and in general the joint method acts
as the most precise solutions. Specifically, the joint method
can even achieve nearly 100% correct rate with 5◦ tolerance
in the quiet enclose. On the other hand, the random noise
would corrupt the available binaural signals and lead to an
incoherent design of the IMF, which makes the estimation
of ITD and ILD more difficult. Yet we can conclude that
the joint one effectively raises the localization accuracy,
especially with the low SNR it reaching 68.83%. That means
both ITD and ILD are useful for azimuth localization.
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ILD ITD ILD+ITD

Fig. 5. Comparing the azimuth localization accuracy of ILD, ITD and joint
of ILD and ITD in different SNRs with 5◦ tolerance.

B. Comparison with Other Methods

Secondly, we compare our method with several state-of-
the-art algorithms including TDC [7], Hierarchical System
(HS) [17] and Probability Model (PM) [19]. The exper-
imental sound sources are speech utterances captured in
an office environment with different SNRs. The detailed
comparison results are illustrated in Fig. 6 and Fig. 7.
It can be concluded that in most cases our method has
achieved the best results. In detail, when Tolerance=0◦ (i.e.,
the localization resolution is within 1◦), our method displays
a tremendous superiority among these four algorithms as
shown in Fig. 6. We have achieved 98.79% localization
performance when with no noise, that promote 6% better
than HS approximately, because our method greatly benefits
from the effective simultaneous binaural cues extractions
from the IMF and ability of joint estimate. Indeed, the IMF
is an optimal filter, which can alleviate the additional noises
to some extend. Yet the ITD and ILD are evaluated by the
GCC and logarithmic energy ratio. Therefore, we can provide
more precise ITD and ILD by decomposing the IMF in the
noisy environments than the others, and the join of ITD
and ILD can improve the localization issue. Besides, when
Tolerance=10◦ and SNR ≥ 20dB, all of the performances
of these methods exceed 99% as shown in Fig. 7. This is
satisfactory to the practical applications already.
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Fig. 6. Comparing localization correct rate using the proposed method and
several popular methods when the tolerance is 0◦.
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Fig. 7. Comparing localization correct rate using the proposed method and
several popular methods when the tolerance is 10◦.
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C. Reverberant Localization

Finally, we also test our approach in a reverberant enclose,
which is simulated as a room of size (10× 6× 3) m with
the image method [17]. Different reverberation times are
considered range from 0 to 500 ms. The head is put at the
point of (2×3×1) m. The Parisi’s method [18] is chosen as
a reference, because it also utilizes the joint scheme but with
different binaural cues estimates in the reverberant environ-
ments. When the sound sources is positioned at θ = −15◦,
Fig. 8 illustrates the comparing results. It is clear that the
localization performances of ours are better than that of [18],
especially TR = 0ms our method get 47.35% accuracy which
is higher than Parisi’s. That means the IMF can still work
effectively in the reverberant environments. Accordingly,
our method is adaptive to both the noisy and reverberant
surroundings, and it can be applied to the practical scenarios.
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Fig. 8. Comparing localization results at azimuth θ = −15◦ at different
reverberation times (from TR = 0 ms to TR = 500 ms) by the proposed
method and Parisi’s method.

VI. CONCLUSIONS
This paper proposes a new binaural cues estimates method

based on IMF for the sound source localization. The IMF
begins with the differences between binaural signals such
that it implies the information of ITD and ILD. Thus we
decompose it into a minimum phase component and an all-
pass component to deduce ILD and ITD, respectively. From
the experiments, it is observed that both of the binaural
cues are useful for localization and ITD is more effective.
The joint estimate of ITD and ILD is a better selection to
improve the robustness of localization method. Theoretically,
the IMF is an optimal Wiener filter, which can eliminate the
influence of noise or reverberation to some degree, so that
means our method could extract more robust binaural cues in
the complex environments. In the future, we will consider the

other design of IMF and try to use the IMF for localization
directly. In addition, for the complex environments adding a
noise or reverberation suppression unit for our localization
algorithm may be more effective.
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