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Abstract—Self-localization is most necessary foundation for 
mobile robot’s navigation system. Omnidirectional vision 
system is widely used in mobile robot. However, the accuracy 
of vision-based methods is not high enough for many 
applications. In this paper, a probabilistic method based on 
bearing-only localization is presented to accurately estimate 
mobile robot’s position by using omnidirectional vision signal 
processing. Firstly, landmarks and bearings are detected from 
omnidirectional vision signals. Then, a probabilistic mapping 
that is composed of coordinates’ weight is constructed. The 
weight of coordinate indicates the possibility that the robot’s 
location is the coordinate of the point. Finally, Monte Carlo 
Localization is used to fuse probiotic method and odometer-
based prediction model. Experiments in several scenarios show 
that the model using omnidirectional vision signal processing is 
robust and accurate for mobile robot localization. 

Keywords-Bearing-only localization; Monte Carlo; mobile 
robot; omnidirectional vision; 

I.  INTRODUCTION 
Vision sensors have been widely used in mobile robot 

systems. Self-localization is one of the most necessary 
foundations for a navigation system of a mobile robot. 
However, conventional vision sensors have limited fields of 
view that make them restrictive in mobile robot’s self-
localization. The widely method to solve this problem is 
using Omni-cameras.  

Vision-based Location method is widely used, especially 
using omnidirectional vision sensors. However, their 
accuracy is not high enough for many applications. 
Geometric localization based on the exploitation of 
landmarks or beacons have high accuracy. In general, 
geometric methods can be divided into two main categories, 
range-only method (trilateration localization) and bearing-
only method (triangulation localization). Range-only 
localization [1] mainly makes use of the distance 
measurements pointing from robot to these landmarks, while 
bearing-only localization uses the angular separations 
between the lines connecting the robot and these landmarks 
[2][3][4].  

In the general bearing-only localization system, at least 
three different recognizable landmarks are required or fixed 
in robot’s workspace. Two lines, created by connecting a 

robot with any two of these landmarks, together with the 
angle they form, determine a circle that contains the position 
of the robot. Also, by the same way, another circle can be 
created. The robot locates right at the intersection of these 
two circles.  

In bearing-only technology, three different recognizable 
landmarks are required or fixed at least in the workspace. A 
method proposed by Ilan Shimshoni provides a linear system 
at a low computational cost in the circumstances [5]. 
Another kind of bearing-only method approximates the 
resulting region of feasible states by a tight, complex-shaped, 
bounding set [6][7]. These methods performed in a standard 
circumstance, which means there are only three landmarks in 
the workspace. They do have not assumed the noise in the 
measurements obeying Gaussian distribution. Therefore, the 
resulting region only indicates an area that the robot may be 
within, but it has not indicated the likelihood of where the 
robot located. 

In our system, the information used to self-localization 
acquired by omnidirectional signal processing, such as 
landmarks and bearings. With the original distribution of 
bearing measurements, the likelihood over all possible robot 
locations is estimated in order to derive a probabilistic 
mapping. With the probabilistic mapping, searching for the 
peak of maximum likelihood coordinate could provide a 
relative accurate location estimate of mobile robot. Many 
studies in probabilistic localization usually combined with 
other information fusion technique [8][9], i.e. Kalman Filter, 
Markov method or Monte Carlo localization [10][11]. 

The rest of this paper is organized as follows. Section II 
gives a brief review of omnidirectional signal processing for 
bearing-only system. In Section III, the theoretical derivation 
of the probabilistic mapping is provided. In Section IV, the 
probabilistic model combined with Monte Carlo technique is 
used to perform position estimate. The results of experiments 
are analyzed to demonstrate the applicability and accuracy of 
our method in section V. Section VI concludes the article. 

II. OMNIDIRECTIONAL VISION SIGNAL PROCESSING FOR 
BEARING-ONLY LOCALIZATION 

In global 2D Cartesian coordinate system, the robot’s 
pose is described as 𝑆! = 𝑥! , 𝑦! , 𝜃! ∙    [𝑥! , 𝑦!] is the position 
coordinate and θ indicates the forward direction of the 



mobile robot. In the workspace, there are three known 
landmarks whose positions are described as 𝐿! = [𝑥! , 𝑦!] 
where i = 1, 2, 3. 

The bearings are measured by counterclockwise rotations 
from the robot’s forward direction to the direction 
determined by the robot together with the landmark. These 
actual bearings are denoted as α!. Accordingly, the actual 
angular separations between the two directions pointing from 
the robot to the ith and jth landmarks is denoted as 
α!" =    α! − α! , 𝑖, 𝑗 = 1,2,3  𝑖 ≠ 𝑗. 

In order to get the probabilistic mapping, a posterior 
probabilistic density function (PPDF) must be trained firstly. 
Via the PPDF, the distribution of actual angular separation in 
terms of a noisy input can be determined. 

The random variable of actual angular separation is de- 
noted as Zij. Meanwhile, the corresponding measurement is 
described as αij, which is a sample of random variable Aij. In 
other words, αij is a once measurement of angular separation 
between the directions from the robot to the ith and the jth 
landmarks. As a result, the PPDF can be denoted as 
𝑝  (𝑍!"|𝛼!"). This function is trained out with the popular 
Bayesian statistic method that is illustrated in Fig.1 (b). In 
order to illustrate clearly, the test set are discretized and 
shown in the figure. 

In our method, landmarks are detected by Omni-camera 
equipped in the robot. Thus, the observation of landmarks is 
presented canonically as two-dimensional Gaussian 
distribution [12], shown in Fig.1. Therefore, it is a 
reasonable assumption in this paper that the noises associated 
with the bearing measurement are considered as Gaussian 
distribution. Based on this assumption, an error model for 
bearing-only localization is represented by [13]. 

 

 
Figure 1. (a) The principle of bearing-only localization. The land- marks 
are detected as a 2-dimensional Gaussian distribution. (b) Training the 
PPDF by numerous angular measurements. 

III. PROBABILISTIC MAPPING CONSTRUCTION 
Given the PPDF of angular separation in the last section, 

we are ready to extend to the corresponding two-dimensional 
distribution. Two steps of theoretical derivation to form the 
probabilistic distribution are stated. They are: two crescent- 
shaped mappings are created and then these mappings are 
merged into the final desired probabilistic mapping. 

A. Derivation of Crescent-Shaped Probabilistic Map 
To achieve the crescent-shaped probabilistic mappings, 

three parameters are required: the coordinates of two land 

marks, Li and Lj, known in advance and the random variable 
of angular separation 𝑍!". 

As is well known, 𝑍!", Li and Lj produce a set of circles 
and due to the 𝑍!"’s randomness, each circle is dictated by a 
probability corresponding to 𝑍!" which indicates the 
likelihood that the robot stands on this circle. To formulate 
mathematically, the circle’s probabilistic character can be 
described as a random vector,𝐶!" = [𝑋!" ,𝑌!" ,𝑅!"] , where 
[𝑋!" ,𝑌!"] prescribe the center and 𝑅!" prescribe the radius. 
 
Algorithm 1: Creation of Crescent-Shaped Map 
   

Data: Li, Lj, αij and thr that is the threshold for filtering   
          the situations with very low probability.  
Result: map (x, y), crescent-shaped probabilistic map. 
begin 
       map ← ∅; 
       𝑝  (𝑍!"|𝛼!") ← GetPPDF (αij); //get PPDF  
       foreach coordinates (x, y) ∈ Ω do 
                a ← GetAngle(x, y, Li, Lj);  
               //get angular separation ∠Li(x, y)Lj 
               if  |a − αij | ≤ thr then 
                       map(x, y) ← p(a|αij );   
              else    
                      map(x, y) ← 0; 
  
        s ← 𝑚𝑎𝑝(𝑥, 𝑦)! 𝑑𝑥𝑑𝑦 ; 
        foreach coordinates (x, y) ∈ Ω do 
                 map(x, y) ← map(x, y)/s; //normalizaion 
 
        return map; 
 
The distribution of 𝐶!" can be replaced by the distribution 

of 𝑅!" for simplicity. It’s easy to verify that the radius can be 
expressed as: 

𝑅!" =
𝑑𝑖𝑗

2 sin(𝑍𝑖𝑗)
                                   (1) 

where 𝑑!" = (𝑥! − 𝑥!)! + (𝑦! − 𝑦!)!  means the distance 
between 𝐿! and 𝐿!. The posterior probabilistic density func- 
tion could be solved by: 

𝑝(𝑟!") =
𝑑𝑖𝑗

𝑟𝑖𝑗 4𝑟𝑖𝑗
2−𝑑𝑖𝑗

2
𝑝 𝜑 𝛼!"                                        (2)  

where  φ = arc sin
!!"
!"!"

 . 

To traverse all the workspace and set the probability of 
every coordinate to circle, it could produce a 2D probabilistic 
mapping in which a higher crescent-shaped probabilistic 
region emerge (see Fig.2 (a)(b)). How to produce this 2D 
probabilistic mapping with applied program is depicted in 
Algorithm 1. 



 

 
Figure 2.  (a)(b) Two Crescent-Shaped Probability Mappings. (c) The 
merged probabilistic distribution mapping. (d) The result from com- 
bination with Monte Carlo Localization. 

 

B. Fusing the Crescent-Shaped Probabilistic Mappings 
Suppose the two mappings are denoted as M1(x,y) and 

M2(x, y), where (x, y) indicates the coordinate. Notes that 
these two mappings are computed from two different frames 
from camera, so as to emphasize these mappings are 
unrelated. The final probabilistic distribution mapping can be 
obtained by combining two 2D probabilistic mappings with 
this method: 

𝑀! 𝑥, 𝑦 = 𝑀1 𝑥,𝑦 ∙𝑀2 𝑥,𝑦
𝑀1 𝑥,𝑦 ∙𝑀2 𝑥,𝑦 𝑑𝑥𝑑𝑦𝛺

                   (3) 

where Ω means total space and t indicate the time step that 
prepare for the Monte Carlo filter in the next section. The 
example of 𝑀! 𝑥, 𝑦  is shown in Fig.2(b). 

IV. COMBINATION WITH MOTE CARLO LOCALIZATION 
The Monte Carlo technology could provide a more 

rational probabilistic mapping through fusing the sensing 
model and the prediction model. The sensing model is 
usually constructed by a probabilistic mapping that is derived 
from the characters of the localization system itself. In our 
system, probabilistic mapping provided in the last section is 
the sensing model. On the other hand, the prediction model 
could be given by the translated sensing model of previous 
time, and the problem of how to translate is according to the 
log of odometer. It is obvious that the mapping processed by 
Monte Carlo technology is more convergent than that not 
processed (see Fig. 2(d)). The result of localization system 
can be the location corresponding to the peak of this 
mapping 

 𝑥, 𝑦, 𝜃 𝑥, 𝑦, 𝐿! 𝑀 𝑥, 𝑦 = 𝑚𝑎𝑥 𝑀 𝜇, 𝜐 ; 𝜇, 𝜐 ∈ 𝛺             (4)  

Making use of the coordinate [x, y], the function to 
compute the forward direction of the robot is: 

𝜃 𝑥, 𝑦, 𝐿! ,𝛼!" = arctan !!!!
!!!!

− 𝛼!                  (5) 

 The coordinate and the forward direction together 
indicate the pose S = [x, y, θ] of a robot. 

V. EXPERIMENTS AND DISCUSSION 
The measurements of angular separation used for training 

the parameter σ2 are collected by an Omni-camera, PHILIPS 
SPC900NC, which is equipped by a HRI oriented robot 

called “Pengpeng II” (see Fig. 3). 2073 measurements of 
angular separation were collected from real circumstances 
(see Fig. 3(c)), and with these data σ2 was trained out to be 
0.011. 

 
                (a)                      (b)                                           (c) 
 
Figure 3.   (a) The ”Pengpeng II” robot equipped with an omni-camera. 

(b) Omni-camera. (c) experiments workspace. 
 

There are 10 different scenarios are settled to estimate the 
10m *10m real circumstances. Only three landmarks have 
been set randomly in each scenario. Totally, 33170 times of 
localizations were executed. A figure of position error is 
draw by these data of Table I (see Fig. 4). The green line 
with asterisks indicates position error using method of 
original bearing-only localization and the blue one with 
circlets denotes position error using combination method. 
The proposed method of combining our probabilistic 
mapping with Monte Carlo technique is more suitable for the 
area in which the original bearing-only localization is more 
unreliable.  

 
 

      Figure 4. Position errors of three methods in 10 different scenarios 

 
 Figure 5. The comparison of position estimate when the robot moves into 

the area far from triangle area 

Figure 5(a) and (c) show the results of position estimates 
by original bearing-only localization when the robot is 
moving into the places far from the triangle area. The light 
blue point indicates the actual location of robot and the 
yellow point indicates the localization results by original 

be the new probabilistic mapping. Experiments in the next
section demonstrate that more accurate localization results
could be obtained by this way.

When the set of particles is excessively concentrated,
the situation of no particles of non-zero importance weight
could emerge. In addition, the kidnapped robot problem
comes up. As to solve these two problems, the probabilistic
mapping which is measured just now could be offered as
the current mapping of MCL. The ability of recovery from
failures is equipped into our system. The algorithm of this
combinational method with MCL is depicted in Algorithm
2.

V. EXPERIMENTS AND DISCUSSION

This method of position estimate using our method has
been tested in this section. The measurements of angular
separation used for training the random parameter s2 are
collected by an omni-camera, PHILIPS SPC900NC, which
is equipped by a HRI oriented robot named ”Pengpeng II”.
In order to confirm the improvement in accuracy of general
position estimate and the superior localization ability when
the robot is moving into the area in which the original
bearing-only localization are more unreliable, three parts of
experiments are carried out with simulation system. Employ-
ing the simulation system is to eliminate the error from the
moving information of robot and focus on the evaluation of
the ability of our method. While the application is executed
in simulation system, the data of angular separation, and the
inputs of the localization system, are all collected from actual
environment, therefore these results do not differ from the
results obtained from real circumstance.

A. Experiments of General Position Estimate

In our experiments, 2073 measurements of angular sep-
aration were collected from real circumstance, and with
these data the s2 was trained out as 0.0011. That means
the variance is of around 2�. That means if the actual
angular separation is ãi j in a moment, the corresponding
measurement must be a random sample obeying the Gaussian
distribution of N(ãi j,0.0011). This is the rules to generate
the measurements of angular separation. There are 10 dif-
ferent scenarios are settled to estimate the 10m *10m real
circumstances. Only three landmarks have been set randomly
in each scenario. In other words, the coordinates of the three
landmarks are all random.

In order to reach a convictive conclusion, the robot has
been ordered to move around in random trajectories in
each scenario. The trajectories cover the whole workspace
including the triangle area formed by landmarks and the area
out of the triangle. The TDR is also a place the robot moves
into constantly. Totally, 33170 times of localizations were
executed. The original bearing-only localization [17] and our
method are executed together. The mean position errors of
each scenarios of different methods have been computed out
and listed in Table I. The position error is computed by
|Sactual �S| where the S indicates the localization result and
Sactual is the actual position at that time.

Fig. 5. (a) The ”Pengpeng II” robot. (b) Omni-camera (c) The omni-
picture of experimental circumstance, in which the landmarks are indicated
by colored circles.

Fig. 6. Position errors of three methods in 10 different scenarios

In almost scenarios the results computed by localization
method of using probabilistic mapping and the combinational
method are more accurate than the results coming from the
original bearing-only localization. The general mean values
of these three methods are shown in the last column of Table
I. It is obvious that the results computed by the method of
combination with MCL are the most accurate and its error
value is 15cm less than the original’s in general.

A figure of position error is draw by these data of Table I
(see Fig. 5). The green line with asterisks indicate position
error using method of original bearing-only localization
and the blue one with circlets denotes position error us-
ing combination method. There is an interesting peculiarity
discovered from Fig. 5. If the results of position estimates
by original bearing-only localization are more inaccurate,
the accuracy of results using the combination method gets
more improvement. Thus, the proposed method of combining
our probabilistic mapping with Monte Carlo technique is
more suitable for the area in which the original bearing-
only localization is more unreliable. This conclusion will be
demonstrated with instances in the next two parts.

Another value, called Probabilistic Mapping Conver-
gence(PMC), are calculated with our probabilistic mapping
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In almost scenarios the results computed by localization
method of using probabilistic mapping and the combinational
method are more accurate than the results coming from the
original bearing-only localization. The general mean values
of these three methods are shown in the last column of Table
I. It is obvious that the results computed by the method of
combination with MCL are the most accurate and its error
value is 15cm less than the original’s in general.

A figure of position error is draw by these data of Table I
(see Fig. 5). The green line with asterisks indicate position
error using method of original bearing-only localization
and the blue one with circlets denotes position error us-
ing combination method. There is an interesting peculiarity
discovered from Fig. 5. If the results of position estimates
by original bearing-only localization are more inaccurate,
the accuracy of results using the combination method gets
more improvement. Thus, the proposed method of combining
our probabilistic mapping with Monte Carlo technique is
more suitable for the area in which the original bearing-
only localization is more unreliable. This conclusion will be
demonstrated with instances in the next two parts.

Another value, called Probabilistic Mapping Conver-
gence(PMC), are calculated with our probabilistic mapping

TABLE I
THE GENERAL PERFORMANCE OF POSITION ERROR AND COMPARISION USING THREE METHODS

Scenario NO. I (cm) II III IV V VI VII VIII IX X Mean Value
Original 20.2870 27.6124 35.5216 40.5737 46.0922 50.2814 73.0361 93.4556 113.8467 154.4803 65.5187

Using PM 20.2958 24.1909 30.8162 34.2364 40.2134 44.5676 63.8492 87.1620 102.2087 145.5092 59.30494
Combination 21.9149 24.6098 30.7995 33.0792 37.9967 42.6788 53.7679 72.6271 83.0358 109.3037 50.98134

PMC 17.5804 18.2761 23.6798 25.5369 28.5298 32.2746 49.5772 58.8614 67.0179 92.0546 -

Fig. 7. The comparison of position estimate when the robot moves into the area far from triangle area

Fig. 8. The comparition of position estimate when the robot moves into the Triangulation Difficult Region

using this function
Z Z

W
Mt(x,y) ·

q
(x� x)2 +(y� y)2dxdy (8)

where the [x,y] is the expectation of the probabilistic map-
ping. It is computed by

[x,y] =
Z Z

W
Mt(x,y) · [x,y]dxdy (9)

Like its name, PMC indicates the convergence degree of
probabilistic mapping at each time of position estimate. The
mean value of PMC for each scenario are also summarized
in the last line of Table I.

The values of PMC are also drawn in Fig. 5 with
the red line. A distinct positive correlation exists between
the position error of all methods and the convergence of
our probabilistic mapping. In terms of this characteristic,
a method of measurement to evaluate the quality of the
localization results emerges. We can use the value of PMC
to estimate the position error between the localization result
and the actual location of the robot.

B. Localization in Far From Triangle Area

The classical original bearing-only localization performs
perfectly when the mobile robot locates within the triangle
area enclosed by three landmarks. When the robot moves
into other areas, like the places far from the triangle area,
the performance becomes unreliable. The variation trend of
accuracy in the workspace using bearing-only localization
is described by [9]. Fig. 7(a) and (c) show the results of
position estimates by original bearing-only localization when
the robot is moving into the places far from the triangle area.
The light blue point indicates the actual location of robot and
the yellow point indicates the localization results by original
bearing-only localization. The position errors of these two
situations are 97.69cm and 195.49cm respectively. While the
localization results in these two situations by combination
method are also computed (see Fig. 7 (b) (d)). The pink point
indicates the position estimate by combinational method.
The corresponding position errors are 20.00cm and 8.49cm.
According to these figures, we can see that the proba-
bilistic mapping is so convergence to the actual location.

         (a)                         (b)                         (c)                        (d) 



bearing-only localization. The position errors of these two 
situations are 97.69cm and 195.49cm respectively. The 
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the actual location. 

 

 
 

Figure 6.  The comparition of position estimate when the robot moves into 
the Triangulation Difficult Region 
 

When the robot and all landmarks lie on the same circle, 
even near to this circle (Triangulation Difficult Region), an 
extreme error of position estimate could come into being. 
Two instances are shown in Fig. 6 (a) and (c). The green 
point indicates the localization result by original bearing-
only localization, light blue one is the actual position of 
robot and yellow point means the localization result by the 
method only with our probabilistic model. We can clearly 
intuit the extreme position error from these pictures. The 
original method seems to estimate the position in illogical 
way. Meanwhile, the localization results are also computed 
by the method of combining our probabilistic model and 
MCL in Fig. 6 (b) and (d). The values of position error of 
these two only are 16.00cm and 12.00cm. These tremendous 
results are so inspiring to users of bearing-only localization 
who are always faced with the headachy drawback of 
bearing- only localization system. 

VI   CONCLUSIONS 
 

      In this paper, a probabilistic method of brearing-only 
localization is proposed, which is based on omnidirectional 
vision signal processing in order to get informations include 
landmarks and bearings that are nessary for bearing-only 
localization. A probabilistic mapping which describe the 
probabilistic distribution of the possible locations of robot 
based on PPDF is trained by Numerous bearing measuring 
data. Then, a localization method with high performance of 
merging the probabilistic mapping and MCL together is 
represented. Experiments have shown that the method 
performs well even in some challenging situations, for 
example when the robot moves far from the triangle area or 
moves into the TDR. 
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                                 TABLE I.   THE GENERAL PERFORMANCE OF POSITION ERROR AND COMPARISION USING THREE METHODS 

Scenario No. I(cm) II III IV V VI VII VIII IX X Mean Value 
Original 20.2870 27.6124 35.5216 40.5737 46.0922 50.2814 73.0361 93.4556 113.8467 154.4803 65.5187 

Using PM 20.2958 24.1909 30.8162 34.2364 40.2134 44.5676 63.8492 87.1620 102.2087 145.5092 59.30494 
Combination 21.9149 24.6098 30.7995 33.0792 37.9967 42.6788 53.7679 72.6271 83.0358 109.3037 50.98134 

PMC 17.5804 18.2761 23.6798 25.5369 28.5298 32.2746 49.5772 58.8614 67.0179 92.0546 - 
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Fig. 7. The comparison of position estimate when the robot moves into the area far from triangle area

Fig. 8. The comparition of position estimate when the robot moves into the Triangulation Difficult Region

using this function
Z Z

W
Mt(x,y) ·

q
(x� x)2 +(y� y)2dxdy (8)

where the [x,y] is the expectation of the probabilistic map-
ping. It is computed by

[x,y] =
Z Z

W
Mt(x,y) · [x,y]dxdy (9)

Like its name, PMC indicates the convergence degree of
probabilistic mapping at each time of position estimate. The
mean value of PMC for each scenario are also summarized
in the last line of Table I.

The values of PMC are also drawn in Fig. 5 with
the red line. A distinct positive correlation exists between
the position error of all methods and the convergence of
our probabilistic mapping. In terms of this characteristic,
a method of measurement to evaluate the quality of the
localization results emerges. We can use the value of PMC
to estimate the position error between the localization result
and the actual location of the robot.

B. Localization in Far From Triangle Area

The classical original bearing-only localization performs
perfectly when the mobile robot locates within the triangle
area enclosed by three landmarks. When the robot moves
into other areas, like the places far from the triangle area,
the performance becomes unreliable. The variation trend of
accuracy in the workspace using bearing-only localization
is described by [9]. Fig. 7(a) and (c) show the results of
position estimates by original bearing-only localization when
the robot is moving into the places far from the triangle area.
The light blue point indicates the actual location of robot and
the yellow point indicates the localization results by original
bearing-only localization. The position errors of these two
situations are 97.69cm and 195.49cm respectively. While the
localization results in these two situations by combination
method are also computed (see Fig. 7 (b) (d)). The pink point
indicates the position estimate by combinational method.
The corresponding position errors are 20.00cm and 8.49cm.
According to these figures, we can see that the proba-
bilistic mapping is so convergence to the actual location.


