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Abstract
 This paper proposes a method of determining human 

head poses from a sequence of images. The main idea is 

to use some features in a 3D head model to generate a 

virtual fronto-parallel projection that satisfies conditions 

of affine approximation. Then the affine parameters 

between the virtual projection and input view are 

calculated. After that, rotation and translation parameters 

of the head are roughly estimated by a circle-ellipse 

correspondence technique based on the affine parameters. 

Finally, an iterative optimization algorithm is utilized 

further to refine the results. The accuracy is maintained 

by estimating reliability of the 2D-3D feature 

correspondences and weighting each factor of the 

optimization objective function. The system performance 

is also improved by applying a modified KLT technique to 

speed up the convergence during the face feature tracking 

process. Experimental results show that our method can 

accurately recover head poses in a wide range of head 

motion. 

1. Introduction

Head gestures play a very important role in people’s 

daily communication. The estimation of head poses can 

facilitate many human-computer interactive applications, 

such as face identification, gesture understanding, 

expression recognition and model-based low bit-rate 

video coding. 

Many approaches have been reported on this topic. 

Most of them can be classified into two categories: face 

property-based and model-based. Property-based methods 

assume there exists certain relationship between the 3D 

head pose and some properties of the 2D face images and 

they use a large number of training images to determine 

the relationship. Face properties may include image 

intensity, colors [1], gradient or some transformations of 

the image intensity [2,4,7,11]. Model-base methods 

commonly assume a model as the approximation of head, 

and obtain the pose parameters using the 2D-3D feature 

correspondences. The models may be a geometrical object 

such as a cylinder [12], some simple geometrical 

structures [3], or 3D head models obtained by range 

finders [5,10,13]. Since 3D head models can provide rich 

geometrical information, making it possible to recover the 

head pose with fewer features, the use of 3D models 

becomes more and more popular in recent research.  

 This paper presents a robust approach using affine 

correspondences and 3D head models to estimate the head 

poses. The main purpose of our work is to estimate the 

head pose parameters relative to the fronto-parallel 

position for the frames, given a sequence of head images 

and a 3D head model of a person. At the beginning, we 

manually select some features both in the model and the 

first frame of the image sequence, and construct a virtual 

fronto-parallel project of the features by using the 3D 

model. Then we improve the well-known KLT method [9] 

that can reliably track 2D face features in the following 

frames by optimizing some matching criterion with 

respect to the small inter-frame displacement. For each 

frame, we use the same technique described below to 

estimate the pose parameters. First, the affine parameters 

between the virtual projection and the input frame are 

estimated. Then the head pose parameters are roughly 

estimated by a circle-ellipse correspondence technique. 

Finally a nonlinear optimization process is utilized to 

refine the rough results.  In order to make the system 

more robust, we estimate reliability of the 2D-3D feature 

correspondences and weight each factor of the 

optimization objective function. 

As compared with the affine correspondence technique 

in previous works, there are three advantages in our 

method. First, adding an extra rotation, our method can 

recover all six pose parameters instead of the face plane 

normal alone. Second, introducing 3D head models into 

the system, we can construct a virtual fronto-parallel (it 

means the face plane is parallel to the image plane with 

the front side to the camera) 2D projection to avoid the 

acquisition of a real fronto-parallel image as the reference 

view. Third, We use certain 3D features to define the face 

plan and make it precisely parallel to the image plane. 

That can eliminate errors of affine parameters estimated 

by using the camera-captured “fronto-parallel” view that 

is not really fronto-parallel. The defined face plane also 

makes the plane assumption of affine transformation is 

effective even in a close distance from the camera. 

Experiments show that our method can work effectively 

and obtain accurate head pose estimation in a wide range 

of head motion. 
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Fig. 1. System work flow diagram. 

2. System Outline
Fig.1 shows the block diagram of our system. We 

have available a 3D head model which is generated with a 

FastScan laser scanner. Since the original data may be 

noisy, hence we use 3D modeling software Polyworks to

filter out the noises and fill holes. Head images are 

captured by a Mintron 64G-1K camera and fed into the 2D 

feature tracking system. It is calibrated beforehand by 

using a self-calibration method [6]. After the rough 

estimation and a refining process, the accurate pose 

parameters are estimated. 

We use six feature points including four corners of 

eyes and two corners of mouth. These points are nearly in 

the same plane. One extra point on the nose tip is also 

used to get a unique solution in the process of head pose 

estimation. These points are chosen here because there is 

rich texture information around them and hence they are 

easy to track [9]. The tracker needs to know the initial 

correspondences of features. We manually select the seven 

feature points both in the 3D models and the first frame of 

the image sequence. 

3. 3D Head Pose Tracking

3.1 Virtual Fronto-parallel Projection 

Affine correspondence depends on the face plane 

assumption. If we use 3D feature points mentioned above 

to define a face plane, it’s easy to construct a virtual 

fronto-parallel projection of features. It can be achieved by 

two steps. First, we transform the feature points from the 

model coordinate system to a camera coordinate system 

with the face plane parallel to the image plane. Let p1 and

p4 denote the outer corners of eyes, p2 and p3 the inner 

corners of eyes, p5 and p6 the corners of mouth, as shown in 

Fig.2 (a). c1 is the mean location of p1 �p2�p3 and p4, and c2

is the mean location of p5 and p6. Here define vectors 

131 cpr and 122 ccr . Then we can define the 

face plane that passes the point c1 and has 12 rr  as its 

normal. Let’s define another point p7 at the vector 12 rr

with the distance between c1 and p7 being one. If we make 

c1, after a transformation, locate at the camera coordinate 

system’s origin with c1-p7 as the z-axis direction, then 

there are three pairs of non-collinear points to determine 

the transformation parameters using Rodrigues Formula 

[6].   

Fig. 2. Construction of virtual fronto-parallel projection. 

Second, we translate the model to construct the virtual 

projection. If the camera is modeled as a pinhole one, then 

the coordinates of a 3D point 
T

ZYXX  in the 

world coordinate system and its 2D projection coordinates 
T

vux  are related by 

11

X
P

x
 ,            (1) 

where � is a scale factor and P is the 3×4 perspective 

projection matrix.  

By choosing an arbitrary positive value zt along the 

z-axis, as shown in Fig.2 (b), we can obtain the 

coordinates of the projected features using Eq. (1). Later, 

we will show the value of zt  does not affect the final 

estimation of the head pose parameters.  

3.2 2D Feature tracking 

We use a modified KLT algorithm to track the 2D 

features in the image sequence. In essence, the KLT 

method [9] assumes a linear approximation of the intensity 

in neighboring regions of the features. It will cause some 
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error especially at the high-curvature points in the 

intensity function and need an iterative process to make 

the results converge.  In order to reduce the number of 

iteration and improve the accuracy, we use a modified 

FFT-based KLT technique.  

Assume the residue error function in the template 

window is 

W
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x
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where it(x,y) and it+1(x,y) are image intensity in the 

window at time t and t+1. dx and dy are the motion 

parameters. The total error here equals to the energy of 

error function in the template window. After the FFT, 

according to Parseval Theorem, we have 

ydxd

W
yxtIydyxytIxdyxxtIyxtI

W

dxdyyxtiyd
y

yxti

xd
x

yxtiyxti

2
),(1),(,),(,),(

2)],(1

),(),(
),([

,(3) 

where ),(,),,(,),,(1),,( yxytIyxxtIyxtIyxtI are 

the FFT results for it(x,y)•it+1(x,y)� yyxtixyxti /),(,/),( ,

respectively. In fact, most of the high-curvature points 

correspond to the high frequency part of the image. If we 

perform optimization calculation using the low frequency 

component, it is expected to speed up the convergence 

while producing more accurate solution of the motion 

parameters. Because FFT has computational complexity 

depending on the window size, as a tradeoff, we choose 8

×8 FFT windows in our method. 

3.3 Affine Parameter Estimation 

Under the condition of the face plane assumption, we 

can use a single global affine transformation to 

approximate the position change between projected 

features in the virtual fronto-parallel projection and those 

in the input view. Let ),,,,( 21 Ni pppp   denote the N 

feature points in the virtual projection, and 

),,,,( '''
2

'
1 Ni pppp    denote the corresponding features 

in the input view obtained by 2D feature tracking. The 

affine relation between them can be written as 

bApp ii ,              (4) 

where A is the linear component matrix and b the 

translation vector. The relation between the N pairs of 

features can be expressed as 

uKm ,                   (5) 

where m is the affine parameter vector defined by 
T

bAAbAA 2222111211m ,
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We solve m in (5) by a linear least squares method. 

The estimated affine parameter vector is then given by 

uKK)(Km T1T~ .               (7) 

3.3 Rough Head Pose Estimation 

Fig.3. Pose estimation using the circle-ellipse  

correspondence technique.

Yao described an algorithm for the head pose 

estimation in [14] based on a circle-ellipse correspondence 

technique. It formed a cone whose intersection with the 

image plane was given by an ellipse equation obtained 

from the affine transformation.  Then the camera 

coordinate system was rotated twice to make the 

intersection of the cone with a plane become a circle again. 

After that, the z-axis in the new camera coordinate system 

is consistent with the face plane normal, as shown in Fig.3. 

Here C0 denotes the original camera coordinate system, C1

the coordinate system after the first rotation, and C2 that 

after the second rotation. 

Obviously the face plane normal can not determine the 

head pose uniquely because the face pose may vary on the 

face plane. Therefore we need a third rotation around the 

z-axis in the face plane. 

Fig.4 illustrates the determination of the third rotation 

angle. Here we define an identification point N(0,1,f) at 

the unit notional circle in the image plane, which is 

superposed with the projected point m(0,1) of a certain 

point M in the face plane. When the face pose changes as 

shown in Fig.4(b), M is shifted to M .The projected 

point m of M  can be determined using the affine 

parameters estimated from above steps.  

C0

C1 C2
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Assume the unit notional circle plane rotates with the 

camera coordinate system. After the second rotation, N is 

shifted to N2. Then we translate the notional circle to make 

it center at the point O where the z-axis of C1 intersects 

with the image plane. (For the purpose of clarity, the 

notional circle center is placed at a distance from point O

in Fig. 4(b)). In order to make the face pose in the notional 

circle plane consistent with that in the real face plane, 

point N2 should be rotated about the z-axis by  a rotation 

angle �to N3. N3 must be in the plane defined by O,

m and the COP (center of projection). Its projection n3,

m and O should locate at the same line. There are two 

solutions to�. The angle that makes the distance between

m and n3 smaller is the correct solution.  

(a)                   (b) 

Fig. 4. Estimating the third rotation angle.

The first rotation matrix was determined by the 

eigenvectors of the diagonal matrix given in [14], and the 

second rotation angle�was determined by 

)/()(cos 3132
2 ,

where 321 ,, are the  eigenvlaues of the diagonal 

matrix. Let M denote the diagonal matrix calculated by 

assumed translation zt  mentioned in section 3.1. If the 

real translation is zz tt̂ k , we can derive that the new 

diagonal matrix is k2
M. The eigenvalues of the matrix k2

M

are k2 times those of M, and the eigenvectors will not 

change at all. It means that zt̂  will not affect the 

estimation of the three rotation matrices.  

Once the final rotation matrix is calculated, the 

translation parameters in Eq. (1) can be solved by a linear 

least squares method. Therefore, we recover all six head 

pose parameters. 

     

3.4. Refinement of Head Poses  

Because human face is roughly approximated by a plane, 

the above head pose estimation can not be very accurate. 

Therefore, we use the head pose parameters estimated 

from last section as the initial rough guess for an iterative 

optimization process that minimize the distance between 

the projected features and tracked features in the input 

view. 

The objective function of the optimization is  

])()([
2'

1

2'
ii

N

i

iii yyxxD PX,PX, ,   (8) 

where x’
i(X, P) and y’

i(X, P) are the coordinates of a 

projected feature point X in the world coordinate system, 

P the projection matrix, ix and iy the coordinates of the 

corresponding feature points in the input view. i is the 

weight representing reliability of the 2D-3D feature 

correspondences, which will be discussed in the next 

section. The problem of optimization can be solved by the 

Levenburg-Marquet method [8]. 

Non-linear optimization with constrains of the 

rotation matrix is complicated. Therefore, using the 

Rodrigues Formula, we can find a three-dimensional 

vector q whose direction is consistent with the rotation 

axis, and the norm of q is equal to the rotation angle. Since 

three elements of q are independent, it is easy to 

implement the optimization process. 

3.5. Enhancement of Robustness 

Because of the inevitable errors in the process of tracking 

and initial localization of features, some 2D-3D features 

correspondences are not reliable. We apply a robust 

technique to weight factors of the objective function of 

optimization in Eq.(8). Since three non-linear pairs of 

2-3D feature correspondences can determine an estimate 

of the head pose, for all combinations, the robust standard 

deviation is 

2'2'

1
)()(min iiii

Ni
yyxxmedian PX,PX,

 
. (9) 

where 4826.1 , and it is the correcting term that makes 

the median equal to the standard deviation of Gauss 

distribution. Then the weight i  for each feature 

correspondence is: 

cd
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where 
2'2' )()( iiiii yyxxd PX,PX, is the distance 

between the projected and tracked features in the input 

view. ]5.3,5.2[c  is a scalar that represents the strictness 

of judgment on outliers. 

4. Experimental Results 

We tested our method in two sequences of head 

images for different persons. On the top row of Fig.5, 

some selected frames of the sequences are shown 
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respectively. Rough head pose estimations are in the 

middle row, and the refined results in the bottom row. �is

the horizontal rotation angle and �is the angle between the 

face normal and the horizontal plane. Obviously the 

refined pose visually is quite close to what we see in the 

images. 

In order to examine the accuracy of our method, we 

used several individual views of a bust that is rotated by 

known angles on a turntable. As illustrated in Fig.6,�and �

below the input images are the known angles. The 

maximum error ratio of the refined estimations of �to the 

total rotation angle 50°is 2.44%.  

Top of Fig.7 shows the curves of tracking errors of 

feature points p1, p2, p4 and p5 in sequence 2. The thick 

curves represent results using modified KLT method and 

the thin curves using the KLT method. As expected, the 

modified KLT technique can produce more accurate 

results. Bottom is the iteration number of convergence of 

p4 in sequence 2. It can be seen that in most frames the 

modified KLT method can reduce the numbers of iterative 

computation. Similar results appear with other feature 

points. Experimental results show that our method can 

accurately estimate the head poses that ranged from -50°to 

50°.

5. Conclusions

We have described an approach for estimating head poses 

for an image sequence by using affine correspondence and 

a 3D head model. By adding an extra rotation, our method 

can recover six pose parameters. By using 3D head model, 

a virtual fronto-parallel projection is also constructed to 

avoid the acquisition of a real fronto-parallel head image 

as the reference image. A non-linear iterative process of 

optimization and a modified KLT 2D feature tracking 

technique are further applied to make the results more 

accurate.

Currently, our method relies on the 3D head model of 

the person to be tracked. A generic model can be used in 

future work. In addition, in order to deal with the 

perturbation of face expression or non-rigid motion of 

faces, we will consider dynamic deformation in face 

surfaces.
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frame 20     frame 30     frame 50     frame 23  frame 34  frame 53 

            
�=–18.50° �=–32.39° �=–48.34°     �=27.11° �=39.62° �=49.59°

�=–4.70°   �=–6.39° �=–8.51°     �=–12.43° �=–9.04° �=–3.21°

            
�=–14.81° �=–26.19° �=–43.32°     �=23.48° �=35.25° �=43.63°

�=–2.13°   �=–1.98° �=–3.37°     �=–3.90° �=–3.35° �=1.72°

Fig. 5. Experiments on two real image sequences.Top row is some input frames, middle row is the rough estimation and bottom 

row is the refined results. 

�=–10°      �=–30°     �=–40°

�=0°       �=0°       �=0°             

                
�=–16.58°   �=–35.47° �=–50.83°

�=–1.41°    �=2.27° �=2.92°

�=–10.93°   �=–28.78° �=–39.76°

�=–0.07°    �=–1.03°   �=–0.37°   Fig. 7. Comparison of Modified KLT and KLT tracking.

Top is the tracking errors of feature points p1,p2,p4,p5.

Fig. 6. Results of a bust with measured rotation angles.  Bottom is the iteration number of convergence of point p4.
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