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Abstract
Particle filter (PF) has been proved to be an effective tool to
track sound sources. In traditional PF, a pre-defined dynamic
model is used to model source motion, which tends to be mis-
matched due to the uncertainty of source motion. Besides, non-
stationary interferences pose a severe challenge to source track-
ing. To this end, an observation-guided adaptive particle filter
(OAPF) is proposed for multiple concurrent sound source track-
ing. Firstly, sensor signals are processed in the time-frequency
domain to obtain the direction of arrival (DOA) observations of
sources. Then, by updating particle states with these DOA ob-
servations, angular distances between particles and observations
are reduced to guide particles to directions of sources. Third-
ly, particle weights are updated by an interference-adaptive
likelihood function to reduce the impacts of interferences. At
last, with the updated particles and the corresponding weights,
OAPF is utilized to determine the final DOAs of sources. Exper-
imental results demonstrate that our method achieves favorable
performance for multiple concurrent sound source tracking in
noisy environments.
Index Terms: multiple concurrent sound source tracking, par-
ticle filter, direction of arrival

1. Introduction
Multiple concurrent sound source tracking using microphone
arrays plays a crucial role in numerous applications such as
speech enhancement, teleconferencing and human-robot inter-
action. However, the performance of source tracking is affected
by the uncertainty of source motion and the non-stationary of
interference. A method for the robust sound source tracking in
such complex conditions is demanded.

Over the past few decades, many sound source tracking
methods have been proposed, which generally consist of two
stages: 1) Localization stage. The current received signals are
converted to position observations of sound sources by using
localization function. The position observation can be time d-
ifference of arrival [1, 2], location information [3], direction of
arrival (DOA) [4, 5] or binaural cues [6–8]. 2) Tracking stage.
When the position observations across successive frames are
obtained, to determine the final source position estimations, the
temporal consistency of position observations is usually exploit-
ed by a filter method, such as Kalman filter (KF) [9], extended
Kalman filter (EKF) [10,11] and particle filter (PF) [12–18]. D-
ifferent from KF and EKF which are based on the assumption of
linearity or Gaussianity, PF can overcome the limitation of the
assumption, which has been proved to be a promising method
in tracking problems. It estimates source positions by a set of
particles with associated weights.

Generally, in PF, a pre-defined dynamic model is assumed
to be able to model the source motion effectively in the predic-
tion step, making it possible to predict the propagation of parti-

cle states recursively according to the dynamic model. Due to
the uncertainty of source motion, the dynamic model may mis-
match the source motion. The propagation of particles may be
misled, causing particles away from sources. Hence, the EKF is
introduced into the extended Kalman particle filter (EKPF) [17],
which can use the latest observations to update particle states.
EKPF is based on the Gaussianity assumption which may be
invalid in fact, resulting in tracking losses. Swarm intelligence
based particle filter (SWIPF) [18] updates particle states by us-
ing particle swarm optimization algorithm [19]. Since it em-
ploys the interaction between particles instead of the latest ob-
servations, particles are guided to source positions in an indirect
way, resulting in tracking performance degradation.

In addition, the likelihood function, which depends on ob-
servation interference distribution [20], is exploited to update
particle weights in the update step. To track sources simulta-
neously, a bank of parallel PFs is used [13]. In this case, each
PF needs to obtain the corresponding likelihood function. Gen-
erally, the distribution of the interferences exerted on different
observations is assumed to be known and same, which can be
modelled as Gaussian distribution [13] and Von Mises distribu-
tion [15]. Since source observations are not only affected by
noises but also by the interaction between sources, the interfer-
ences exerted on different observations may vary with time and
environments. Thus, the distribution of the interferences may
be uncertain and different due to the non-stationary of interfer-
ences. The pseudo likelihood function, which is determined by
the localization function, is exploited [14]. However, the pseu-
do likelihood function reflects the joint probability distribution
of observations, it cannot be applied to the PF bank directly.

To deal with the problems mentioned above, a novel
multiple concurrent sound source tracking method based on
observation-guided adaptive particle filter (OAPF) is proposed.
Firstly, received signals are processed in the time-frequency (T-
F) domain to obtain the direction of arrival (DOA) observation-
s of sources. Secondly, DOA observations are used to update
the directions of particles to reduce the angular distances be-
tween sources and particles. The updated particle directions
are exploited to modify the states of the corresponding parti-
cles. In this way, OAPF can directly guide particles to source
directions by current observations. Thirdly, since the interfer-
ences impacted on DOA observations can affect the half-width
at half-maximum (HWHM) [21] of peaks of sources in the lo-
calization function, an interference-adaptive likelihood function
is proposed which takes HWHM as its parameter. Therefore,
the adaptive likelihood function can be adaptively adjusted ac-
cording to the influence of non-stationary interferences. Then,
the likelihood function is used to update particle weights, and
the particles with small weights are abandoned in resample step.
Therefore, OAPF can adaptively adjust particle distribution ac-
cording to the interference influence. Finally, OAPF uses the
particles and their weights to estimate the DOAs of sources.
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Figure 1: The illustration of the geometrical relationship. Here,
an equispaced circular sensor array consists of M microphones
and K sources move around the array.

2. Multiple Concurrent Sound Source
Localization

There are K far-field sound sources observed by a M-channel
array as depicted in Figure 1, the sources move simultaneously
while the array is static. Here, the DOAs of sources are adopted
as position observations, which are observed with respect to the
ray OA.

To obtain the DOA observations, a sparse component analy-
sis based multiple concurrent sound source localization method
is adopted [4]. The number of sources is assumed to be known.
The sensor signals are converted into TF domain by the short-
time Fourier transform firstly. Since speech signals are sparse in
TF domain, there exist some TF bins where one source is dom-
inant over others in energy, and these bins are known as single
source bins. Then, the coarse DOAs of sources can be estimated
independently in every single source bin, which are used to con-
struct a DOA distribution histogram. Thirdly, the histogram is
smoothed by Parzen windows [22] and the smoothed histogram
is adopted as the localization function. Finally, the DOA esti-
mations are refined by applying matching pursuit method [23]
on the smoothed histogram, and the refined DOAs are adopted
as observations. Let Xt denote the signals received by the sen-
sor array at time t, the localization function can be formulated:

Y (θ̂t)= FT {Xt}, (1)

where θ̂t = [θ̂1,t , ..., θ̂k,t , ..., θ̂K,t ] is the DOA observations of
sources, Y (θ̂t) is the localization function and FT {·} is the
function which transformsXt into DOA information.

3. Multiple Concurrent Sound Source
Tracking Based on OAPF

To deal with the mismatch problem and the non-stationary in-
terference problem, an observation-guided adaptive particle fil-
ter (OAPF) is proposed. In OAPF, the latest observations are
used to modify particle states and an interference-adaptive like-
lihood function is employed to update particle weights. To
track sources simultaneously, an OAPF bank is employed which
is denoted as {Fk,t} with k ∈ {1, ...,K}. Each OAPF is e-
quipped with Z particles, which is denoted as {αz

k,t ,w
z
k,t} with

z ∈ {1, ...,Z}. The particle state is defined as:

αz
k,t =

[
Xz

k,t , Ẋ
z
k,t ,Y

z
k,t , Ẏ

z
k,t

]ᵀ
, (2)

where Xz
k,t and Yz

k,t are the coordinates of the particle, Ẋz
k,t and

Ẏz
k,t are the velocities, and [·]ᵀ denotes the transpose. Here on-

ly a two-dimensional tracking situation is considered. Initially,
particles of an OAPF is drawn from the importance density [12]
with same weight {wz

k,0 =
1
Z }. Then the OAPF is employed to

track the corresponding source using a two-step process of pre-

diction and update.

3.1. Particle State Propagation Based on DOA Guidance

In OAPF, the dynamic model and the current source observa-
tions are jointly exploited for the propagation of particles. Here
the Langevin model is adopted as the dynamic model. In X-
coordinate, it is defined as:

Ẋt = Ẋt−1 · e−γ∆T +ΓX · ς ·
√

1− e−2γ∆T , (3)

Xt = Xt−1 +∆T · Ẋt , (4)

where γ = 10 s−1,ς = 1 ms−1, ∆T is the time interval between
two successive frames and ΓX is a normally distributed random
variable. Parameters of the Langevin model in Y -coordinate are
identical. By using the dynamic model, particle states can be
predicted recursively.

Then, the coordinate information of the predicted particles
is converted to direction information as:

θ̃ z
k,t = arctan(

Yz
k,t −Y′

Xz
k,t −X′

), (5)

where θ̃ z
k,t is the direction of the predicted particle and (X′,Y′)

represents the coordinates of the array center.
Given the DOA observations, directions of particles are up-

dated to reduce angular distances between sources and parti-
cles:

θ̄ z
k,t = θ̃ z

k,t +β (θ̂k,t − θ̃ z
k,t), (6)

where θ̂k,t is the observation of source k, θ̄ z
k,t is the updated

direction of the corresponding particle, β is an updating param-
eter. A larger β indicates that the particles are directed more
closely to the source direction. Here, β = 0.28.

Then, the directions of the updated particles are exploited
to modify the coordinates of the corresponding particles:[

X̄z
k,t , Ȳ

z
k,t

]ᵀ
= dz

k,t ·
[
cos(θ̄ z

k,t),sin(θ̄ z
k,t)
]ᵀ

+
[
X′,Y′

]ᵀ
, (7)

where dz
k,t =

√
(Xz

k,t −X′)2 +(Yz
k,t −Y′)2. In this way, particle

states can be guided by the observations, thereby improving the
convergence to the source direction.

Therefore, the modified state of the particle is:

αz
k,t =

[
X̄z

k,t , Ẋ
z
k,t , Ȳ

z
k,t , Ẏ

z
k,t

]ᵀ
. (8)

3.2. Adaptive Likelihood Function Calculation

In the localization stage, the coarse DOAs are estimated from
single source bins. When the interferences exert slighter in-
fluences on source observations, the angular distances between
source DOAs and the coarse DOAs associated with sources will
decrease. Besides, the amount of the coarse DOAs resulting by
interferences decreases. Hence, the amount of the coarse DOAs
associated with sources increases relatively and they are more
concentrated around the source positions. Correspondingly, the
widths of the corresponding source peaks tend to be narrower
in the localization function Y (θ̂t). Here, the half-width at half-
maximum (HWHM) [21] is employed to measure the width in-
formation of peaks. Figure 2 illustrates the HWHMs of peaks
in the localization function under different noisy environments.
It can be observed that the HWHM increases when SNR de-
creases. Moreover, the HWHMs of two sources are different
although the sources are under the same environment. It con-
firms that different observations suffer different interference in-
fluences. Therefore, distribution of the interferences exerted on
different observations are different.

Motivated by the relation between the HWHM of source
peak and the interference influence, a Cauchy probability den-
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Figure 2: The HWHM of sources in two-source environments
for different noise levels. There are two active sources in the
same environment. The distances from sources to array center
are 1.5m.
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Figure 3: A two-source instance in a noisy room where sources
are located at 52◦ and 142◦ respectively. (a) The localization
function. (b) The adaptive likelihood functions.

sity [21] based adaptive likelihood function is proposed, which
takes HWHM as its parameter. Different from the DOA distri-
bution which is defined in circular axis, the Cauchy probabil-
ity density is defined in linear axis. Hence, by converting the
Cauchy probability density into a wrapped form, the adaptive
likelihood function is proposed as:

C(θ ; θ̂k,t ,ψk,t ,ρ) =
1
π

[
ψk,t ·ρ

η · cos(θ − θ̂k,t)3 +(ψk,t ·ρ)2

]
, (9)

where ψk,t is the HWHM corresponding to the DOA obser-
vation θ̂k,t , η is used to adjust the peak value of the adap-
tive likelihood function and ρ is exploited to scale HWHMs.
Here, η = 3200 and ρ = 0.5. The likelihood function repre-
sents the probability distribution of DOA observation, which
is determined by the DOA observation and the corresponding
observation interference distribution. Different from traditional
likelihood functions, the adaptive likelihood considers the dif-
ference of the influences on different sources, which employs
the HWHM to reflect the observation interference distribution.

A two-source instance is depicted in Figure 3. Although the
heights of two source peaks are almost the same, the HWHM-
s of two peaks are different. The difference indicates that the
observations of the sources suffer interference influence in dif-
ferent degrees. A smaller HWHM leads to a smaller dispersion
of observation probability distribution.

3.3. DOA Estimation Based on Adaptive Likelihood Func-
tion

Given the DOA observations, the corresponding adaptive like-
lihood functions can be determined, which are used to update
particle weights. According to the adaptive likelihood function,
the probability of attaining observation θ̂k,t conditioned on a
given particle state αz

k,t is:

p(θ̂k,t |αz
k,t) = C(DOA(αz

k,t); θ̂k,t ,ψk,t ,ρ), (10)
where DOA(αz

k,t) is the particle direction, which can be calcu-
lated by Eq. (5).

The weight of the corresponding particle can be updated:
wz

k,t = wz
k,t−1 · p(θ̂k,t |αz

k,t). (11)
Using the particles and their updated weights, the source

Algorithm 1: Resample algorithm in particle filter

Input: {α(1:Z),w(1:Z)}
Output: {α∗(1:Z),w(1:Z)}

1 Set the cumulative distribution function (CDF): C1 = 0
2 for z= 2 : Z do
3 Cz =Cz−1 +wz → Construct CDF
4 end for
5 Set z = 1 → Start at the bottom of the CDF
6 Draw u1 from the uniform distribution U [0,1/Z]
7 for h = 1 : Z do
8 uh = u1 +(h−1)/Z →Move along the CDF
9 while uh >Cz do

10 z = z+1
11 end while
12 α∗h =αz,wh = 1/Z→ Assign particle and weight
13 end for
14 return {α∗(1:Z),w(1:Z)}

DOA can be obtained:

θk,t =
Z

∑
z=1

wz
k,t

∑Z
z=1 wz

k,t
DOA(αz

k,t). (12)

A resample algorithm [24] is utilized to alleviate the degen-
eracy of particles. The details of resample are shown in Algo-
rithm 1. Particles will be resampled if the particle set satisfies:

1

∑Z
z=1(w

z
k,t)

2
< Nthr, (13)

where Nthr is a pre-defined threshold and Nthr = Z. In this step,
particles with relatively smaller weights are eliminated while
those with larger weights are duplicated. The resample of par-
ticles indicates that a larger HWHM corresponds a broader par-
ticle distribution. In this way, OAPF can adjust particle dis-
tribution adaptively according to the influence exerted on the
observations.

Since the reliability of a DOA observation decreases when
the interference influence becomes severer, the estimation of
DOA observation tends to have larger error. Due to the mis-
estimated DOA observation, particles may be sampled from an
erroneous region. In this case, OAPF is allowed to sample par-
ticles in a wider region through a larger HWHM to strengthen
the robustness to interferences.

Considering the temporal consistency of the observations
associated with the sources, a correlation measurement is pro-
posed to assign the observations to the corresponding source.
The correlation measurement between source k and a DOA ob-
servation is defined:

Wk,k′ =
∫ 2π

0
C(θ ;θk,t−1,ψk,t−1,ρ) ·C(θ ; θ̂k′,t ,ψk′,t ,ρ)dθ .

(14)
Each source calculates the correlation measurements with

all DOA observations, a DOA observation is assigned to the
source which has the highest correlation measurement value
with this DOA observation.

4. Experiment and Discussions
4.1. Experimental Setting

Performances of proposed method are evaluated in a noisy room
with the size of 6 m × 4 m × 3 m. An 8-channel uniform
circular array with a radius of 2 cm is placed at the center of
the rectangular room. The coordinates of the microphone m1
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Table 1: The average RMSEs (in degrees) of tracking methods
based on different particle update strategies

SNR methods 30◦ 60◦ 90◦ 135◦

15dB
proposed 1.20 1.36 1.26 1.24
SWIPF 1.74 1.90 1.84 1.74
SIRPF 1.92 1.82 1.93 1.63

10dB
proposed 1.66 1.70 1.65 1.50
SWIPF 2.86 2.62 2.63 2.58
SIRPF 3.04 2.88 2.95 2.52

5dB
proposed 2.51 2.73 2.36 2.16
SWIPF 3.83 3.71 3.35 3.25
SIRPF 4.33 4.83 4.57 3.82

0dB
proposed 3.85 4.77 3.97 3.59
SWIPF 5.79 5.81 5.09 4.99
SIRPF 6.43 7.59 7.85 6.10
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Figure 4: The trajectories of two sources in the simulated envi-
ronment. The two sources move around the array with a fixed
velocity. Here the angular separation of two sources is 90◦ .

is (3.02m,2m,1.7m). To generate multiple concurrent source
scenes, two sources are located around the array with 1.5 m
distance. The sources with a height of 1.7 m move anticlock-
wise with the same speed of 0.5 m/s as Figure 4 shows. The
angular separations between sound sources are set to 30◦, 60◦,
90◦ and 135◦. Ten pairs of speech recordings from TSP Speech
Database [25] are employed as the source signals. The sampling
rates of the recordings are 48 kHz. The ISM toolbox [26] is em-
ployed to generate the room impulse responds from sources to
the microphones. To obtain an objective signal-to-noise ratio
(SNR), the white Gaussian noise is properly scaled and added
to each microphone signal. The frame length is set to 2048 with
50% overlap, and the highest frequency of interest is set to 4
kHz. The particle number Z is 100. The average Root Mean
Square Error (RMSE) is adopted as evaluation criteria [14].

4.2. Experimental Results

To test the effectiveness of the DOA guidance, the proposed
method is compared with tradition PF [13] and SWIPF [18].
The tradition PF is known as sequential importance resampling
particle filter (SIRPF). The three methods adopt the adaptive
likelihood function to update particle weights in the update step.
Table I illustrates the comparison of RMSE for the methods in
different noisy environments. It can be seen that our method
outperforms SWIPF and SIRPF under all conditions. All the
RMSEs of our method are less than 5◦ while the maximum RM-
SEs of the other two methods are larger than 5◦. Since OAPF
employs source observations to reduce angular distances be-
tween sources and particles, the particles can be more closely to
the source direction. Thus particles can achieve a more accurate

Table 2: The average RMSEs (in degrees) of tracking methods
based on different likelihood functions.

SNR methods 30◦ 60◦ 90◦ 135◦

15dB
proposed 1.20 1.36 1.26 1.24

VMPF 2.55 2.42 2.39 2.48

10dB
proposed 1.66 1.70 1.65 1.50

VMPF 3.23 2.99 3.22 2.92

5dB
proposed 2.51 2.73 2.36 2.16

VMPF 3.72 3.75 3.40 3.47

0dB
proposed 3.85 4.77 3.97 3.59

VMPF 5.77 4.99 5.88 4.99

approximation. Different from SWIPF, our method takes use of
source observations instead of inter-particle interaction infor-
mation to update particle states. Hence, the particles are guided
to the sources in a more direct way to improve the tracking per-
formance. The performance of all the three methods tends to be
worse when the noise level is relatively larger.

To demonstrate the effectiveness of the adaptive likelihood
function, our method is compared with the Von Mises likeli-
hood based particle filter (labeled as VMPF). In the VMPF, the
Von Mises distribution, which is a circular distribution, is ex-
ploited to model the observation interference distribution. Same
as the proposed method, the VMPF also exploits observations
to modify particle states in prediction stage. Table II depict-
s the comparison of RMSE for the methods based on different
likelihood functions. It is observed that the proposed method
performs better than VMPF in all the cases. The RMSE dif-
ferences between the VMPF and our method are larger than 1◦

in most cases. This is due to that the distribution of particles
can be adaptively modified according to the interference influ-
ence. When sources suffer slighter influence, the observations
are more reliable. In this case, OAPF samples particles from
the region with high likelihood to achieve a more accurate es-
timation. When the reliability of observation decreases, OAPF
samples particles from a border region to avoid the observation
misdirection. In this way, OAPF shows the adaptivity to in-
terferences and strengthens the robustness to interferences. In
summary, compared with other methods, the proposed method
is more reliable and practical for source tracking.

5. Conclusions
This paper proposes an effective multiple concurrent sound
source tracking method based on OAPF for noisy environments.
By reducing angular distances between particles and the cor-
responding sources observation, OAPF can exploit the obser-
vations to guide particles towards source directions when the
dynamic model can not model the source motion properly. The
adaptive likelihood function can be adjusted according to the in-
terferences exerted on sources by using HWHM, and it is used
to update the weights of particles. Therefore, OAPF can adap-
tively modify the particles distribution to strengthen robustness
to the interferences. Experimental results show that the pro-
posed method can track multiple concurrent sound sources with
high accuracy. Future work will concentrate on the performance
of tracking method in reverberant environments.
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