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Abstract

Multi-modal fusion is proven to be an effective method to
improve the accuracy and robustness of speaker tracking,
especially in complex scenarios. However, how to combine
the heterogeneous information and exploit the complemen-
tarity of multi-modal signals remains a challenging issue.
In this paper, we propose a novel Multi-modal Perception
Tracker (MPT) for speaker tracking using both audio and
visual modalities. Specifically, a novel acoustic map based
on spatial-temporal Global Coherence Field (stGCF) is first
constructed for heterogeneous signal fusion, which employs
a camera model to map audio cues to the localization space
consistent with the visual cues. Then a multi-modal percep-
tion attention network is introduced to derive the perception
weights that measure the reliability and effectiveness of in-
termittent audio and video streams disturbed by noise. More-
over, a unique cross-modal self-supervised learning method is
presented to model the confidence of audio and visual obser-
vations by leveraging the complementarity and consistency
between different modalities. Experimental results show that
the proposed MPT achieves 98.6% and 78.3% tracking ac-
curacy on the standard and occluded datasets, respectively,
which demonstrates its robustness under adverse conditions
and outperforms the current state-of-the-art methods.

Introduction
Speaker tracking is the foundation task for intelligent sys-
tems to implement behavior analysis and human-computer
interaction. To enhance the accuracy of the tracker, multi-
modal sensors are utilized to capture richer information
(Kılıç and Wang 2017). Among them, auditory and visual
sensors have received extensive attention from researchers
as the main senses for human to understand the surrounding
environment and interact with others. Similar to the process
of human multi-modal perception, the advantage of integrat-
ing auditory and visual information is that they can provide
necessary supplementary cues (Xuan et al. 2020). Compared
with the single-modal case, the utilizing of the complemen-
tarity of audio-visual signals contributes to improving track-
ing accuracy and robustness, particularly when dealing with
complicated situations such as target occlusion, limited view
of cameras, illumination changes, and room reverberation
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Figure 1: Keyframes of the working process of the proposed
multi-modal perception attention network. (a)-(c) demon-
strate the exploration of complementarity, consistency, and
supplementarity between audio-visual signals, respectively.

(Katsaggelos, Bahaadini, and Molina 2015). Furthermore,
multi-modal fusion shows distinct advantages when the in-
formation of one modality is missing, or neither modality is
able to provide a reliable observation. As a result, it is criti-
cal to develop a multi-modal tracking method that is capable
of fusing heterogeneous signals and dealing with intermit-
tent noisy audio-visual data.

Current speaker tracking methods are generally based on
probabilistic generation models due to their ability to pro-
cess multi-modal information. The representative method is
Particle Filter (PF), which can recursively approximate the
filtering distribution of tracking targets in nonlinear and non-
Gaussian systems. Based on PF implementation, the Direc-
tion of Arrival (DOA) angle of the audio source is projected
onto the image plane to reshape the typical Gaussian noise
distribution of particles and increase the weights of parti-
cles near DOA line (Kılıç et al. 2015). A two-layered PF is
proposed to implement feature fusion and decision fusion of
audio-visual sources through the hierarchical structure (Liu,
Li, and Yang 2019). Moreover, a face detector is employed
to geometrically estimate the 3D position of the target to as-
sist in the calculation of the acoustic map (Qian et al. 2021).
However, these methods prefer to use the detection results
of the single modality to assist the other modality to obtain
more accurate observations, while neglecting to fully utilize
the complementarity and redundancy of audio-visual infor-
mation. In addition, most of the existing audio-visual track-
ers use generation algorithms (Ban et al. 2019; Schymura
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and Kolossa 2020; Qian et al. 2017), which are difficult to
adapt to random and diverse changes of target appearance.
Furthermore, the likelihood calculation based on the color
histogram or Euclidean distance is susceptible to interfer-
ence from observation noise, which limits the performance
of the fusion likelihood.

To solve those limitations, we propose to adopt an at-
tention mechanism to measure the confidence of multiple
modalities, which determines the effectiveness of the fu-
sion algorithm. The proposed idea is inspired by the hu-
man brain’s perception mechanism for multi-modal sensory
information, which integrates the data and optimizes the
decision-making through two key steps: estimating the reli-
ability of various sources and weighting the evidences based
on the reliability (Zhang et al. 2016). Take the intuitive ex-
perience as an example: when determining a speaker’s posi-
tion in a noisy and bright environment, we mainly use eyes;
conversely, in a quiet and dim situation, we rely on sounds.
Based on this phenomenon, we propose a multi-modal per-
ception attention network to simulate the human perception
system that is capable of selectively capturing valuable event
information from multiple modalities. Figure 1 depicts the
working process of the proposed network, in which the first
two rows show the complementarity and consistency of au-
dio and video modalities. In the third row, the image frame
is obscured by an artificial mask to show the supplemen-
tary effect of the auditory modality when the visual modal-
ity is unreliable. Different from existing end-to-end mod-
els, the specialized network focuses on perceiving the reli-
ability of observations from different modalities. However,
the perception process is usually abstract, making it diffi-
cult to manually label quantitative tags. Due to the natural
correspondence between sound and vision, necessary super-
vision is provided for audio-visual learning (Hu et al. 2020)
(Afouras et al. 2021). Therefore, we design a cross-modal
self-supervised learning method, which exploits the comple-
mentarity and consistency of multi-modal data to generate
weight labels of perception.

Neural networks have been widely used in multi-modal
fusion tasks, represented by Audio-Visual Speech Recogni-
tion (AVSR) (Baltrušaitis, Ahuja, and Morency 2018). How-
ever, except for preprocessing works such as target detec-
tion and feature extraction, neural network is rarely intro-
duced to multi-modal tracking. This is because the posi-
tive samples in tracking task are simply random targets in
the initial frame, resulting in a shortage of data to train a
high-performing classifier. Therefore, using an attention net-
work specifically to train the middle perception component
provides a completely new approach to this problem. An-
other reason is that the heterogeneity of audio and video data
makes it difficult to accomplish unity in the early stage of the
network. Therefore, we propose the spatial-temporal Global
Coherence Field (stGCF) map, which maps the audio cues
to the image feature space through the projection operator
of a camera model. To generate a fusion map, the integrated
audio-visual cues are weighted by the perception weights
estimated by the network. Finally, a PF-based tracker im-
proved with the fusion map is employed to ensure smooth
tracking of multi-modal observations.

All these components make up our Multi-modal Percep-
tion Tracker (MPT), and experimental results demonstrate
that the proposed MPT achieves significantly better results
than the current state-of-the-art methods.

In summary, the contributions of this paper are as follows:
• A novel tracking architecture, termed Multi-modal Per-

ception Tracker (MPT), is proposed for the challenging
audio-visual speaker tracking task. Moreover, we pro-
pose a new multi-modal perception attention network for
the first time to estimate the confidence and availability
of observations from multi-modal data.

• A novel acoustic map, termed stGCF map, is proposed,
which utilizes a camera model to establish a map-
ping relationship between audio and visual localization
space. Benefiting from the complementarity and consis-
tency of audio-visual modalities, a new cross-modal self-
supervised learning method is further introduced.

• Experimental results on the standard and occluded
datasets demonstrate the superiority and robustness of
the proposed methods, especially under noisy conditions.

Related Works
Sound Source Localization. As the preprocessing mod-
ule of many applications, Sound Source Localization (SSL)
has been extensively studied. Traditional microphone array-
based acoustic sound source localization methods are based
on Time Difference of Arrival (TDOA) (Cobos et al. 2020),
steered beamforming (Chiariotti, Martarelli, and Castellini
2019), and high resolution spectral estimation (Yang et al.
2019). Among these, the Generalized Cross-Correlation
(GCC) algorithm is a commonly used TDOA estimation
method, which describes the similarity between signals re-
ceived at two sensors. Its reduced computational intensity
leads to shorter decision time and higher tracking efficiency.
With the development of multi-modal technology, audio-
visual learning is introduced to the SSL task. Aiming at the
problem of sound source localization in visual scenes, a two-
stream network structure with attention mechanism is de-
signed (Senocak et al. 2019). The audio-visual category dis-
tribution matching method is developed to assist the selec-
tion and localization of the sounding object (Hu et al. 2020).
Joint Deep Neural Networks (DNN) are proposed based on a
probabilistic spatial audio model, including a visual DNN to
localize candidate sound sources and an audio DNN to ver-
ify the localization of candidates (Masuyama et al. 2020).
We improve the Global Coherence Field (GCF) method to
extract audio features with both spatial and temporal cues
under the guidance of visual information.

Audio-Visual Tracking. Commonly used methods are
state-space approaches based on the Bayesian framework.
Many works improve the PF architecture to integrate data
streams from different modalities into a unified tracking
framework. Among them, multi-modal observations are
fused in a joint observation model, which is represented by
improved likelihoods (Qian et al. 2019; Kılıç et al. 2015;
Brutti and Lanz 2010). The tracking framework based on
Extended Kalman Filter (EKF) realizes the fusion of an arbi-
trary number of multi-modal observations through dynamic



Figure 2: The framework of the proposed tracking architecture. The stGCF-based audio cues are mapped to the localization
space consistent with the visual cues. The integrated audio-visual cues combined with perception weights evaluated by the
multi-modal perception attention network generate a fusion map that guides update step of the PF-based multi-modal tracker.

weight flow (Schymura and Kolossa 2020). Probability Hy-
pothesis Density (PHD) filter is introduced for tracking an
unknown and variable number of speakers with the theory
of Random Finite Sets (RFSs). The analytical solution is de-
rived by introducing a Sequential Monte Carlo (SMC) im-
plementation (Liu et al. 2019). By analyzing the task as a
generative audio-visual association model formulated as a
latent-variable temporal graphical model, a variational infer-
ence model is proposed to approximate the joint distribution
(Ban et al. 2019). An end-to-end trained audio-visual object
tracking network based on Single Shot Multibox Detector
(SSD) is proposed, where visual and audio inputs are fused
by an add merge layer (Wilson and Lin 2020). Deep learning
methods are less utilized in the audio-visual tracking task,
leading to further research prospects.

Attention-Based Models. Recently, the attention mech-
anism has been widely used in several tasks (Duan et al.
2021b; Tang et al. 2021; Yang et al. 2021; Liu et al. 2021;
Duan et al. 2021a; Tang et al. 2019; Xu et al. 2018). In visual
object tracking, the Siamese network-based tracker is fur-
ther developed by designing various attention mechanisms
(Wang et al. 2018; Yu et al. 2020). Based on the MDNet
architecture, two modules of spatial attention and channel
attention are employed to increase the discriminative proper-
ties of tracking (Zeng, Wang, and Lu 2019). In audio-visual
analysis, a cross-modal attention framework for exploring
the potential hidden correlations of same-modal and cross-
modal signals is proposed for audio-visual event localization
(Xuan et al. 2020). For video emotion recognition, (Zhao
et al. 2020) integrates spatial, channel and temporal attention
into visual CNN, and temporal attention into audio CNN. In
audio-visual speech separation, the attention mechanism is
used to help the model measure the differences and similari-
ties between the visual representations of different speakers
(Li and Qian 2020). To the best of our knowledge, attention
has not been studied on the audio-visual speaker tracking
task. In this paper, a self-supervised multi-modal perception

attention network is introduced to investigate the perceptive
ability of different modalities on the tracking scene.

Proposed Method
In this work, we propose a novel tracking architecture with
a multi-modal perception attention network for audio-visual
speaker tracking. Figure 2 shows the overall framework of
the proposed MPT, which consists of four main modules:
audio-visual (AV) measurements, multi-modal perception
attention network, cross-modal self-supervised learning, and
PF-based multi-modal tracker.

Audio-Visual Measurements
Through audio-visual measurements, the corresponding
cues are extracted from audio signals and video frames. To
integrate multi-modal cues in the same state space, we map
the audio cues to the same localization plane as visual cues.

Audio Measurement. The acoustic map that highlights
the source positions can be accomplished through a coher-
ence measure based on cross-power spectrum phase, such
as the Generalized Cross Correlation with Phase Transfrom
(GCC-PHAT) (Omologo and Svaizer 1997). On this basis,
we introduce the stGCF method to extract the audio cues.
Define rPHAT

ik (t, τ) as the GCC-PHAT derived from micro-
phone pair (i, k). It shows a prominent peak where the delay
τ is equal to the actual TDOA. Let τik(p) denote the theo-
retical time delay of a generic point p relative to the micro-
phone pair (i, k). For the set Ω of M microphone pairs, the
GCF value is defined as the average of the GCC-PHAT for
each microphone pair belonging to Ω:

rGCF
Ω (t, p) =

1

M

∑
(i,k)∈Ω

rPHAT
ik (t, τik(p)). (1)

Given a spatial grid with potential sound source positions,
the GCF value represents the probability of the existence of
a sound source at each position. To construct the spatial grid,



a pinhole camera model is utilized to project the 2D points
on the image plane into a series of 3D points with different
depths in 3D world coordinates, where the depth refers to the
vertical distance from the 3D point to the camera’s optical
center. Assuming that a set D with d depths is represented
as D = {Dk, k = 1, ..., d}, given depth Dk, the image-to-
3D projection process is formulated as:

p3d
ijk = Φ(p2d

ij ;Dk), (2)
where Φ is the projection operator, i and j are the in-
dex of vertical and horizontal coordinate of the point, i =
1, ..., h and j = 1, ..., w. A 2D sampling point set, P2d =
{p2d

11, ..., p
2d
hw}, is constructed by sampling on the image

plane. Through Eq. (2), P2d is projected to multiple planes
with different depths, P2d Φ−→ {P3d

k , k = 1, ..., d}, where
P3d

k is the sample set on the plane with the depth Dk. The
GCF map derived from P3d

k is formulated as:

RGCF
Ω (t,P3d

k ) =

r(p11k) . . . r(p1wk)
...

. . .
...

r(ph1k) . . . r(phwk)


h×w

, (3)

where r(p··k) is short for rGCF
Ω (t, p3d

··k). Assuming that the
peak of GCF map is at the kmax-th depth, the spatial GCF
(sGCF) map at time t is defined as:

RsGCF
Ω (t,P3d) = RGCF

Ω (t,P3d
kmax

). (4)
Due to the intermittent nature of speech and the continuity
of the speaker’s movement, the speech signals over a period
provide references for audio cues at the current moment.
Considering the signal in the time interval [t − m1, t], the
m2 frames with largest peak values of sGCF maps are se-
lected among m1 + 1 frames. The stGCF map at time t is
defined as:

RstGCF
Ω (t,P3d) = {RsGCF

Ω (t′,P3d)|t′ ∈ T}, (5)
where T denotes the time set of the m2 frames.

Visual Measurement. The tracking task aims to localize
an arbitrary target selected in the first frame of the video,
which makes it impossible to collect data in advance to
train a specific detector for tracking. Therefore, the gen-
eral deep metric learning method is introduced to train the
model at the initial offline stage, which considers the track-
ing problem as the similarity measurement between a known
target and the search area. A pre-trained Siamese network
(Bertinetto et al. 2016) is employed in this module, which
uses cross-correlation as the metric function completed by
the convolution operation. The output response maps are
equipped as visual cues, which can be formulated as:

S(It) = {f(It, I
ref )|Iref ∈ I}, (6)

where It is the current video frame, Iref is the reference
template which is the user-defined tracking target in the first
frame, and I is the set of the reference templates with dif-
ferent scales. f(·) denotes the metric function that outputs a
representative score map. The S(It) reflects the probability
of the tracking target at each position in the search image,
which is consistent with the meaning of the stGCF maps re-
ferring to the audio cues.

Multi-Modal Perception Attention Network
Given the extracted audio and visual cues, the multi-modal
perception attention network (see Figure 2) generates a con-
fidence score map as a speaker location representation. The
brain’s attention mechanism is able to selectively improve
the transmission of information that attracts human atten-
tion, weighing the specific information that is more criti-
cal to the current task goal from abundant information. In-
spired by this signal processing mechanism, a neural atten-
tion mechanism is exploited in this module to learn to mea-
sure the plausibility of multiple modalities.

To integrate the audio and visual cues, the stGCF maps
RstGCF

Ω and visual response maps S(It) are normalized and
reshaped into 3D matrix form, expressed as:

R = [R1, ...,RDa ] ∈ RU×Da

,

S = [S1, ...,SDv ] ∈ RU×Dv

,
(7)

where U denotes the size of each input video frame,
U = H × W . Da is the dimension of the audio cues,
which depends on m2 referring to temporal cues, and Dv

is dimension of the video cues, which is determined by
the number of Iref . The fused audio-visual cues, V =
[R1, ...,RDa ,S1, ...,SDv ], are processed through a base
network, which draws on the architecture of the channel at-
tention module (Woo et al. 2018), where the channel corre-
sponds to the observation extracted from the audio or visual
modality. For each channel i ∈ {1, ..., Da +Dv}, the atten-
tion mechanism Gatt generates a positive score αi to mea-
sure the reliability of the observation on the i-th channel.
The processing is formulated as:

Gatt(V) = [α1, ..., αDa+Dv ] ∈ R1×(Da+Dv), (8)

where the score αi, termed the perceptual weight, reflects
the confidence level of the multi-modal cues measured ac-
cording to the previous section. The αi is higher in reli-
able observations and turns to lower in ambiguous observa-
tions disturbed by background noise, room reverberation, vi-
sual occlusion, confusing background, etc. This gets benefits
from the statistical features learned by the network from ob-
servation maps. Through this, the network exhibits the per-
ceived ability to multi-modal observations, which describes
the working interpretability of the proposed network.

Cross-Modal Self-Supervised Learning
The sensing capability accomplished by the network is an
abstract process, which makes it impossible to label data ar-
tificially for essential supervision. To this end, a new cross-
modal self-supervised learning strategy is proposed to train
the network. The self-supervision includes a temporal fac-
tor and a spatial factor, which consider the temporal con-
tinuity of moving targets and the positional consistency in
multi-modal observations, respectively. For the i-th channel,
assuming that point pmax

t,i is the position of the peak of the
feature map at time t, the corresponding spatial factor of the
observation on channel i is defined as the averaging opera-
tors in and across the multiple modalities. The cross-modal



Figure 3: Illustration of the self-supervised labels generated
across modalities in a time interval.

spatial factor is formulated as:

lst,i =
1

2
[

1

Da

Da∑
j=1

Rt,j(p
max
t,i ) +

1

Dv

Dv∑
k=1

St,k(pmax
t,i )], (9)

where St,k(p) denotes the normalized visual response value
at position p. Note that Rt,j(p) is the normalized sGCF
value at position p, where j is the depth index.

The temporal factor is derived by performing the above
averaging operation on a time interval centered on time t.
The temporal factor and the self-supervised label are ex-
pressed as:

ltt,i =
1

2n+ 1

t+n∑
q=t−n

Vq,i(p
max
t,i ),

lt,i = lst,i × ltt,i,

(10)

where V denotes the audio map or visual map. As shown in
Figure 3, the self-supervised label integrates the evaluations
from different modalities in a time interval. When the target
drifts on one observation, according to the complementar-
ity between the modalities and the continuity of target mo-
tion, the lower value is provided by the other channel with
more accurate observation. In addition, when the peaks of
all observations are located in the same area, the value will
increase accordingly. The general L2 loss is used to evaluate
the generated labels and the attention measures.

Multi-Modal Tracker
The attention network introduced above supports multi-
modal tracking through an improved PF algorithm. The at-
tention measure output by the network is used to weight
the audio-visual cues V. Compared with the traditional ad-
ditive likelihood and multiplicative likelihood, the weight-
ing method based on the attention mechanism is essentially
closer to the human sensory selective attention mechanism.
Fusion map obtained after weighted average is expressed as:

Z =
1

Da +Dv

Da+Dv∑
i=1

αiVi. (11)

The perception attention values of different modalities are
fused in the map and used to weight particles in the update

step of the PF. After diffusion, the value of the fusion map at
the particle position is set as the new particle weight. More-
over, in order to utilize the global information of the fusion
map, we simply improve the resampling step as well. At the
beginning of each iteration, a group of the particles is reset to
the peak position of the fusion map. Through the correction
of the peak value, the tracking drift problem caused by the
observation noise of some frames is avoided. The method
is outstanding when the observation is severely disturbed by
the environment noise.

Experiments and Discussions
Datasets. In this section, the proposed tracker is evaluated
on the AV16.3 corpus (Lathoud, Odobez, and Gatica-Perez
2004), which provides true 3D mouth location derived from
calibrated cameras and 2D measurements on the various im-
ages for systematic assessment. The audio data is recorded
at the sampling rate of 16 kHz by two circular eight-element
microphone arrays placed 0.8m apart on the table. The im-
ages are captured by 3 monocular color cameras installed in
3 corners of the room at 25Hz with sizeH×W = 288×360.
The experiments are tested on seq08, 11, and 12, where
a single participant wandered around, moved quickly, and
spoke intermittently. Each set of experiments uses signals
from two microphone arrays and an individual camera.

Implementation Details. Visual cues are generated by a
pretrained Siamese network (Bertinetto et al. 2016) based on
AlexNet backbone. Reference image set I contains two tar-
get rectangles with scales of 1 and 1.25, which are defined by
users in the first frame. For audio measurement, the number
of 2D sampling points in the horizontal and vertical direc-
tions on the image plane are w = 20 and h = 16. A 0.8m
high table is placed in a (3.6×8.2×2.4)m room. Therefore,
the sampling points located outside the room range and be-
low the desktop are removed, which is in accord with the real
situation and avoids the ambiguity caused by the symmetry
of the circular microphone. The depths number of projected
3D points is set to d = 6. The speech signal is enframed
to 40ms by a Hamming window with a frame shift of 1/2.
The parameters to calculate stGCF are set to M = 120,
m1 = 15, m2 = 5. Backbone of the attention network is
MobileNetv3-large (Howard et al. 2019). The network is
trained on single speaker sequences seq01, 02, 03, which
contain more than 4500 samples. The parameters to gener-
ate self-supervised label are set to Da = 5, Dv = 2, n = 6.
All models are trained for 20 epochs with batch size 16
and learning rate 0.01. Our method and comparison methods
are based on Sampling Importance Resampling (SIR)-PF for
tracking. The number of particles is set to 100. Our source
codes are available at https://github.com/liyidi/MPT.

Evaluation Metrics. Mean Absolute Error (MAE) and the
Accuracy (ACC) is used to evaluate performance of tracking
methods. MAE calculates the Euclidean distance in pixel be-
tween the estimated position and the ground truth (GT), di-
vided by the number of frames. ACC measures the percent-
age of correct estimates, whose error distance in pixel does
not exceed 1/2 of the diagonal of the bounding-box of GT.



Sequences Uni-modal Multi-modal Uni-modal+Occ Multi-modal+Occ
Occ
rateSeq Cam

AO VO AV-A AV3D 2LPF MPT(ours) VO 2LPF MPT(ours)
MAE↓ MAE↓ MAE↓ ACC↑ MAE↓ ACC↑ MAE↓ ACC↑

1 32.87 21.41 10.75 4.31 3.32 3.67 103.46 26.35 94.45 42.97 11.54 88.79 29.88
08 2 18.76 16.58 7.33 4.66 3.06 3.58 181.82 19.14 75.41 62.42 7.88 92.75 37.74

3 27.01 15.73 9.85 5.34 3.47 3.43 141.76 21.53 68.54 50.51 14.3 81.52 54.62
1 28.27 14.69 14.66 8.15 6.15 6.77 30.12 81.06 26.35 82.91 13.57 88.93 15.66

11 2 24.16 16.42 14.01 7.48 5.58 4.55 116.87 19.45 111.47 27.31 26.06 65.65 70.17
3 25.66 21.54 13.96 6.64 3.86 3.84 86.60 42.95 49.97 50.00 21.98 77.40 66.32
1 40.67 17.83 12.49 6.86 4.11 4.67 93.07 39.88 122.72 16.87 17.43 77.71 32.55

12 2 24.26 19.03 10.81 10.67 5.39 4.84 145.54 23.12 104.3 31.15 23.96 65.75 74.50
3 34.02 22.29 11.86 9.71 5.65 3.78 157.37 21.78 144.25 25.48 21.97 66.57 78.35

Average 28.40 18.39 11.74 7.091 4.51 4.34 117.40 32.80 88.60 43.29 17.63 78.34 51.08

Table 1: Comparison results with uni-modal methods and the state-of-the-art audio-visual methods on the original dataset and
the occluded dataset. Occ rate is the percentage of frames in which the speaker is occluded by the mask. MAE is in pixel, ACC
is in %. The proposed method achieves robust tracking in the presence of occlusion. (Occ: occluded sequences, AO: audio-only,
VO: visual-only, AV-A: (Kılıç et al. 2015), AV3D: (Qian et al. 2017), 2LPF: (Liu, Li, and Yang 2019), MPT: ours )

AM AN TR
Org Occ

MAE↓ ACC↑ MAE↓ ACC↑
GCF - - 80.15 45.23 80.15 45.23

stGCF - - 28.40 63.58 28.40 63.58
stGCF AvgAtt - 22.63 74.16 33.48 60.59
stGCF MPAtt - 12.56 89.50 24.57 72.17
stGCF AvgAtt IPF 17.33 78.22 26.88 67.54
stGCF MPAtt IPF 4.34 98.55 17.63 78.34

Table 2: Influence of each innovative component in MPT,
compared with the general GCF feature and average atten-
tion. (AM: audio measurement, AN: attention network, TR:
tracker, AvgAtt: average attention, MPAtt: multi-modal per-
ception attention, IPF: improved PF, Org: original dataset)

Comparison Results. The proposed MPT is compared
with the uni-modal method and the state-of-the-art audio-
visual methods, which are based on the PF architecture. The
AO and VO methods are implemented based on the audio
cues and visual cues proposed in the previous section. Fur-
thermore, in order to verify the robustness of the tracker un-
der interference conditions, we conducted comparative ex-
periments on the occluded data. The occlusion area is artifi-
cially covered in the middle of the image (1/3 of the frame),
which is used to simulate the situation where the field of
view is limited or the camera viewfinder is obscured. In the
sequences, the speaker walks behind the occluded area and
then appears on the screen again. For better evaluation, we
count the proportion of frames in each sequence where the
target was occluded by the mask.

Comparison results are listed in Table 1. Firstly, the com-
bination of audio and visual modalities shows great bene-
fits for speaker tracking. On the standard dataset, the MAE
of the proposed MPT is 4.34 in pixel, which is superior to
the state-of-the-art. 2LPF has achieved accurate estimation
by employing additional particle filters in audio and visual
space, respectively. However, the calculation of fusion like-
lihood in 2LPF depends on the stable observations, which
leads to a rapid decline when visual observation is unavail-

Figure 4: Tracking accuracy on the Seq11cam1 and
Seq08cam2. (Errors: numbers of miss tracking).

able. In contrast, MPT achieves a better tracking accuracy
of 78.34% on sequences with an average occlusion rate of
51.08%. Figure 4 shows the MAE and error numbers of
two typical sequences, where the shaded box represents the
frames in which the target is occluded. VO and 2LPF are
severely affected by occlusion, which can be seen from the
significant rise of curves in the shaded area. Our MPT is also
affected by occlusion, but the impact is relatively minor.

Ablation Study and Analysis. Ablation studies are con-
ducted to evaluate the effectiveness of the main innovative
components of our method in Table 2, including audio mea-
surement, attention network, and PF-based tracker. The gen-
eral GCF (Brutti, Omologo, and Svaizer 2006) calculates the
plausibility of the existence of active sound sources at spe-
cific coordinates in all possible source positions in a given
room. Without the guidance of prior information, it is dif-
ficult to derive accurate coordinates within limited calcula-
tions. In the case of the stGCF method, the search range is
reduced to multiple depth planes in 3D space using the pro-
jection relationship to achieve sound source localization on
the image plane, which has never been studied before. How-



Figure 5: Visualization of the complementarity of multiple modalities. (a)-(c) are audio cues, (d)-(f) are visual cues, (g) is the
fusion map generated according to perception weights. The two rows respectively represent the scene where the audio signal
and the video observation are disturbed. The shadow in the middle of the image represents the invisible part.

Figure 6: Comparison of tracking results on the occluded sequence. Green rectangles are from the contrast method 2LPF, and
red rectangles come from the proposed MPT method. The bottom row shows the fusion maps of corresponding frames.

ever, the stGCF method is affected by the geometric config-
uration of the camera and the microphone array, especially
when the speaker is located on the line connecting the cam-
era and the array. In addition, due to the directionality of the
sound signal, the peak usually appears in a large highlighted
area in the stGCF map, which provides an ambiguous search
result. Nevertheless, the results we calculated using two mi-
crophone arrays are better than traditional methods, with the
MAE decreasing from 80.15 to 28.40. Note that the result is
not changed by visual occlusion.

In the last four sets of the ablation study, visual cues
are added to evaluate the contribution of the attention
mechanism. The enhancements made by AvgAtt shows the
strength of audio-visual fusion, even if it works as a set of
weights with the same value. By comparison, our MPAtt
achieves higher performance gains. Compared with AvgAtt,
the accuracy of MPAtt has increased by 21% and 19%, re-
spectively, on the original dataset and the occlusion dataset.
In addition, an improved PF is employed for tracking, which
smoothes the trajectory through the time series model. The
improved resampling method using the global maximum of
the fusion map avoids the particles being restricted to the lo-
cal optimum due to the target missing of individual frames.

Visualization Analysis. In this section, the audio-visual
cues and fusion maps are generated as the heat map to visu-
alize the sub-process of the proposed method, which demon-
strates the interpretability of the perception attention net-
work. As illustrated in Figure 5, in the sample in the first

row, the speech is disturbed by the noise emitted by the chair,
and in the sample in the second row, the face of the speaker
is completely obscured. Nevertheless, the correct area in the
fusion map is highlighted. This indicates that benefit from
the network’s ability to perceive the state of each modality,
the model can learn the corresponding perception weights by
using the complementarity across the audio-visual cues. Fig-
ure 6 shows the robustness of our tracker, which can achieve
continuous tracking when the field of view is limited. Since
the auditory sense is not interfered by the visual distrac-
tion, audio cues hold dominance over such difficult samples.
When the speaker walks to the occluded area, the tracker can
roughly estimate the speaker’s position, which is beneficial
to re-track when the target is visible again.

Conclusions
In this paper, we propose a novel multi-modal perception
tracker for the challenging audio-visual speaker tracking
task. We also propose a new multi-modal perception atten-
tion network and a new acoustic map extraction method.
The proposed tracker utilizes the complementarity and con-
sistency of multiple modalities to learn the availability and
reliability of observations between various modalities in a
self-supervised fashion. Extensive experiments demonstrate
that the proposed tracker is superior over the current state-
of-the-art counterparts, especially showing sufficient robust-
ness under adverse conditions. Lastly, the intermediate pro-
cess is visualized to demonstrate the interpretability of the
proposed tracker network.
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