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Abstract—Weakly-supervised temporal action localization
(WTAL) is a challenging task in understanding untrimmed
videos, in which no frame-wise annotation is provided during
training, only the video-level category label is available. Current
methods mainly adopt temporal attention branches to conduct
foreground-background separation with RGB and optical flow
features simply concatenated, regardless of the discriminative
spacial features and the complementarity between different
modalities. In this work, we propose a Multi-Dimensional At-
tention (MDA) method to explore attention mechanism across
three dimensions in weakly supervised action localization, i.e.,
1) temporal attention that focuses on segments containing ac-
tion instances, 2) channel attention that discovers the most
relevant cues for action description, and 3) modal attention
that fuses RGB and flow information adaptively based on
feature magnitudes during background modeling. In addition,
we introduce a similarity constraint loss to refine the action
segment representation in feature space, which helps the network
to detect less discriminative frames of an action to capture the full
action boundaries. The proposed MDA with similarity constraints
can be easily applied to existing action detection frameworks
with few parameters. Extensive experiments on THUMOS’14
and ActivityNet v1.2 datasets show that the proposed method
outperforms the current state-of-the-art WTAL approaches, and
achieves comparable results with some advanced fully-supervised
methods.

Index Terms—Temporal action localization, weakly supervised
learning, multi-dimensional attention, video analysis.

I. INTRODUCTION

With the explosive growth of the video contents from the In-
ternet, action analysis in videos has drawn increasing attention
due to its wide applications such as video surveillance, human-
computer interaction, video summary, etc. Temporal action
localization (TAL) aims to figure out both the action category
and the accurate temporal location of action instances in
untrimmed videos. Most existing action localization methods
heavily rely on trimmed videos for model training, requiring
frame-level action boundary annotations [1]–[4]. However,
it is expensive and time-consuming to acquire a large-scale
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Fig. 1. Two frameworks of modal fusion in WTAL. (a) Early fusion pipeline
first performs feature-level aggregation of RGB and optical flow modalities,
then generate one Class Activation Sequence (CAS) for localization and
classification. (b) Two-stream consensus pipeline first predicts CAS of RGB
and optical flow streams separately, then generate a fused CAS by weighted
average.

trimmed video dataset with precise manual annotations. Addi-
tionally, the definition of the temporal boundary of an action
is often subjective and prone to large variations [5].

To overcome these limitations, several approaches have
been proposed in recent years to focus on weakly-supervised
temporal action localization (WTAL), using only video-level
class labels for training [6]–[8]. Wang et al. proposed an
end-to-end framework that optimizes the classification module
and selection module jointly [6]. Singh et al. randomly hide
segments to guide the network to detect complete action parts
[7]. Paul et al. introduced a co-activity similarity loss in
consideration of the correlations between videos with similar
tags [8].

Recently, some works focus on how to distinguish actions
from complex backgrounds [9]–[11]. Nguyen et al. proposed
a similar objective to model the background contents [9].
BaS-Net suggests using a suppression branch to suppress the
network activations on the background portions [10]. Lee et
al. modeled background via uncertainty estimation in consid-
eration of the inconsistency of the background frames [11].
Inspired by some remarkable works that leverage attention
mechanism to capture the key motion information in human
action analysis task [12]–[15], in order to find out complete
action instances from the background, some advanced WTAL
methods introduce multiple temporal attention branch to se-
lect action instance and suppress background simultaneously,
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demonstrating the state-of-the-art results [16]. However, we
argue that existing methods are focus on designing elaborate
temporal attention mechanisms, not able to sufficiently make
use of discriminative spatial and temporal information for each
video. On the other hand, the temporal action localization task
is usually bulit on two feature modalities, i.e., RGB frames and
optical flow, which are fused in two possible ways as shown
in Fig. 1. Most approaches conduct early fusion pipline (Fig.
1(a)) to fuse RGB and optical flow information directly by
simply concatenate them as a feature vector after feature ex-
traction [6], [8], [10], [17], which ignore the complementarity
localization abilities between different modalities, i.e., RGB
feature provides color and texture information, while optical
flow feature focuses on motion information of an action.
Another kind of method is based on two-stream consensus
pipeline (Fig. 1(b)) [18], [19] that computes a weighted sum
of their respective output class activation sequences (CAS)
before generating action proposals. However, the late-fusion
scheme ignores the intrinsic relation between two modalities,
and relies on a pre-defined weighting factor for all input
videos. This may lead to a limitation when some actions are
distinct with action scenes (RGB information) while some
actions are distinct with the movements of the target (optical
flow information).

To localize complete action instances in untrimmed videos,
in this work, we propose a multi-dimensional attention (MDA)
mechanism with similarity constraint on action segments.
Specifically, we explore attention mechanism cross three di-
mensions for weakly-supervised temporal action localization,
i.e., temporal attention, channel attention and modal attention.
Firstly, the temporal attention module with a Temporal Rela-
tion Block (TRB) is applied to rescale the temporal weights
and catch the temporal correlations among the segments. Then,
the channel attention module selects distinguished features for
segment-level action classification through a global average
pooling. Besides, the modal attention module adaptively fuses
RGB and optical flow information to model the background by
estimating feature magnitudes from each modality. Moreover,
we use a similarity constraint on action features to detect
instances more completely. As a result, the proposed MDA at-
tention mechanism can localize the action instances accurately
by learning when and what to attend in video segments, as
well as make full use of information from different modalities.
Experimental results on THUMOS’14 [20] and ActivityNet
v1.2 [21] datasets demonstrate that MDA enables the network
to generate action proposals more completely, which achieves
superior or competitive performance compared to state-of-the-
art methods.

In summary, our contributions are as follows:
• We present Multi-Dimensional Attention (MDA) mech-

anism for weakly-supervised temporal action localiza-
tion. Different from the previous methods that focus on
background-foreground separation by temporal attention
and fuse RGB and optical flow information directly,
we investigate how to make full use of temporal and
spatial information as well as effectively fuse different
modalities.

• We introduce a similarity constraint loss on action fea-

tures from same category in each video, which aggregates
the actions features together and helps to detect complete
action instances and distinguish the action segments from
the background.

• Extensive experiments on two widely used benchmarks,
THUMOS’14 and ActivityNet v1.2 show that our ap-
proach outperforms previous state-of-the-art methods,
and achieve comparable performance with some fully-
supervised methods.

II. RELATED WORK

In this section, we first provide an overview of the recent
progress on action recognition, then review existing research
about fully-supervised and weakly-supervised temporal action
localization in the past few years.

A. Action Recognition

Action recognition is one of the fundamental tasks of video
understanding, which has been extensively explored in recent
years. Earlier approached such as improved Dense Trajectory
(iDT) [22] mainly focused on design hand-crafted features
that can represent spatial-temporal features effectively. With
the recent availability of big data and powerful computational
resources, many effective algorithms based on deep learning
have emerged [23]–[30]. These methods typically contain three
main categories: (i) the two-stream networks that trained on
multiple input modalities respectively (e.g., optical flow and
warped flow in addition to RGB). The predictions from all
modalities are fused to get the final video-level prediction
[24], [25]; (ii) CNN+LSTM (Long Short Term Memory), in
which recurrent neural networks are built on top of CNN
features to capture the long term dynamics for action recog-
nition [26]–[28]; and (iii) 3D CNN based models that extend
temporal dimension from 2D convolution operation to capture
the spatial and temporal information directly from the raw
video frames [13], [29]–[34]. Action recognition networks
have achieved significant performance on trimmed video clips,
and are usually adopted to extract visual feature sequence from
untrimmed videos in action localization task.

B. Fully-Supervised Temporal Action Localization

Fully-supervised Action Localization relies on frame-level
annotations, which aims not only to classify action instances
but also to locate the start and end temporal boundary of
action instances from long untrimmed videos. Most existing
approaches can be summarized in two categories: the top-down
(proposal-based) framework and the bottom-up (frame-based)
framework. The top-down methods [1], [2], [35]–[39] usually
generate action proposals by pre-defined massive anchors,
e.g., fixed-length sliding windows, and then classify them
as well as conduct temporal boundary regression. TAL-Net
[2] follows Faster R-CNN [40] to perform two-stage action
localization, and adopts dilated temporal convolution to control
the receptive field. More recently, AFSD [41] conducts the first
anchor-free method through learning salient boundary feature.
On the contrary, the bottom-up methods [4], [42]–[47] directly

Authorized licensed use limited to: Peking University. Downloaded on January 17,2023 at 05:51:44 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3174344, IEEE
Transactions on Multimedia

3

predict frame-level action category and location followed by
some post-processing techniques. Typically, CDC [43] esti-
mates frame-level actionness score via a Convolutional-De-
Convolutional network and then uses the frame-level action
confidence to refine action boundaries. G-TAD [46] presents
a graph convolutional network model to exploit video context
and cast temporal action localization as a sub-graph detection
problem. Since the top-down methods can discover most action
instances with few omissions while the bottom-up methods are
more flexible to cover action instances of various duration,
some recent approaches [48], [49] are proposed to utilize
the complementarity between these two frameworks, leading
to better performances. However, all these fully-supervised
methods require precise frame-level annotations during the
proposal generation and classification stage, which is time-
consuming and not capable of widely employed in real-world
scenarios. To alleviate the annotation cost, this work focuses
on the same problem in the weakly-supervised manner.

C. Weakly-Supervised Temporal Action Localization

In recent years, many methods have been proposed to focus
on the task of weakly-supervised temporal action localization
(WTAL) to reduce the annotation costs with only video-level
labels for training. Wang et al. firstly introduced WTAL task
and proposed UntrimmedNet [6], including a classification
module for predicting a classification score for each snippet,
and a selection module to select relevant video segments.
Later, STPN [18] added a sparsity loss and class-specific
proposals. AutoLoc [50] introduced the outer-inner contrastive
loss to effectively predict the temporal boundaries. W-TALC
[8] considers the co-activity similarity to model inter-video
similarities and differences. To obtain reliable and complete
proposal from the class activation sequence (CAS), there are
some promising works. Specifically, CleanNet [51] introduced
an action proposal evaluator that provides pseudo-supervision
by leveraging the temporal contrast in snippets. 3C-Net [52]
adopted three loss terms to obtain discriminative feature rep-
resentation. Hide-and-seek [7] and Zeng et al. [53] both hide
some patches to find out complete action regions. Focused on
background-foreground separation, many works regard non-
action background as an additional class [9], [10], while
[11] consider background as out-of-distribution and propose
to learn uncertainty as well as action class scores. Huang et
al. [54] proposed a GCN-based prototype embedding module
to construct action relationships. More recently, some works
achieved great performance by designing multiple attention
mechanism. HAM-Net [16] introduced a novel hybrid atten-
tion mechanism to capture the full temporal boundaries of the
actions in the video.

Though these advanced approaches achieved great perfor-
mance on background-foreground separation and complete-
ness modeling, their response to each temporal point are
not discriminative enough, and fail to make full use of the
complementary information between different modalities. To
address these issues, we propose MDA, which is unique to
previous works in three main aspects: i) we explore attention
mechanism on three dimensions rather than only focus on

modeling temporal features; ii) we fuse RGB and optical
flow information adaptively rather than directly concatenate
segment-level features or average the CAS from two streams;
iii) to detect action instances completely, we apply class-wise
similarity constraints on action segments in each video sample.

III. METHODOLOGY

In this section, we first formulate the task of weakly super-
vised temporal action localization (WTAL). Then we present
the proposed framework with multi-dimensional attention
(MDA) in detail. The overall pipeline is shown in Fig. 2. The
video features are first extracted from video frames by the pre-
trained feature extractor. Then the features are embedded by
several layers to generate segment-level classification scores.
Meanwhile, the background possibilities are measured from
the embedded features. The predicted proposals are finally
grouped from segments considering both classification scores
and background possibilities.

A. Problem Formulation

Assume an untrimmed video v containing activity instances
from C action classes. The corresponding video-level cat-
egory label is a C-dimensional binary vector denoted as
y ∈ {0, 1} ∈ RC , with yk = 1 if there is at least one
instance of the k-th action class in the video, and yk = 0 if
there is no instance of the k-th activity. Note that each video
may contain multiple action categories and multiple action
instances. Different from the fully-supervised temporal action
localization that use accurate action instance annotations, the
goal of W-TAL task is to detect all action instances with only
video-level label for training, i.e., for each test video it predicts
a set of action instances {(ts, te, ψ, c)}, where ts, te, ψ, c
represent the start time, the end time, the localization score of
the action proposal and the action category, respectively.

B. Feature Embedding with Temporal Attention

Given an input video v, we first divide it into non-
overlapping 16-frame segments. As in [10], [18], due to the
large variation of video lengths, a fixed number of T segments
are sampled from each video. The RGB and optical flow
features Xrgb ∈ RT×F and Xop ∈ RT×F are extracted
by pre-trained I3D deep networks [29], respectively. Then
the RGB and optical flow features are stacked along feature
dimension as input X ∈ RT×2F of our architecture.

Before embedding the input feature, we first introduce a
temporal attention (TA) module that focuses on ‘when’ is im-
portant given an input video, which directly contributes to the
accuracy of action localization. The TA module contains a base
convolutional process and a Temporal Relation Block (TRB)
along temporal dimension to model temporal relation of the
segments. As illustrated in Fig. 3, an initial temporal attention
map Mta ∈ RT×1 is generated by a 1D convolutional layer
over the stacked input feature:

Mta(X) = σ(fconv(X;ϕta)), (1)
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Fig. 2. Framework of the proposed Multi-Dimensional Attention (MDA) method. A pre-trained feature extractor is firstly applied to extract segment-level
spatial-temporal features. Then RGB and optical flow features are embedded separately after a temporal attention (TA) module. After that, a channel attention
(CA) is employed to emphasis both features before generating the class activation sequences (CAS). We calculate the background probability by estimating
magnitudes from RGB and optical flow features through a modal attention (MA). Finally, the localization proposals are generated from both background
probability and the CAS.
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K and V are obtained directly from the concatenated segment-level features.

where ϕta denotes trainable parameters in the convolutional
layer, and σ represents the sigmoid function. The output
feature is fused with the original X by residual connection:

X
′
= Mta(X)⊗X +X, (2)

where ⊗ denotes element-wise multiplication and X
′

repre-
sents the temporal weighted feature. Inspired from the self-
attention mechanism, we also introduce a Temporal Relation
Block (TRB) in the temporal attention module to catch the re-
lationship among long-term information. Concretely, we treat
the emphasized feature X

′
as query, key and value directly

and calculate segment-wise self-attention map by estimate
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Fig. 4. The illustration of channel attention (CA) module. ⊕ denotes the
element-wise summation while ⊗ denotes element-wise multiplication.

similarities between each segment pair followed by a softmax
operation to exploit their relations:

Attention(X
′
) = softmax

(
X

′
X

′T

√
dk

)
X

′
, (3)

where dk = 2F is the dimension of X
′

for controlling
the scale of dot product. Also, the final emphasised feature
is generated by a residual connection. The TRB block can
capture relations among different segments regardless of their
temporal distance, allowing the network to seek information
from the segments in other proposals automatically and boost
classification performance. Different from the classical self-
attention mechanism proposed in [55], we discard the linear
transformation to generate query, key and value which aims
to model high-level semantic information, and focus more on
emphasizing local information to get reliable class activation
scores of each temporal segment. This also makes it more
convenient to model different modalities separately in the
subsequent operations.

Note that the temporal attention module acts on the temporal
dimension, thus the RGB and optical flow features remain
relatively independent. To model two modalities separately,
we discompose the feature X

′
into RGB and flow features,
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i.e., X
′

rgb = X
′
[:, F ] and X

′

op = X
′
[F, :]. A temporal

1D convolutional layer followed by LeakyReLU activation is
applied to the features of each modality to get the embedded
feature maps. Specifically, Am = gemb(X

′

m;ϕemb), where
m ∈ {rgb, op} denotes RGB and optical flow respectively,
gemb is the convolution operator with the activation function
and ϕemb is the corresponding parameters.

C. Segment-level Classification with Channel Attention

Convolutional channel features often capture different visual
information, which corresponds to different actions. In order to
highlight informative features for improving the classification
power of the model, a channel attention (CA) module is
applied to the embedded feature map for both RGB and optical
flow streams. As illustrated in Fig. 4, the self-attention map
of the m modality is obtained by performing a global average
pooling across the temporal dimension, then the channel
attention map Mca is generated from the self-attention map
by applying sigmoid activation:

Mm
ca(Am) = σ(

1

T

T∑
t=1

Am(t, 1 : F )), (4)

where σ denotes the sigmoid function. Similar to the TA mod-
ule, the output feature A′

m is fused with the original feature
map Am through the use of identity-based skip connection:

A
′

m = Mm
ca(Am)⊗Am +Am, (5)

where ⊗ denotes element-wise multiplication. Note that the
CA module does not introduce any trainable parameters.
Moreover, the channel attention will also intensify the feature
distribution of each segment, which is beneficial to the back-
ground modeling through uncertainty estimation described in
sec. III-D.

Since segment-level label is not provided in the WTAL
task, following previous works [8], [56], [57], we apply the
Multiple-Instance Learning (MIL) mechanism to obtain video-
level classification scores for training. In this setting, each
video is regarded as a bag of segments containing positive
(action) and negative (background) instances; segment-level
class scores, commonly known as Class Activation Sequences
(CAS), are calculated and then temporally pooled to obtain
video-level class scores.

For segment-level classification, we first stack the RGB fea-
ture A′

rgb and optical flow feature A′

op as A′ ∈ RT×2F along
feature dimension. The segment-level class scores that used
for action localization are generated by feeding the feature
map into temporal 1D convolutional classification layer:

CAS = fconv(A
′
;ϕcls), (6)

where ϕcls represents the trainable parameters of the classifi-
cation layer, CAS ∈ RC×T denotes the segment-level action
scores, and C is the number of action classes. The concate-
nation of both enhanced feature helps to model the intrinsic
relation between two modalities and get reliable classification
scores, especially for the ambiguous action segments.

The class-wise action scores of each video are aggregated
by averaging the top kact elements among the CAS, where

kact is a hyperparameter to control the number of selected
segments. Then, the softmax function is applied to compute
the video-level action probability Pc(vn) for each class c of
video vn . The classification loss is defined with binary cross
entropy loss:

Lcls =
1

N

N∑
n=1

C∑
c=1

−yn;c logPc(vn), (7)

where yn;c is the normalized video-level label for the c-th class
of the n-th video.

D. Background Modeling with Modal Attention

Background segments are usually attributed to an additional
action category in many approaches [9], [10], [58]. However, it
is undesirable to force all background frames to belong to one
specific class, as they do not share any common semantics
in most cases. To overcome the limitation that background
frames are dynamic and inconsistent, background frames
could be formulated as out-of-distribution [11]. Considering
the probability for class c of a segment st, which can be
decomposed into the in-distribution action classification and
the background identification, is formulated according to the
posterior probability:

P (yt = c|st) = P (yt = c, d = 1|st)
= P (yt = c|d = 1, st)P (d = 1|st),

(8)

where yt is the label of the segment, d ∈ {0, 1} denotes the
variable for the background identification, i.e., d = 1 when the
segment contains any actions while d = 0 when the segment
belongs to background.

Generally, we note that action segments get high response to
a specific action category, while background segments should
produce low scores for all actions. Therefore, the features of
background segments are prone to have small magnitudes.
Since RGB and optical flow streams may focus on different
segments due to the modal differences during training, a
modal attention (MA) module is proposed to fuse both feature
magnitudes:

∥ft∥ = ωrgb ∗ ∥atrgb∥+ ωop ∗ ∥atop∥, (9)

where atm = A′

m[t] represents the tth feature vector of the
modal m, ∥·∥ is the L2 norm function, ωrgb and ωop are train-
able attention weights of RGB and optical flow magnitudes,
respectively. Afterwards, we define the action probability of
st via modeling uncertainty with the fused magnitudes:

P (d = 1|st) =
min(h, ∥ft∥)

h
, (10)

where ft is the corresponding feature vector of st and h is the
pre-defined maximum feature magnitude.

According to the the feature magnitudes, we select top
kact and bottom kbg as pseudo action and pseudo background
segments, respectively. The uncertainty modeling loss is for-
mulated as:

Lum =
1

N

N∑
n=1

(max(0, h− ∥factn ∥) + ∥fbgn ∥)2, (11)
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where factn and f bgn are the mean features of pseudo ac-
tion and background segments of vn. Meanwhile, to prevent
background segments from getting high softmax score for
any actions due to the relativeness of softmax function, a
background entropy loss is designed to force the background
segments to have uniform probability distribution for action
classes:

Lbe =
1

NC

N∑
n=1

C∑
c=1

− log(Pc(s
bg
n )), (12)

where Pc(s
bg
n ) is the average action probability for the c-th

class of the pseudo background segments.

E. Class-wise Similarity Constraint

According to the uncertainty modeling loss above, the fea-
tures of pseudo action segments are prone to have large feature
magnitude, which may result in large intra-class variance.
This constraint lead to a contradiction between background-
foreground separation and segment-level classification. Based
on the intuition that features of the same action should be
similar, we propose a class-wise similarity constraint loss to
push the features from the same action category more similar
and closer. Since the frame-level annotations are not available,
we use the class activation map from the classification layer
to obtain high-activation segments that probably contain ac-
tion instances. Specifically, for each action classes c in the
corresponding ground-truth of a video vn, we select the top
kact segment features {fc} from the class activation map to
calculate class-wise feature similarity:

Sim(fi, fj) =

∑F
k=1 f

k
i × fkj√∑F

k=1

(
fki
)2 ·√∑F

k=1

(
fkj
)2 , (13)

where ⟨fi, fj⟩ are feature pairs from the F -dimensional fea-
tures {fc} of the action category c. Note that the cosine
similarity is bounded between -1 and 1, which only considers
the angle between the two feature vectors and ignores their
magnitudes. Then the class-wise similarity loss is calculated
as:

Lsim = 1− 1

ncnp

∑
∀fi,fj∈{fc}

Sim(fi, fj), (14)

where nc is the number of action classes in the ground-truth,
and np = T (T−1)

2 is the number of feature pairs among
the selected action features, respectively. By minimizing Lsim,
features from the same action category in a video are pushed
to be more similar regardless of their high feature magnitude,
which is beneficial to balance the background modeling and
segment-level action classification.

Finally, we combine the video-level classification loss Lcls,
uncertainty modeling loss Lum, background entropy loss Lbe
and class-wise similarity constraint loss Lsim to jointly train
the network:

Ltotal = Lcls + αLum + βLbe + γLsim, (15)

where α, β, γ are trade-off coefficients to balance the loss
components.

F. Classification and Localization

For multi-label action classification of a test video V , we
discard categories whose class probability Pc(V ) is lower
than the threshold θact. The segment-level posterior proba-
bility of the remaining action classes can be calculated as
uc(t) = Pc(st) ∗ P (d = 1|st) for the t-th segment according
to Eq. 8 and Eq. 10. After that, the segments with posterior
probabilities larger than θseg are selected as candidate seg-
ments, the consecutive segments are then grouped into action
proposals. Note that we apply a set of θseg to generate enough
proposals. To obtain action instance score ψ of each proposal
(ts, te, ψ, c), we calculate the classification score following the
Outer-Inner-Contrastive function proposed in AutoLoc [50].
Specifically, the confidence score is defined as:

ψ = ψinner − ψouter

=

∑te
i=ts

uc(t)

te − ts
−
∑te

i=ts−tl
uc(t) +

∑te+tl
i=ts

uc(t)

2tl
,

(16)

where ts and te are the start time and the end time of the
detected instance, c denotes the corresponding action category
of the instance, tl = η(te− ts) represents the inflated contrast
area, η is a hyper-parameter to control the inflated length.
Finally, non-maximum suppression (NMS) is employed to
generate final proposals.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we introduce the implementation details
about our W-TAL method, and perform extensive experiments
on THUMOS’14 [20] and ActivityNet v1.2 [21] benchmarks.
A set of ablation studies are applied to evaluate the effec-
tiveness of each module component and losses used in our
proposed MDA. Also, a comparison is made for the fusion
schemes of RGB and optical flow information. We further
give qualitative analysis and some visualization results using
our proposed approach.

A. Experimental Setup

1) Datasets: We evaluate our model on two popular
large-scale action localization benchmark datasets, i.e., THU-
MOS’14 [20] and ActivityNet v1.2 [21].

THUMOS’14 [20], which contains 200 validation and 213
test videos from 20 action categories. This dataset is very
challenging as the length of an action varies significantly,
from less than a second up to 26 minutes, with the mean
duration around 3 minutes long. There is also a large variance
in the length of an action instance, from less than a second to
minutes. There are 15 action instances per video on average,
and some videos may contain one or more action instances
from other classes.

ActivityNet v1.2 [21] is a popular large-scale benchmark
for temporal action localization task with 100 categories
involved in this dataset. Since the frame-level ground-truth
of test videos are not available, we train on the training set
with 4,819 videos and test on the validation set with 2,383
videos following the common practice. Most videos contain
only a single action category, and action instances may last
more than half of the duration in most video samples.
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2) Evaluation Metrics: We follow the standard evaluation
protocol by reporting mean Average Precision (mAP) val-
ues under different temporal intersection over union (IoU)
thresholds. Specifically, the IoU thresholds for THUMOS’14
is set to [0.1:0.1:0.7], and for ActivityNet v1.2 dataset is
[0.5:0.05:0.95]. Note that each ground-truth action instance
can only match one action proposal. The evaluation on both
datasets are conducted using the official evaluation code pro-
vided by ActivityNet1.

3) Implementation Details
Feature Extraction. Each video is divided into T 16-frame

non-overlapping segments. Due to the memory constraint, the
number of input segments T is fixed to 900 for THUMOS’14
and 150 for ActivityNet v1.2. TV-L1 algorithm [59] is applied
to generate the optical flow frames from the RGB data.
Then, we use the two-stream I3D network [29] pre-trained on
Kinetics-400 dataset [29] to extract 1024-dimensional RGB
and flow features of each video segment. Note that for
fair comparison, the I3D feature extractor is not fine-tuned.
Following STPN [18], we use stratified random perturbation
during training and uniform sampling during test.

Training and evaluation details. (1) For THUMOS’14
dataset, we set video snippets length T = 900. The number
of the pseudo action segments kact and background segments
kbg are set to T/9 and T/4 respectively. We set h = 100,
α = 5× 10−4, β = 0.01, γ = 1, η = 0.25 and θact = 0.2 by
grid search, and use a set of thresholds from 0 to 0.25 with
the step 0.025 for θseg . Non-maximum suppression (NMS)
with threshold 0.7 is performed to remove highly overlapped
proposals. The batch size is set to 16 during training. (2)
For ActivityNet v1.2 dataset, since most video length in this
dataset varies from a few seconds to several minutes, which
is much shorter than the THUMOS’14 dataset, we set video
snippets length T = 150 by grid search. Considering the
long-term dependence of action classes in ActivityNet v1.2,
we set the convolutional kernel size k = 25 during feature
embedding, and apply additional average pooling to post-
process the final CAS. The number of the pseudo action
segments kact and background segments kbg are set to T/5
and T/50 respectively. According to parameter fine-tuning,
we set h = 100, α = 10−4, β = 1 , γ = 1, η = 0.3 and
θact = 0.1, and use a set of thresholds from 0 to 0.10 with
the step 0.01 for θseg . To remove highly overlapped proposals,
we perforom NMS with threshold of 0.7. The batch size is set
to 512 during training. For both datasets, we use Adam [60]
optimizer. All the experiments are based on PyTorch-1.7 [61]
on the RTX-2080Ti platform.

B. Ablation Study

Effectiveness of each attention component: To investigate
the contributions of different components of our MDA method,
we conduct ablation study with all possible combinations
of the three proposed attention modules. The baseline is
the framework without any proposed attention mechanisms.
Specifically, the extracted features are directly separated into
RGB and flow streams and modeled by the 1D-convolutional

1https://github.com/activitynet/ActivityNet/blob/master/Evaluation/

TABLE I
ABLATION STUDY OF THE ATTENTION MODULES IN DIFFERENT
DIMENSIONS ON THE THUMOS’14 DATASET. ∗ INDICATES THE

TEMPORAL ATTENTION MODULE (TA) WITHOUT TEMPORAL RELATION
BLOCK (TRB). AVG DENOTES THE AVERAGED MAP UNDER IOU

THRESHOLDS 0.1:0.1:0.7.

TA CA MA mAP@IoU (%)
0.1 0.3 0.5 0.7 AVG

Baseline 67.5 50.5 29.8 10.7 39.8

TA-only∗ ✓ 40.5 51.7 30.8 10.7 40.5
TA-only ✓ 69.8 54.2 33.8 14.4 43.1
CA-only ✓ 68.4 52.2 32.1 11.6 41.3
MA-only ✓ 67.6 51.4 31.1 11.2 40.5

TA+CA ✓ ✓ 69.9 54.3 34.1 14.4 43.5
TA+MA ✓ ✓ 69.7 54.6 34.2 13.3 43.4
CA+MA ✓ ✓ 69.0 52.8 31.7 11.3 41.4

MDA (Ours) ✓ ✓ ✓ 69.7 55.2 35.6 14.4 44.2

TABLE II
ABLATION STUDY OF LOSS COMPONENTS ON THUMOS’14. AVG

DENOTES THE AVERAGED MAP UNDER IOU THRESHOLDS 0.1:0.1:0.7.

Lcls Lum Lbe Lsim
mAP@IoU (%)

0.1 0.3 0.5 0.7 AVG

✓ 50.1 32.8 16.0 4.8 25.8

✓ ✓ 68.7 54.8 33.7 13.5 43.0
✓ ✓ ✓ 68.1 54.1 33.9 13.8 43.1
✓ ✓ ✓ 69.6 55.2 35.5 14.3 44.1

✓ ✓ ✓ ✓ 69.7 55.2 35.6 14.4 44.2

layer respectively, then the refined features are stacked and
send to the segment-level classifier without channel attention
module. We also use the stacked feature to calculate feature
magnitude when the modal attention is excluded. Experimental
results under various IoU thresholds are shown in Table. I.
As the table presents, each of the temporal attention (TA),
channel attention (CA) and modal attention (MA) module
enhances the localization performance, and the combination
of them brings about more improvement. The temporal at-
tention module contributes the most, which directly affect the
segment-level classification score for final proposal generation.
The best average mAP is achieved when all attention modules
are combined together. We also evaluate the effectiveness of
the proposed Temporal Relation Block (TRB) by excluding
it from the temporal attention module. Specifically, we can
achieve 3.0% mAP performance gain under IoU threshold
0.5 with our TRB block. This demonstrates that the TRB
block can effectively catch the temporal relation by measuring
similarities among the action segments in a video, making it
easier to find out complete action instances.

Effectiveness of loss components: In Table. II, we eval-
uate the effectiveness of the loss components including the
proposed similarity constraints on THUMOS’14. The baseline
is performed only with video-level classification loss Lcls,
which achieves 25.8% mAP on average. Based on this, the
uncertainty modeling loss Lum trains the model to produce
large feature magnitudes for action segments and small ones
for background segments, lifting the performance to 43.0%.
Furthermore, the background entropy loss Lbe prevent back-
ground segments from generating high softmax score. Since
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TABLE III
ABLATION STUDY OF THE FUSION SCHEMES BETWEEN RGB AND

OPTICAL FLOW ON THUMOS’14. AVG DENOTES THE AVERAGED MAP
UNDER IOU THRESHOLDS 0.1:0.1:0.7.

Fusion scheme mAP@IoU (%)
0.1 0.3 0.5 0.7 AVG

One-stream feature fusion 69.6 52.8 32.2 12.5 42.2

Two-stream
average CAS 68.9 53.4 33.6 14.3 42.9

average magnitudes 68.7 53.7 33.6 14.3 43.1
modal attention (add) 69.1 54.5 34.5 14.8 43.6

modal attention (concat) 69.7 55.2 35.6 14.4 44.2

the background frames are dynamic and inconsistent, in some
cases where the probability distribution of some atypical
background frames are not unified by Lbe successfully, it
may lead to imprecise temporal boundary of the generated
proposals, especially on the proposals that mostly contain am-
biguous background frames with small IoU with the ground-
truth. Therefore, the performance at map@0.1 and map@0.3
seem to be inferior due to the increase of the False-Positive
samples. As regards the proposed similarity constraint loss
Lsim, since it constraints the action features more closer while
maintaining large magnitudes produced by Lum, we can obtain
1.1% average mAP performance gain both with and without
Lbe. While the action features can be more discriminative
from the ambiguous background features owing to Lsim, Lbe

can play a positive role in background-foreground separation
and promote the mAP under all IoU thresholds. For better
comparison, we also visualize the feature distribution in 2-
dimensional space using PCA with and without the similarity
constraints, as demonstrated in Fig. 5. It can be observed that
the background and action features are more separatable with
the proposed similarity loss, while the original features tend to
mix together. When combine the loss components together, we
can achieve a new stat-of-the-art across all metrics, at 44.2%
mAP on average.

Comparison of the modal fusion schemes: As illustrated
in Sec. I, there are several fusion strategies to combine
complementary RGB and optical flow information. To verify
the effectiveness of the fusion scheme, we implement five
experiments in Table. III, including one-stream and two-stream
pipelines. (1): directly concatenate the RGB and optical flow
features after feature extraction, as illustrated in Fig. 1 (a),
hence the modal attention is not used; (2): produce CAS
for each modality separately and average them to generate
proposals as in Fig. 1 (b), similar to STPN [18] and TSCN
[19]; (3): average feature magnitudes of RGB and optical
flow features for background estimation, while the features are
concatenated before classification; (4): use modal attention to
fuse RGB and flow features by element-wise weighted addition
before generating CAS and fuse both magnitudes for back-
ground modeling. (5): use modal attention to fuse the magni-
tudes during background modeling, while concatenate RGB
and flow features directly for segment-level classification.
From the table, the two-stream pipelines outperform the one-
stream method that conduct feature-level fusion. Comparing
(3) to (2), fusing two modalities during background estimation
shows better performance than fusing CAS after segment-

(a) “HighJump” video

(b) “Diving” video

Fig. 5. Visualizations of feature embeddings A′
before classification layer on

two video samples (best viewed in color). Left: without similarity constraint;
Right: with similarity constraint Lsim. Blue points represent action embed-
dings and red points denote background embeddings. Our proposed similarity
constraint achieves a more separable feature distribution.
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Fig. 6. Effectiveness of the number of segments T on THUMOS’14 dataset.
The localization results are reported as the average mAP under IoU thresholds
0.1:0.1:0.7. The best performance is achieved when T = 900.

level classification respectively. The proposed modal attention
for background modeling adaptively fuse two modalities and
localize action instances more accurately than both average
CAS or average feature magnitudes, while concatenating RGB
and flow features directly (5) achieves better results than
fusing them with model attention by element-wise addition
(4). We claim that the RGB and flow features have different
distribution, and the concatenation retains original information
from two modalities and introduce more learnable parameters
rather than dimension reduction by addition.

Analysis on the number of video segments: Under the
weakly-supervised setting of the temporal action localization
task, we can only use video-level annotations for training.
As described in our method, the video-level action scores
are aggregated by averaging the top kact elements from the
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE ACTIVITYNET

V1.2 DATASET. AVG MEANS THE AVERAGED MAP UNDER IOU
THRESHOLDS 0.5:0.05:0.95. † DENOTES THE USE OF ADDITIONAL

INFORMATION. NOTE THAT ALL METHODS EMPLOY I3D AS THE FEATURE
EXTRACTOR.

Supervision Method mAP@IoU (%)
0.5 0.75 0.95 AVG

Full CDC (CVPR 2017) [43] 45.3 26.0 0.2 23.8
SSN (ICCV 2017) [42] 41.3 27.0 6.1 26.6

Weak† 3C-Net (ICCV 2019) [52] 37.2 - - 21.7

Weak

W-TALC (ECCV 2018) [8] 37.0 12.7 4.5 18.0
MAAN (ICLR 2019) [56] 33.7 21.9 5.5 -
Liu et al. (CVPR 2019) [62] 34.0 20.9 5.7 21.2
TSM (ICCV 2019) [63] 28.3 17.0 3.5 17.1
Nguyen et al. (ICCV 2019) [9] 36.4 19.2 2.9 -
BaS-Net (AAAI 2020) [10] 38.5 24.2 5.6 24.3
TSCN (ECCV 2020) [19] 37.6 23.7 5.7 23.6
ACSNet (AAAI 2021) [64] 40.1 26.1 6.8 26.0
HAMNet (AAAI 2021) [16] 41.0 24.8 5.3 25.1
Lee et al. (AAAI 2021) [11] 41.2 25.6 6.0 25.9
AUMN (CVPR 2021) [65] 42.0 25.0 5.6 25.5
MDA (Ours) 41.4 26.8 5.8 26.0

segment-level classification. Therefore, the temporal length of
each video is fixed to T to achieve parallel optimization during
training. Considering the large variance among the temporal
length of video samples, we employ a linear interpolation-
based strategy following STPN [18] on the training videos.
As shown in Fig. 6, we investigate the effect of the segment
number T on THUMOS’14, where T is altered from 300 to
1200. From the experiments, we observe that the localization
accuracy is not increase linearly with the temporal length
T . The average mAP increases with T until T exceeds a
certain value. This is because the action instances are not fully
sampled when T is not large enough to catch complete motion
information, while it tends to be over-sampled when T exceeds
a proper length, leading to time intervals within the proposals.
The best localization results can be achieved when T = 900
on the THUMOS’14 dataset.

C. Comparison with the State-of-the-art

Table. V shows the comparison of our MDA method with
current state-of-the-art fully-supervised and weakly-supervised
methods on THUMOS’14. “-” denotes the result not available
from the corresponding paper. The results indicate that our
proposed method outperforms the existing weakly-supervised
methods across all metrics. In particular, the proposed MDA
method achieves 35.6% mAP at the IoU threshold of 0.5
and obtains a performance gain of more than 1.6% in terms
of the average mAP from IoU 0.1 to 0.7 over the recent
TS-PCA [69]. Compared to the recent weakly-supervised
methods that use extra annotations (count of the instances
[52] or single-frame annotations [68]) for training, our model
also achieves better performances. Moreover, our MDA even
surpasses some fully supervised methods. This proves that our
method produces more precise and complete localization.

Table. IV reports the comparison on the AvcivityNet v1.2
dataset. Our method outperforms existing weakly supervised
methods by 0.7% under the metric mAP@0.75, and achieves
similar high performance on the average mAP to the ACSNet

[64], which mainly considers action-context separation and
performs better at mAP@0.95. However, the performance
gains on the ActivityNet v1.2 dataset are not as significant
as those on the THUMOS’14 dataset. Note that most videos
in the ActivityNet v1.2 dataset contains only one action class
that composes a big portion of the whole video duration, and
is regarded as a single-label classification dataset in some
extent compared with the THUMOS’14 dataset which has
10.5% multi-label videos with 71.4% background frames on
average. Therefore, the improvement brought by background
modeling could be less significant. As discussed in [2], [64],
THUMOS’14 is more appropriate for evaluating localization
ability with a larger portion of background frames, we also
speculate that the action localization performance in the Ac-
tivtyNet v1.2 dataset depends more on the classification head,
which is not specially designed in the proposed network, while
AUMN [65] builds segment-wise classifier that contributes
to the classification performance. Additionally, we also find
that the annotations of ActivityNet1.2 dataset are coarser than
those in THUMOS’14 dataset since the former contains more
ambiguous context frames which make our results inferior to
[11], [64] at mAP@0.95. Although the performance gain by
our method is smaller in ActivityNet v1.2 compared to that in
THUMOS’14, the improvement performance also verifies the
common effectiveness on both datasets.

D. Qualitative Results

To demonstrate the superiority of the proposed framework,
we further visualize some localization results from a test video
containing several Diving action instances. As illustrated in
Fig. 7, the localization results of our method are relatively
complete and precise. More specifically, the baseline may
result in temporal interval interruption (the first instance) or
attribute ambiguous segments as actions (the last instance),
and fail to cover complete actions in some cases. With our
proposed MDA, the network is more effective to differen-
tiate between the foreground and background by extracting
distinguished spatial and temporal features, while the modal
attention makes full use of the complementary information
from RGB and optical flow through background estimation.
On this basis, when further introduce similarity constraints
that group the action segments in the feature space, more
confusing parts can be selected out. The accurate qualitative
results prove the effectiveness of our proposed method under
weak supervision.

V. CONCLUSION

In this paper, we peopose a multi-dimensional attention
(MDA) mechanism to explore temporal, channel and modal
attention for weakly-supervised temporal action localization.
The temporal attention helps capture most discriminative
segments containing action instances. Meanwhile, a channel
attention module highlights the action-related features to do
segment-level action classification. Furthermore, we introduce
a modal attention to fuse RGB and optical flow modalities
during background estimation. Another similarity constraint
helps to refine action instances in feature space and generate
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GT

Baseline

+ MDA

+ Sim

Fig. 7. Qualitative results visualization on THUMOS’14 (best viewed in color). The sample video contains multiple instances of Diving activity. The proposed
Multi-Dimensional Attention (MDA) and the similarity constraints are added subsequently. GT represents the ground-truth.

TABLE V
COMPARISON WITH RECENT STATE-OF-THE-ART METHODS ON THE THUMOS’14 DATASET. AVG MEANS THE AVERAGED MAP UNDER IOU

THRESHOLDS 0.1:0.1:0.7. THE ALGORITHMS ARE DIVIDED INTO THREE GROUPS ACCORDING TO THE LEVELS OF SUPERVISION. † DENOTES THE USE OF
ADDITIONAL INFORMATION. FOR FAIR COMPARISON, ALL METHODS EMPLOY I3D AS THE FEATURE EXTRACTOR.

Supervision Method mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG[0.1-0.5] AVG[0.3-0.7] AVG

Full

SSN (ICCV 2017) [42] 66.0 59.4 51.9 41.0 29.8 19.6 10.7 49.6 30.6 39.8
TAL-Net (CVPR 2018) [2] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3 41.3 45.1
BSN (ECCV 2018) [4] - - 53.5 45.0 36.9 28.4 20.0 - 36.8 -
P-GCN (ICCV 2019) [66] 69.5 67.8 63.6 57.8 49.1 - - 61.6 - -
G-TAD (CVPR 2020) [46] 66.1 64.2 54.5 47.6 40.2 30.8 23.4 54.5 39.3 46.7
BSN++ (AAAI 2021) [45] - - 59.9 49.5 41.3 31.9 22.8 - 41.1 -
AFSD (CVPR 2021) [41] - - 67.3 62.4 55.5 43.7 31.1 - 52.0 -

Weak†
STAR (AAAI 2019) [67] 68.8 60.0 48.7 34.7 23.0 11.7 6.2 47.0 24.9 36.2
3C-Net (ICCV 2019) [52] 59.1 53.5 44.2 34.1 26.6 16.7 8.1 43.5 25.9 34.6
SF-Net (ECCV 2020) [68] 71.0 63.4 53.2 40.7 29.3 18.4 9.6 51.5 30.2 40.8

Weak

Hide-and-Seek (ICCV 2017) [7] 36.4 27.8 19.5 12.7 6.8 - - 20.6 - -
UntrimmedNet (CVPR 2017) [6] - - 28.2 21.1 16.2 - 5.1 29.0 - -
STPN (CVPR 2018) [18] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0 18.5 26.4
W-TALC (ECCV 2018) [8] 55.2 49.6 40.1 31.1 22.8 14.8 7.6 39.8 23.3 31.6
MAAN (ICLR 2019) [56] 59.8 50.8 41.1 30.6 20.3 12.0 6.9 40.5 22.2 31.6
Liu et al. (CVPR 2019) [62] - - 41.2 32.1 23.1 15.0 7.0 - 23.7 -
TSM (ICCV 2019) [63] - - 39.5 31.9 24.5 13.8 7.1 - 23.4 -
Nguyen et al. (ICCV 2019) [9] 64.2 59.5 49.1 38.4 27.5 17.3 8.6 47.7 28.2 37.8
BaS-Net (AAAI 2020) [10] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 43.6 27.3 35.3
TSCN (ECCV 2020) [19] 63.4 57.6 47.8 37.7 28.7 19.4 10.2 47.0 28.8 37.6
ACSNet (AAAI 2021) [64] - - 51.4 42.7 32.4 22.0 11.7 - 32.0 -
HAMNet (AAAI 2021) [16] 65.4 59.0 50.3 41.1 31.0 20.7 11.1 49.4 30.8 39.8
Lee et al. (AAAI 2021) [11] 67.5 61.2 52.3 43.4 33.7 22.9 12.1 51.6 32.9 41.9
AUMN (CVPR 2021) [65] 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1 32.4 41.5
TS-PCA (CVPR 2021) [69] 67.6 61.1 53.4 43.4 34.3 24.7 13.7 52.0 33.9 42.6
MDA (Ours) 69.7 63.1 55.2 46.6 35.6 25.0 14.4 54.0 35.4 44.2

complete and precise action proposals. Each of the components
is proved to be effective through ablation studies. Experiments
on THUMOS’14 and ActivityNet v1.2 dataset demonstrate
that the proposed method outperforms current state-of-the-art
methods for weakly-supervised temporal action localization.

Our future works include three directions. First, more fea-
ture extractors will be explored to extract discriminative video
features. Second, the proposed MDA can be applied to other
video analysis tasks like spatial-temporal action detection.
Third, we could further adopt audio information to conduct
audio-visual action localization.
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