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Abstract: Defect detection with high precision is of great significance for printed circuit board (PCB) fabrication. Due to the lack
of priori knowledge of categories and shape features, detection of unknown defects faces greater challenges than that of
common defects. Inspired by similarity measurement, this study proposes a multi-layer deep feature fusion method to calculate
the similarity between template and defective circuit board. Compared with conventional methods which divide the whole
detection into two independent parts of hand-designed features and similarity measurement, the authors end-to-end model is
designed to combine these two parts for joint optimisation. First, the Siamese network is utilised as their backbone architecture
for feature extraction of pairwise images. And then the spatial pyramid pooling network is incorporated into the feature maps of
each convolutional module to fuse the multi-scale feature vectors. Finally, the discriminative feature embedding and similarity
metric are obtained by using the contrastive loss during the training process. Experimental results show that the proposed
model has better performance in detecting and locating unknown defects in bare PCB images than traditional similarity
measurement methods. Moreover, our method is promising for further improvement of defect detection with less training image
pairs and more accurate detection results.

1 Introduction
Printed circuit board (PCB) is an important component of most
electrical devices, as well as some consumer electronics. In the
manufacturing process, a PCB is usually produced by undergoing
over 50 fabricating steps [1]. Detection by human eyes is error-
prone. Also, manual detection, whose assessments usually cannot
be quantified, is rather time-consuming and tedious. A fast and
efficient detection system is therefore in great need to replace
manual detection method. Due to the good accuracy and efficiency,
automated optical inspection (AOI) systems have been widely used
in defect detection fields. However, AOI equipment is usually too
expensive for small industries to afford [2]. A detection system,
both low cost and effective, is the target for current PCB
researches.

AOI-based approaches mainly consist of three categories,
including referential and non-referential methods, as well as hybrid
method, which is the combination of previous two methods [1]. For
referential methods, a template image is made comparison with the
test image to find defects. Many researches have been proposed in
the past few years. Wu et al. detect defects using the referential
method, and finally classifys them into seven categories [3]. Putera
et al. classify defects into seven categories by using area
characteristics [4]. A referential method is proposed to classify
defects into five categories by using edge grey gradient of PCB [5].
Ibrahim et al. improve PCB detection by incorporating a
geometrical image registration. There were six types of defects are
successfully identified by the system in [6]. Kumar et al. consider
the defect detection and classification equally important. The
limitation of this non-referential detection method is that only one
defect can be detected on a single image [7]. Inoue et al. use bag of
Keypoints to form Visual Word dictionary of RootSIFT features
from the whole image and then the support vector machine (SVM)
is used as the classifier [8]. Although the hybrid methods merge the
advantages of both referential and non-referential methods, high
computational complexity cannot be ignored. The artificial neural
network (ANN) is widely used to do defect detection and
classification among hybrid methods. In the literature [9–11], due
to the good learning ability, the researchers utilise ANN to detect
solder joint defects in two ways, one is the supervised ANNs [10]

and the other one is unsupervised method mentioned in [11]. Hao
et al. combine multilayer perceptron neural network with a genetic
algorithm to do the solder joint defect detection on PCB [12].
Furthermore, some other detection and classification methods have
attempted to detect PCB defects, which contain ANN ensembles
used in [13], Bayes classifiers in [14] and SVM [15] for inspection
of solder joints.

Convolutional neural network (CNN) has been used for many
years in AOI systems [16]. In the traditional way, recognition
algorithms are usually based on hand-crafted features. Since CNN
can automatically learn distinguished features of objects, it has
been extensively used in a wide range of areas such as speech
recognition, information retrieval, natural language processing, and
computer vision [17–19]. To our knowledge, deep learning
methods have been already applied to defect detection fields. In
[8], an approach is proposed using a neural network with fuzzy
rule-based classification method. Experimental results reveal the
superiority of the neural network classification method in terms of
its classification accuracy. However, this fuzzy rule table needs
additional criteria knowledge of a human inspector and the
optimisation depends on the initial values of the weight parameters.
Method proposed in [20] extract SURF features [21] without
reference images to do defect detection and classification of the
electronic circuit board. Images are cropped and then used as input
of CNN. By using CNN features, SVM is employed for learning
and classification. However, this CNN model can only be
applicable to the image for manual verification. Caldo et al. utilise
ANN to visually detect and classify defects on two-layer PCB. The
supervised back-propagation learning algorithm is adopted for
training PCB images [22]. With great progress in deep learning,
deep models evolve from AlexNet [23], VGG [24] to GoogleNet
[25] etc. As the deep model used in [26], authors applied the pre-
trained CNN model to learn deep discriminative features of bare
PCB defects. Compared with the traditional shallow feature-based
methods, the proposed deep learning method is much more feasible
and effective.

Although referential methods mentioned above all have pretty
good performance for PCB defect detection, they are usually
computational-cost and time-consuming. The requirement of image
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registration is relatively high, such as methods in [3–5]. For
researches using neural networks, most of them mainly put
emphasis on the defect classification. As mentioned in [27], this
procedure is very effective when defects are of less categories and
common to see. Selecting proper image features and proper
thresholds to detect various defects and do classification was not
easy [28]. What is more, CNN-based models usually need mass
samples for training. When defects are unknown, proposals
presented previously are not feasible to make effective detection.

Motivated by the above challenges, we propose to learn a
similarity metric with the limited dataset. Then the aim of our task
can be generalised as to learn a similarity measure directly from the
image pairs without designing handcrafted feature descriptors.
When defects that have never been trained previously occur on the
PCB, the model can effectively match new defects to previously
defined defect categories. Considering these, a Siamese network is
applied for defect detection. As Siamese network has been
successfully applied to the problems in which the number of
categories is very large and samples in each category is not
sufficient enough. Based on this method, our small PCB dataset
can be efficiently used to train a robust model for the tough
unknown defect detection problem.

The main contributions of this paper are threefold:

(i) We present a similarity measure based on the deep learning
method to compare image pairs, which is processed on patches of
the whole image. Compared with traditional hand-designed
features, our method can better adapt to image block
transformation effects, such as illumination and noise. To our best
knowledge, this is one of the first attempts to employ the deep
neural network to PCB defect detection with the distance metric
learning.
(ii) The untrained data, which has not been exploited previously by
the model during training process, is applied to verify the
robustness of the deep model. This characteristic is of great
importance, as the key task of this paper is to detect the unknown
defects on PCB. Experiments verify the good performance of our
method.
(iii) Multi-scale features in deep space are combined to facilitate a
more robust feature representation. As features in low layers
contain rich texture and spatial information, which could contribute
to the localisation of defects. In contrast, features in higher layers
are of rich semantic information, which make the model more
robust to variations of input image pairs. Considering the
complementary feature characteristics, our paper proposes a multi-
scale similarity measurement model.

This paper is organised as follows: Section 2 further reviews the
previous researches that are relevant to our work. In Section 3, we
briefly introduce the Siamese network which is the basis of our
model. And then the details of model structure, training process
and defect localisation procedure will be introduced. Section 4
presents the experimental results of our proposed model. Finally,
conclusions and future works are drawn in Section 5.

2 Multi-scale similarity measurement model
As multiple layers provided by a typical CNN model present
different feature characteristics of the target image, the feature
hierarchy can be utilised to build a more robust detection system.
In order to detect unknown defects with various appearances, our
goal is not to train a classification network simply, because the
number of unknown defects is large and unknown. There are two
main tasks needed to address instead, one is the discriminative
feature embedding learning, the other is the architecture
construction suitable for a small dataset with large categories. Our
method is thus proposed by fusing multi-scale deep features in a
Siamese network, which learns a similarity metric between image
pairs.

2.1 Two-branch convolutional neural network

Basic structure of the deep network in our proposed method is
shown in Fig. 1, which is a Siamese network. The model is
composed of two parallel networks, and each contains a basic
network architecture including convolutional layers and fully
connection layers. Image pairs I1 and I2, similar or dissimilar, are
first fed into two networks separately. In the training step, two
networks in two streams will be optimised simultaneously under
the weight sharing mechanism. Two branches can be regarded as
feature extraction modules and outputs are two vectors in low
dimensional representation of image pairs. Then the goal is to learn
an optimal feature representation of the input image. As a result,
images matched in the same categories are pulled together, and on
the contrary, unmatched images from different categories are
pushed far away. Behind a series of convolutional and activation
(ReLU in this paper) layers, a top network is concatenated as a
function of the decision network which computes the similarity of
image pairs. In our single-scale model, the top network consists of
three fully connected layers (Fc1(4096-D), Fc2(512-D), Fc3(2-D)).
For the task of computing similarity of two image patches, two
feature vectors Img1S and Img2S are combined by fully connected
layers to compute the loss, which typically employs contrastive
loss function (shown in (1)). Then the model is fine-tuned by the
back propagation algorithm [29].

Since the structure of AlexNet [24] network is more similar to
the human visual cortex [30], we use this deep model as the back-
bone network of each stream. First five convolutional layers are
used to extract features in our paper. Details of the network are
shown in Table 1, and top three fully connected layers (Fc1, Fc2,
Fc3) are removed. The whole convolutional layers are divided into
five slices, denoted as S1, S2, S3, S4, S5. The first slice S1 contains
conv1 and a ReLU layer as that in AlexNet. The second and third
slices have the same structure including max-pooling layer,
convolutional layer and ReLU layer. For the last two slices, they
are identical to the first slice. The feature map dimension of each
slice is listed in Table 1 with details.

2.2 Multi-layer feature fusion

Considering layers in different levels containing diverse but
complementary information, we attempt to fuse multi-scale
features in different layers to construct a more discriminative and
abundant feature representation of the test images. The strategy,
which combines the detailed texture information in lower layers
with semantic information in higher layers, has been proven to be
effective in many researches [31–33].

Fig. 2 shows an overall framework of the proposed similarity
measurement model based on multi-scale feature fusion to detect
matched or unmatched image pairs. First, we apply data
augmentation technique to raw PCB images to enlarge the limited

Fig. 1  Framework of two stream Siamese network
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small dataset for training. PCB images with the same layout are
divided into two categories, including normal and defective. Small
image patches from the template and its transformations are
randomly combined in pairs to form a matching image pair. In the
unmatched image pairs, one patch comes from the template and the
other comes from the defective PCB set. Then, instead of the
traditional single-branch network model, we apply Siamese
network architecture to learn the feature representations of pairwise
PCB images. Two parallel networks which share weights perform a
local operation on the input PCB images. After a series of
convolutional layers and activation layers as a function of linear
and non-linear transformations, multi-resolution feature maps are
encoded by a multi-scale feature fusion layer for further similarity
computation. Finally, the output of two feature vectors are
concatenated as fusion features to be transferred into the decision
network. In the training step, with the distance between pairwise
image vectors, the contrastive loss is applied to fine-tune the
feature extraction network.

2.2.1 Single-feature fusion model: In this model, the fully
connected layers are reused which are removed in the feature

extraction stage, including Fc1 and Fc2. After the concatenation, a
multi-feature representation of image pairs is built. At this time,
only the decision layer is fine-tuned in training the model, and
network parameters of the feature extraction part are fixed and not
affected by the training process.

2.2.2 Multi-feature fusion model: As shown in Fig. 3, compared
with the previous naive one, there is no constraint on the input
image size because of the SPP net. As the last convolutional layer
is not connected with the fully connected layers of predefined
dimension, input images can be of arbitrary sizes. In our paper, the
image patches are all of the same size 512 × 512 × 3 and will first
be resized to the required spatial dimensions in the first structure.
Inserting a spatial pyramid pooling layer, we can input image
patches of multi-scale size without deteriorating the resolution.
Making the difference of each slice (S1, S2, S3, S4, S5) in Table 1 to
get the difference feature maps, which can be shown in (1)

DiffSi = (Img1Si − Img2Si) . (1)

After spatial average pooling layer, each 2D difference feature map
is followed by SPP net layer. Before the fully connected layer, we
fuse feature vectors from different scales (S1 S5) to enhance
convergence representation of network features. Thus, the feature
representations of each slice are concatenated to form multi-level
fusion feature vectors, which is denoted as Ffusion in (2)

Ffusion = Conc(Diff Si) ⋅ (Si ⊆ S, i ∈ [1, 5]) (2)

For the decision network, the architecture consists of three fully
connected layers (Fc1 (512-D), Fc2 (128-D), Fc3 (2-D)). The input
vector is a combination of two image feature vectors. The output of
Fc1 layer is given by:

Yfusion(F) = h WfusionFfusion + bfusion , (3)

Table 1 Details of the backbone network architecture. In the table, channel refers to the dimensions of filters
Structure Output feature (Input [512,512])

slice 1 0: Conv2d (in_ch = 3,out_ch = 64, kernel = (11,11),stride = (4,4), padding = (2, 2)) channel: 64
1: ReLU map: [127,127]

slice 2 2: MaxPool2d(kernel = 3, stride = 2, padding = 0, dilation = 1) channel: 192
3: Conv2d (in_ch = 64, out_ch = 192, kernel = (5,5), stride = (1,1),padding = (2, 2)) map: [63,63]

4: ReLU
slice 3 5: MaxPool2d(kernel = 3, stride = 2, padding = 0, dilation = 1) channel: 384

6: Conv2d (in_ch = 192, out_ch = 384, kernel = (3,3), stride = (1,1), padding = (1, 1)) map: [31, 31]
7: ReLU

slice 4 8: Conv2d (in_ch = 384, out_ch = 256, kernel = (3,3), stride = (1,1),padding = (1, 1)) channel: 256
9: ReLU map: [31,31]

slice 5 10: Conv2d (in_ch = 256, out_ch = 256, kernel = (3,3), stride = (1,1),padding = (1, 1)) channel: 256
11: ReLU map: [31,31]

 

Fig. 2  Overall architecture of multi-scale deep similarity measurement model
 

Fig. 3  SPP architecture composed in multi-scale model
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where Yfusion represents the fusion feature vectors, h(○) denotes the
activation function of the decision network. Wfusion and bfusion are
the weight and offset, respectively.

Our goal is to fine-tune the parameters of the decision network.
ReLU is used as the activation layer and softmax is employed as
the similarity decider. With the label 0 for match and 1 for the
mismatch, the contrastive loss is computed by the distance
calculated by the multi-scale feature vectors. After that,
backpropagation process can update the decision network
parameters for the optimal similarity prediction.

2.3 Loss function

The network is optimised by the loss function to distinguish the
difference between standard PCB and defective PCB. To be more
specific, similar images should be encouraged as close as possible
and dissimilar image pairs as far as possible. In the implementation
of this task, we use the contrastive loss proposed in [30], and its
definition can be presented with a margin as follows:

L = 1
2YD2 + 1

2(1 − Y) max (0, m − D)2, (4)

Y = 1, if two images are similar
0, otherwise (5)

here image pairs’ label can be denoted as Y, 1 for similar pairs and
0 for dissimilar pairs. The marginal m denotes that there should be
at least margin m between dissimilar samples, and the value of
m>0. D is the Euclidean distance between two feature vectors of
the input image pairs.

Only if the distance is less than the margin m, dissimilar images
will contribute to the loss value. Since this loss function is made to
pull together similar image pairs closely and put dissimilar images
far away from each other. The penalisation of this loss function is
the squared Euclidean distance for the similar image pairs. For the
dissimilar image pairs, the difference between margin m and
Euclidean distance is squared when m is larger than the image
distance.

3 Experiments and discussions
3.1 Dataset description

Our experiments are conducted on PCB dataset from [34]. In this
data set, there are 693 defective circuit boards with six types of
defects, including short circuit, open circuit, mouse bite, spur,
missing hole and copper. Details are listed in Table 2. 

3.2 Configuration

3.2.1 Hardware environment: In all our experiments, the
network is trained using stochastic gradient descent (SGD) with a
standard back-propagation method [29] and AdaDelta [35]. We use
weights from a deep network pretrained on Imagenet as the
initialisation to train our Siamese approach. Specifically, we
finetune a pretrained model using similar technique as in [36], e.g.
setting the learning rate 10−5 for the last fully-connected layer (fc7)
and 10−6 for other layers. The model was trained using publicly
available deep learning framework Keras on one NVIDIA GeForce
GTX 1080 GPU. The total number of training epochs is 15 and
batch size for each iteration is 12. It took around 1.5 h to finish the
whole training when the change of loss value is <0.0001.

3.2.2 Dataset augmentation: In the public bare PCB dataset [34]
released recently, only ten kinds of layout of single-layer PCBs are

contained. And the number of defective boards is just about 690 for
all six kinds of defects. With such limited PCB images, we first
conduct data augmentation on the original dataset. Some
configurations are set to the augmentation strategies, such as the
Gaussian noise mean value being set as 0.2 and random rotation
angles being in the range of−10° to 10°. These strategies
effectively enlarge the PCB datasets.

3.2.3 Evaluation protocol: There are many ways to measure the
accuracy of image similarity methods [37]. In our experiments, we
show some precision-recall (PR) curves to better describe the
advantages of our proposed method. In the following section we
provide results on test dataset in details.

We also adopt the evaluation protocol for image classification
task applied in [38]. In order to have a quantitative evaluation of
the algorithms, the average precision (AP) is used in the defect
classification. Precision is the percentage of positive identifications
across all selected samples, while recall is the probability of
correctly identified instances in the entire positive samples. The
computation formula can be represented by the true positive (TP),
false positive (FP) and false negative (FN). The specific expression
form can be given by:

precision = TP
TP + FP , (6)

recall = TP
TP + FN . (7)

The precision-recall curve (PRC) is computed to evaluate the
performance of classification problems, which set recall value as
the x-axis and precision as the y-axis. Area below PRC is averaged
upon recall levels spaced at a fixed interval value between 0 and 1.
F1 score can be obtained by the precision and recall metrics, which
is widely used to evaluate the algorithms effectiveness. The F1
score is given by:

F1 = 2 ⋅ precision ⋅ recall
precision + recall . (8)

3.2.4 Baseline methods: In order to compare the deep model
with conventional similarity measure methods, we evaluate the
feature extraction ability to better discriminate the distance of
pairwise images. In this paper, normalised cross-correlation (NCC)
[39], smallest eigenvalue [39] and similarity rank [40] are listed as
similarity measures baseline. As mentioned before, original PCB
data set experiences a series of transformation to increase data set
size, such as light change and noise addition, which brings certain
challenges to traditional similarity measure methods. In order to
vividly present the difficulty of distinguishing pairwise PCB
images’ similarity, histograms of matched and non-matched image
pairs are illustrated in Fig. 4. 

To evaluate the performance of deep features model with
Siamese network architecture, we make a comparison on network
configurations explored in our paper. Basic deep model is the
pretrained AlexNet. Using parameters learned from the ImageNet,
our PCB image patches are fed into the network and then the image
deep feature representations are obtained by the output of the fc7
layer. The second model merges two feature vectors into one,
which is put into three fully connected layers. Parameters thus can
be learned using contrastive loss. This fine-tuning technique can
well avoid the over-fitting phenomenon when we train the model
due to small PCB dataset. The last model is the proposed multi-
scale feature network.

Through inserting the spatial pyramid pooling layers into the
last convolutional layer and the bottom fully connected layer, the

Table 2 Details of original PCB dataset
Defect category Open circuit Short circuit Mouse bite Copper Missing hole Spur
image number 116 115 115 116 115 115
defects number 482 491 492 503 497 488
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overall network can adapt to the input images’ sizes greatly. With
the help of powerful feature extraction ability of pretrained deep
model, we can easily obtain more precise similarity score of image
pairs under better feature representations.

In all the experiments, the similarity measurement of image
pairs for evaluation is based on the Euclidean distance between
feature vectors of pairwise images. Our goal is to obtain better
feature descriptors of PCB images.

3.3 Defect localisation

In order to localise defects on the whole big PCB images, a
window slides on the PCB to get rather smaller local regions. A
large variety of small PCB patches are then fed into the deep model
to get feature descriptors. Large sliding window can cause the
missing detection problem easily. On the contrary, when the
window is too small, only part of the whole defect can be framed
out, whose features cannot represent the characteristics of the
defect well. Weighing the pros and cons of both sides, we prefer to
choose a smaller window, because similarity measurement can still
detect the defect area out. However, it further leads to more local
area patches from the whole large PCB image and thus reducing
the detection speed.

An improvement is thus made to speed up the detection. As the
initial model is to apply deep network on the raw PCB image
patches directly, the time-consuming feature extraction step will be
processed on each patch. Considering decreasing the feature
extraction times, we attempt to transfer the sliding window into the
feature map. In that case, we only extract the whole PCB image's
features once for much quicker detection. The corresponding
relationship between the size of the window in the feature graph
and that in the original graph is related to the convolutional and
pooling layers’ parameters of the network.

3.4 Results and discussions

To demonstrate what has been learned by different similarity
measure methods on the test dataset, we present the histogram of
pairwise Euclidean distances of image representations in Fig. 4.
The blue bars and yellow bars represent pairwise distances of
positive pairs and negative pairs, respectively. The pair distance
distribution of Siamese network shows the initial distance
distribution of transformed test dataset without learning and the
difficulty of discriminating image pairs. When using traditional
methods such as NCC and similarity rank metrics, we cannot detect
defects out effectively because of various data augmentation
techniques imposed on the raw PCB dataset, such as illumination
changes. However, it can be clearly seen that training process of
Siamese network on image pairs could make the distance between
pairwise images of the same kind more concentrated, and separate
distributions of two different kinds by a certain distance.

Table 3 summarises classification accuracy of considered
approaches on different types of PCB defect test datasets in terms
of area under the ROC curve. Experiments show that the proposed
method consistently outperforms other algorithms. To be more
specific, the Siamese network outperforms traditional NCC
methods by % on average. Furthermore, training with a large
number of image pairs (with hybrid image sizes), the proposed
multi-scale model performs better than the single-scale feature
structure.

The detailed evaluation of the methods on the test dataset is
shown in Fig. 5. From this set of PR curves, we can make the
following observations. Compared with traditional similarity rank
metric and our network using a single feature layer, respectively,
the proposed multi-scale network has the best performance in all
four cases. When the recall value is close to 1, the multi-scale
model still has much higher precision. That means positive and
negative PCB pairs can be discriminated effectively by our
proposed method.

In Table 4, we show the evaluation metrics of different
similarity measurement methods, including precision, F1 score and
recall value. It can be seen that the traditional NCC and similarity
rank methods could only improve the detection accuracy by a small
value compared with random guess. It reflects that our extended
data set, after a series of transformations, makes the traditional
method lose the ability of effective defect detection. However, our
multi-scale method can still achieve a high accuracy rate, and the
mAP value reaches 96.3%, which is more than 30% of the method
proposed in the paper [39].

Fig. 4  Distribution of positive and negative pairs under different similarity
measure methods on the test dataset
(a) NCC, (b) Similarity rank, (c) Siamese network (no training), (d) Siamese network
(with training)

 
Table 3 Detailed comparison of different deep learning
approach on test dataset (area under the ROC curve)
Defect type for
testing

AlexNet + SVM Ours (single-
scale)

Ours (multi-
scale)

open 0.768 0.927 0.976
Short 0.737 0.893 0.949
mouse bite 0.774 0.876 0.926
Copper 0.728 0.904 0.970
missing hole 0.745 0.873 0.982

 

Fig. 5  Set of PR curves for four different test datasets as unknown defect
type
(a) Mouse bite, (b) Copper, (c) Short, (d) Open
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4 Conclusions
This paper presents a multi-scale feature similarity measurement
model based on the Siamese network architecture to detect PCB
unknown defects. First, compared with the conventional similarity
measurements, the proposed network can learn from data with
arbitrary sizes by using the SPP structure. Incorporation with
feature fusion strategy, our method can achieve better precision on
images with noise addition and illumination changes. Secondly, in
the process of defects localisation, detection speed can be
effectively improved by transferring the sliding window to feature
maps, because feature extraction only needs to be performed once
on the original PCB image. Moreover, Siamese network
architecture together with contrastive loss is a good approach in
learning features for image similarity measure problems. Our
proposed method shows great generalisation on unseen PCB defect
datasets which provides a good perspective for unknown defect
detection problem. However, the selection strategies for different
levels of features remain to be further studied, we make it as part of
the future work of this paper.
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