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Abstract: In binaural sound source localisation, front–back confusion is often the challenging problem when localising sources
in the noisy or reverberant environments. Hence, a novel algorithm fusing deep and convolutional neural network (CNN) is
proposed to address this issue. First, joint features, which consist of interaural level differences (ILDs) and cross-correlation
function (CCF) within a lag range, are extracted from binaural signals. Second, with the extracted CCF–ILD features, CNN is
used for the front–back classification task, while deep neural network is used for azimuth classification task. The front–back
features extracted by the CNN can be leveraged as additional information for the sound source localisation task. Also, an angle-
loss function is designed to avoid the overfitting problem and to improve the generalisation ability of this method in adverse
acoustic conditions. Finally, two branches are concatenated and then followed by an output layer, which generates the posterior
probability of azimuth angles, and the azimuth corresponding to the maximum posterior probability is chosen as the direction of
sound source. Experimental results demonstrate the effectiveness of the authors’ method for front–back decision and azimuth
estimation in noisy and reverberant environments.

1 Introduction
Robot auditory system is a natural, convenient, effective and
intelligent way for robots to interact with the external world such
as sound source localisation, speech enhancement, speech
separation, speech recognition etc. [1]. Sound source localisation,
as a part of the front-end processing of a robot auditory system, is
indispensable for friendly human–robot interaction. As a branch of
sound source localisation, binaural sound source localisation
(BSSL) can hardly be replaced especially in the fields related to
human hearing such as hearing aids, humanoid robots and so on
[2–4].

BSSL is to determine the direction of a sound source about a
point in space by two microphones mounted on the left and right
ears of a dummy head. In 1907, Lord Rayleigh [5] revealed that the
incredible ability of a human to localise the sound source is closely
related to two principal binaural cues, namely interaural time
difference (ITD) and interaural level difference (ILD). ITD is the
difference in the time that a sound reaches the left and right ears.
ILD is the energy difference between binaural signals caused by
the head shadowing effect and diffraction. Therefore, ITD and ILD,
which contain source spatial information, are usually extracted
from sensor signals for BSSL. The classical method to estimate
ITD is the cross-correlation method [6]. Generalised cross-
correlation method and its extension are advanced versions of the
cross-correlation method, which introduce the cross-power
spectrum weighting scheme to improve the robustness in the
presence of noise and reverberation. The weights include Roth
weight [7], smoothed coherence transform weight [8], phase
transform weight [6] etc. ILD is usually estimated by calculating
the energy ratio between the left-ear and right-ear signals [9],

which is a supplement of ITD especially in high frequency, where
the head shadowing effect is obvious.

Fig. 1 describes a typical BSSL model in full 360° range. 
Moreover, the right picture indicates that ITD and ILD are affected
by the head according to the scatter theory. However, only
depending on ITD [or cross-correlation function (CCF)] or ILD,
the robotic auditory systems cannot distinguish the front end from
the backplane of sound sources well due to the similarity in the
front and rear hemifields. In [10], the author demonstrated that
because of the asymmetries between the front and back of the head,
ITD and ILD together as one localisation feature could distinguish
the front or backside of the sound. However, if there exist
reverberation and noise in the acoustic environments, it would
introduce the distortion so that ITD would be erroneously
estimated by searching the maximum peak of the CCF.
Additionally, ILD would also be misestimated due to the presence
of noise or reverberation.

With the development of deep learning, some researchers
proposed to use CCF directly as the input of deep neural network
(DNN) to judge the direction of sound sources because the CCF
contains more information than ITD. Ma et al. [10] trained DNN
for each frequency subband with CCF and ILD and achieved better
results than the Gaussian mixture model (GMM) method with ITD
and ILD. However, there still exists many front–back confusion.

In this paper, a fused deep and convolutional neural network
(DCNN) is proposed for BSSL. First, CCF was calculated from
binaural signals and joined with ILD at each frequency subband.
Second, the CNN is used to distinguish the front–back hemifields,
and DNN is designed to identify the azimuths. Finally, the outputs
of these two classifiers are concatenated and followed by a fully
connected (FC) layer. To our best knowledge, it is the first time to
introduce a front–back classifier as an auxiliary for BSSL.
Furthermore, an angle-loss function is proposed to substitute the
cross-entropy in training DNN to avoid overfitting. Experiments
show that our method performs best even under severe acoustic
environment.

2 Fused DCNN system
The received binaural signals emitted from a single source are
formulated by convolving the speech source signal with the head-
related impulse responses (HRIRs)

Fig. 1  BSSL model
 

J. Eng.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

1



xi n = hi n ⊛ s n + vi n , (1)

where the symbol ⊛ denotes the convolution, i ∈ l, r  denotes the
index of the left or right microphone, n denotes the time sampling
point within one time frame, s n  represents a sound source, hi n
indicates an HRIR propagating from the source direction to the left
or right microphone and vi n  denotes the additive noise received
by the ith microphone.

Fig. 2 shows a schematic diagram of the fused DCNN system. 
During training and testing, joint features CCF–ILD are extracted
from binaural signals (see more details in Section 2.1). These
features are fed into DNN azimuth classifier and CNN front–back
classifier. During training, two branches are concatenated and
followed by an FC layer. The source direction is determined by the
maximum output of DCNN.

2.1 CCF–ILD features

Previous studies have shown that ITD is frequency dependent [11],
and so does the ILD because of the head shadowing [12].
Gammatone filter is designed according to the human cochlear
sound signal processing, which makes full use of the human ear
sound processing characteristic [13]. It is a linear filter consisting
of a product of a gamma distribution and a sinusoidal function. Its
impulse response is calculated using the equation below:

g t = Atm − 1 cos 2π f t + ϕ e−2πbt . (2)

Therefore, to extract ITD and ILD for different frequencies, a bank
of 32 overlapping gammatone filters with the centre frequencies
equally distributed for the equivalent rectangular bandwidth scale
between 80 Hz and 8 kHz is employed [10].

In (2), m is the order of the filter, b is the bandwidth of the filter,
f is the central frequency of the filter, A is the amplitude and t (in
seconds) is time. The frequency representation of impulse response
is shown in Fig. 3. 

The traditional ITD extracted by the CCF method [6] may not
be robust in adverse acoustic conditions; therefore, the CCF with
lags ranging from −1.1 to 1.1 ms is chosen to replace ITD. The
reason we choose this range is that the maximum time differences
do not exceed 1 ms according to the distance between two
microphones and the speed of sound.

The entire signal is filtered out by a bank of 32 gammatone
filters, and the frequency subband index is denoted by k. For each
frequency subband, the CCF is calculated as

Rl, r k, τ = Gl, r k, τ
Gl, l k, τ0 × Gr, r k, τ0

, (3)

Gi, j k, τ = ∑
n

xi k, n xj k, n + τ , i, j ∈ l, r , (4)

where Gi, j k, τ  is the CCF of time delay τ and frequency subband
index k between microphones pairs if i ≠ j; otherwise, it becomes
the auto-correlation function of the left or right signal, τ0 equals to
zero. The ILD at each frequency subband is calculated as

ILD k = 10 log10
∑n xr(k, n)2

∑n xl(k, n)2 . (5)

where xi k, n  represents the left or right signal at the kth frequency
subband. Both CCF and ILD are calculated frame by frame.

For a signal with a sampling rate of 16 kHz, the feature vector
within a lag range of ±1.1 ms concludes a 37-dimensional (37D)
CCF. Then, supplementing CCF by ILD, a 38D joint feature vector
will be extracted from each frequency subband to form a 32 × 38
feature matrix. It is shown in Fig. 4 the 32 filter channels for CCF
features and ILD features, where the sound source located at
azimuth −15° and elevation 0°. It can be observed from Fig. 4a
that the CCF has one local maximum in low frequency, which
makes the ITD estimation effective. Besides, there always exist
several local maximums in high frequency, which makes it difficult
to judge in which local maximum time–frequency fragment the real
ITD locates. A different situation can be observed in Fig. 4b. The
ILD is close to 0 dB in low frequency and thus invalid. That is
because the sound wave period is larger than the head diameter,
making the sound wave easily around the head. However, the ILD
shows strong directional discrimination in high frequencies due to

head shadowing effect [14]. Therefore, the combination of CCF
and ILD can make the estimation of sound source direction more
accurate.

2.2 Fused DCNN

Two neural networks are cascaded in the DCNN model, where
DNN is used to determine the direction of the received signal, and
CNN is used to assist distinguishing whether the signal is in the
front or the back end.

Configuration of DNN: Zheng et al. [15] showed that ITD was
a function of frequency, and it performed well in the frequency
range [500, 2000](Hz). However, the values of ITD and ILD in
other frequencies may also slightly affect localisation performance.
Therefore, no frequency subbands are excluded in the network
inputs. The input layer of DNN contains 1216 nodes, which was
obtained by combining the features (CCF and ILD) in all frequency
subbands, and the output layer consists of 72 nodes, which
represent 72 different directions. DNN consists of three hidden
layers with 512 nodes since three hidden layers are enough for
parameter convergence. The rectified linear unit (ReLU) activation
function is used in hidden layers.

Configuration of CNN: The CNN model is used to extract more
implicit features to identify the front or backside of the source.
Local CCF–ILD features show a stronger correlation in adjacent

Fig. 2  Schematic diagram of the fused DCNN system in training and
testing phases

 

Fig. 3  Frequency response of gammatone filter
 

Fig. 4  Joint CCF–ILD feature extracted from binaural signal, where the
source located at azimuth −15° and elevation 0°
(a) CCF features of 32 filter channels, (b) ILD features
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frequency subbands than in all frequency subbands. To strengthen
the local relationship between frequency subbands, the CNN model
is used to convolve the input features across frequency subbands
with a number of convolution kernels of 3 × 3 size. The CNN
model has two convolutional layers with 512 and 1024 feature
maps. Each convolutional layer is followed by a ReLU layer and a
downsampling pooling layer of size 2 × 2.

To avoid overfitting, the dropout probability in DCNN is set as
0.2. Both of DNN and CNN are optimised by the Adadelta
optimiser and early stopped if there is no lower loss of the
validation set within three epochs [16]. More details of the fused
two-level DCNN model are shown in Fig. 5. Features of DNN and
CNN are concatenated by an FC main output layer of 72 azimuth
labels. Joint learning helps to propagate the entire loss backward
and update parameters of DNN and CNN so that the mutual
information learnt by DNN or CNN can help to improve the other
module.

The cross-entropy is usually considered as the loss function in
many classification tasks. However, one of its drawbacks is that the
classification is too confident even with the noisy input, which
usually leads to the overfitting problem. To adapt to unknown
environments, a self-entropy loss function is defined for
unsupervised training in [17]. It enabled DNN to adapt all the
directional signals. As for sound source localisation, the binaural
cues are similar in two adjacent directions, so the estimated
direction can be accepted within some tolerances. Therefore, we
design a smooth angle-loss function by combining cross-entropy
and self-entropy

J Θ = − 1 − ε ∑
o = 1

N
qo log po − ε ∑

o = 1

N
po log qo, (6)

where Θ denotes all the network parameters, qo is the oth
probability of the true direction while po is the oth output
probability of the estimated direction, N is the number of total
directions and ε denotes the attention weight of self-entropy and is
empirically set to 0.1 in the experiments. If ε equals to 0, the angle-
loss function will become the cross-entropy loss function, and if ε
equals to 1, it will become the self-entropy loss function. To update
all the network parameters Θ, the partial derivative of J to Θ is

∂J
∂Θ = ∂J

∂po

∂po
∂Θ , ∂J

∂po
= − 1 − ε

qo
po

− ε log po − ε . (7)

The algorithm is implemented by the toolkit Keras [https://
keras.io/]. The angle-loss function is used in DNN's output and
DCNN's main output while the cross-entropy function is used in
CNN's output. The total loss of DCNN model is the sum of these
three losses.

During testing, three probabilities are calculated by the DCNN
model for each binaural signal. Assuming that Pmain θ  denotes the
probability of azimuth θ given by the main output,
Pcnn front, back  denotes the probability of front or back end given
by the CNN's output and Pdnn θ  denotes the probability of azimuth
θ given by the DNN's output. Let θ

^
max denotes the direction

corresponding to the maximum Pdnn θ  given by

θ
^

max = arg max
θ

Pdnn θ . (8)

If θ
^

max is in the same hemifield as the CNN's output, then θ
^

max is the
final result. Otherwise, if θ

^
max is in the different hemifield from

CNN's output, we consider there is a front–back confusion in
estimating the azimuth hatθmax. So the θ

^
 needs to be transformed

into the other hemifield by

θ
^ = 180 − θmax, θmax ∈ 0, 180

540 − θmax, θmax ∈ 180, 360 . (9)

3 Experiments and discussion
3.1 Experimental setup

To evaluate our proposed method, HRIRs measured by the
Knowles Electronics Manikin for Acoustic Research [18] are taken
to convolve with the source signals. The source signals are selected
from the TIMIT database [19]. For training, nine sentences per
speaker are uttered by ten men and ten women, i.e. 180 sentences
in total. For testing, three sentences per speaker are uttered by three
men and three women, i.e. 18 sentences in total. HRIRs of 72
azimuths between 0° and 355° with 5° steps are used in both
training and testing. Different dummy heads, which mean different
HRIRs, are used in training and testing. A simple illustration of the
binaural setup is shown in Fig. 6. The directions in the range of [0°,
90°] and [270°, 355°] are considered in the front end, while the
others are in the rear.

To simulate the noisy environment, five kinds of noises
{‘babble’, ‘destroyerops’, ‘factory1’, ‘white’, ‘f16’} from
NOISEX-92 database [20] are added to the noise-free sensor
signals. The first four noises are added to the training set with a
signal-to-noise ratio (SNR) in the range of [0:10:30]dB, and the
last noise is added to the testing set with SNRs in the range of
[−10:10:20]dB. Fig. 7 shows an illustration of these noise signals
in the spectrogram sense. The spectrum of ‘babble’ noise is similar
with speech sources, ‘destroyerops’ noise is a rhythmic wide-band
signal, ‘factory1’ is a kind of irregular noise, ‘white’ noise is a
random signal having equal intensity at different frequencies, the
most energy of ‘f16’ noise is distributed at specific frequencies.
Each noise has a different characteristic in the time–frequency
domain, which can increase the credibility of our experimental
results.

To simulate the room reverberation, five types of binaural room
impulse responses (BRIR) are selected from AIR database [21].
Four BRIRs {‘booth’, ‘lecture’, ‘meeting’, ‘office’} are convolved
with speech signals from the training set. Moreover,
{‘aula_carolina’} BRIRs are convolved with speech signals from

Fig. 5  Detailed configuration of the fused DCNN
 

Fig. 6  Illustration of the binaural setup
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testing set. The average reverberation time RT60 for each room is
shown in Table 1. 

The accuracy of front–back confusion is measured by the
percentage of the number of correct classification to the total
number of binaural signals. The accuracy of direction of arrival
(DOA) estimation is also evaluated by the percentage of the
number of correctly estimated azimuths to the total number of
binaural signals in terms of the tolerances of 0°, 5° and 10°, which
is defined as

Acc % =
N θ^ − θ ≤ T

Ntotal
× 100% . (10)

where θ
^
 denotes the estimated DOA, θ denotes the true DOA and T

corresponds to the aforementioned three tolerances.

3.2 Localisation performance

The first experiment presents the localisation accuracy of different
methods in a noiseless, noisy and reverberant environment. Each
method is evaluated within tolerances of 0°, 5° and 10°,

respectively. In Table 2, avg denotes the average accuracy. Four
baseline models: DNN (Freq.Indep.) [10], DNN (cross-entropy),
DNN (angle loss) and CNN (angle loss) are compared with our
fused DCNN model. DNN (Freq.Indep.) is trained for 32 frequency
subbands independently. To compare cross-entropy with angle-loss
function, DNN (cross-entropy) has the same configuration with
DNN (angle loss), except the loss function. The configuration of
CNN (angle loss) is the same as the one of our CNN front–back
classifier, except for the output. The outputs of CNN (angle loss)
are the 72 probabilities of azimuths. All the above models are
trained in noisy and reverberant environments, and then tested in
noiseless, noisy and reverberant environments.

Table 2 shows that DCNN model performs the best over three
scenarios in terms of the average accuracy. It improves the
accuracy of more than 5% over the second maximum. In the
noiseless environment, the localisation accuracy of four models is
>95%, expect DNN (Freq.Indep.) within tolerance 0°. Additionally,
the localisation accuracy of DNN models with different loss
functions, DNN (cross-entropy) and DNN (angle loss), achieves
100% within tolerances of three kinds of degrees in the noiseless
environment, while the performance of CNN (angle loss) is not as
good as the one of DNN. This phenomenon indicates that the DNN
model in our proposed method is more suitable than CNN to locate
azimuths. Moreover, the same phenomenon can be observed in the
noisy environment. In the noisy environment under SNR = −10 dB,
DCNN model shows the best accuracy within tolerances of 10°
while DNN (Freq.Indep.) shows the worst results. As for the
comparison between cross-entropy and angle-loss function, DNN
(angle loss) presents better results in the noisy environment, but
worst results in reverberation than DNN (cross-entropy). That is
because the received signals may come from different directions
due to the room reflection, the true direction may occur with
second maximum probability. Moreover, it is distinctly confirmed
that fused DCNN model improves the localisation accuracy of
more than 11% over the DNN (Freq.Indep.) model in the
reverberation within tolerances 0°. The fused DCNN model can
take advantage of both DNN and CNN so that it generalises well in
noisy and reverberant environments.

To evaluate the localisation performance in the noisy
environments under different SNRs, the localisation accuracy of
the aforementioned methods within tolerances of 10° is depicted in
Fig. 8, SNRs are in the range of [−10:10:20] dB. The results
demonstrate that DCNN model is robust in noisy environments.
However, the binaural cues are dramatically deteriorated by the
noise under SNR lower than −10 dB.

3.3 Front–back classifier

The second experiment is to evaluate the performance of front–
back classifiers. Fig. 9 shows the front–back classification
accuracy of DNN models with ITD–ILD or CCF–ILD features. To
testify the robustness of ITD–ILD and CCF–ILD features, the
DNN model consisting of 2 hidden layers with 128 nodes takes
ITD–ILD or CCF–ILD features as inputs, respectively. It can be
observed from Fig. 9 that CCF–ILD features are more robust than

Fig. 7  Spectrum of five noise signals used in experiments
 

Table 1 Reverberation time of different rooms
Room Booth Lecture Meeting Office Aula Carolina
RT60 0.12 s 0.78 s 0.23 s 0.43 s 5.16 s

 

Table 2 Localisation accuracy in different environments
Noiseless Noisy (SNR = −10 dB) Reverberant Average

Tolerance =0°, % ≤5°, % ≤10°, % =0°, % ≤5°, % ≤10°, % =0°, % ≤5°, % ≤10°, % Average, %
DNN (Freq.Indep.) [10] 81.13 98.84 99.83 67.13 69.91 69.91 43.43 61.11 77.78 74.34
DNN (cross-entropy) 100 100 100 93.52 93.52 93.52 41.41 41.41 41.41 78.31
DNN (angle loss) 100 100 100 95.83 95.83 95.83 23.74 23.74 23.74 73.19
CNN (angle loss) 97.57 100 100 92.59 92.59 92.59 36.87 40.40 40.91 77.06
DCNN 99.65 100 100 94.91 95.37 96.30 54.55 55.05 55.05 83.43
Bold values indicates underline the average result of only using DNN with cross-entropy loss, and wo want to highlight our result compared with DNN (Freq.Indep.) [10] and DNN
(angle loss). The bold indicates the result using the proposed method and we want to highlight our result compared with all the methods.
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ITD–ILD features in noiseless and noisy environments, but worst
in reverberation. It is because that the overall frequency
distribution is influenced by the reverberation, but ITD–ILD
integrates all frequencies non-linearly without filtering, which
enables to capture more accurate information in reverberation. To
evaluate the classification models, CNN is used to convolve with
CCF–ILD non-linearly. Additionally, in all scenarios, DNN models
trained with noise-free CCF–ILD features perform the worst. The
main reason is that the noises we added to binaural signals have
damaged binaural information, which was captured by DNN. This
experiment proves that CCF–ILD features outperform ITD–ILD
features in most environments, so we will use CCF–ILD features to
train the front–back classifier in the following experiment.

To evaluate the classification ability of different networks such
as DNN, our front–back classifier CNN is compared with DNN.
Fig. 10 shows the front–back classification accuracies of CNN and
DNN models trained with CCF–ILD features. These models are
trained in noiseless, noisy and noisy reverberant environments,
respectively. It can be seen from Fig. 10 that the CNN model keeps
the highest front–back classification accuracy in all scenarios. The

front–back accuracy of CNN model trained with CCF–ILD
features is above 80% in the three tested environments.

Furthermore, it can be observed that CNN model outperforms
the DNN model using same features by more than 70% accuracy in
the reverberant environment, while the DNN model and CNN
model perform comparably in the noiseless and noisy environment.
This experiment distinctly confirms that CNN can extract more
discriminative binaural features than DNN in the front–back
classification, especially in the strongly reverberant environments.
In the following experiment, we will use the CNN model as the
front–back classifier and fuse it with DNN azimuth classifier.

To evaluate the effect of front–back confusion, Table 3
describes the accuracy of front–back confusion in different
environments. It can be observed that CNN (angle loss) has the
highest accuracy when compared with DNN (cross-entropy) and
DNN (angle loss) models overall environments within tolerances
of 0°, 5° and 10°, which indicates that CNN model in the proposed
method is more suitable than DNN to distinguish the front from
back. All of these models show almost 100% front–back confusion
accuracy in the noiseless environment. In the noisy and reverberant
environments, the DCNN model reduces front–back confusion
significantly. This is attributed to the strong front–back
classification ability of the CNN.

4 Conclusions
This paper presents a novel algorithm fusing DCNN for BSSL. The
front–back classifier CNN can generate robust front–back features
by convolving kernels on the CCF–ILD features, serving as the
additional procedure for sound source localisation task and
reducing the front–back error. By jointly exploiting DNN and CNN
to construct the fused DCNN model, this system can alleviate the
localisation error caused by font-back confusion. In addition, to
avoid the overfitting problem during the training phase, the angle-
loss function is employed instead of cross-entropy, and it shows
better performance in noisy environment. All the aforementioned

Fig. 8  Localisation accuracy in noisy environment with different SNRs
 

Fig. 9  Front–back accuracy under different training and testing acoustic
conditions. The DNN models using CCF–ILD or ITD–ILD features are
trained in
(a) Noiseless, (b) Noisy, (c) Reverberant environment and tested in three
environments: noiseless, noisy and reverberant

 

Fig. 10  Front–back accuracy under different training and testing acoustic
conditions. The DNN model and CNN model are trained with CCF–ILD
features in
(a) Noiseless, (b) Noisy, (c) Reverberant environment and tested in noiseless, noisy
and reverberant environments
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experimental results show that by exploiting fused DCNN (in this
way), the generalised robustness can be improved under
conditions, where the noise and reverberation are present.

However, this paper only focuses on the binaural localisation of
a single sound source, and we will introduce multiple sound
sources under complex acoustic conditions in future work.
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Table 3 Front–back classification accuracy in different environments
Noiseless Noisy (SNR = −10 dB) Reverberant

Tolerance =0°, % ≤5°, % ≤10°, % =0°, % ≤5°, % ≤10°, % =0°, % ≤5°, % ≤10°, %
DNN (Freq.Indep.) [10] 100 99.83 99.83 100 90.28 86.11 97.47 82.83 82.32
DNN (cross-entropy) 100 100 100 100 95.37 94.44 78.28 71.21 71.21
DNN (angle loss) 100 100 100 100 96.76 96.76 81.31 73.74 64.65
CNN (angle loss) 100 100 100 100 97.22 97.22 84.85 81.82 81.82
DCNN 100 100 100 99.07 99.07 99.07 96.46 93.43 93.43
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