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Abstract: Due to the lack of training data and fuzziness of unknown defects, unknown defect detection, which aims to identify
no clearly defined defects, is still a challenging task. In practical industrial scenarios, defects on a printed circuit board account
generally for a small proportion, so the data sets are highly biased towards no defect class. To this end, unknown defect
detection can be treated as an anomaly detection problem. According to this, a semi-supervised learning method is proposed in
this study to solve the above-mentioned problems. Inspired by the conditional generative adversarial network, the authors
propose an improved end-to-end architecture for detecting unknown defects. The designed architecture is composed of three
networks: a generator, a discriminator, and an encoder. Among them, the generator and the discriminator are trained by
competing with each other, while collaborating to learn the distribution of underlying concepts in the target class. During training,
the authors only train normal samples, and unknown defects do not appear in the process. In the testing phase, unknown
defects are detected by calculating the distance between generated samples and real samples under the feature space.
Experimental results over several benchmark data sets show the effectiveness of the model and superiority on state-of-the-art
approaches.

1 Introduction
Defect detection of the printed circuit board (PCB) is critical in
industrial manufacturing, which directly affects the quality of
product production. Traditionally, PCB defect detection is handled
manually, which is time-consuming, labour-intensive and
unreliable. With the rapid development of computer vision
technology, many methods are proposed for detecting the defects
on PCBs. Recently, deep learning methods have also been applied
to industrial detection [1–3]. To the best of our knowledge, these
methods heavily rely on the large amounts of data and label
information. In reality, it is hard to get a large number of data and
annotations of the defects on PCBs. Besides, these methods can not
detect the defects which are not annotated. They are limited to
detecting well-defined defects classes. However, there is a large
number of unknown defects in industrial detection. To this end,
considering the defect detection problem as an abnormal detection
task, we propose an improved semi-supervised learning method
based on adversarial training.

1.1 Related works

1.1.1 PCB defect detection method: Lots of advanced
approaches have been proposed for PCB defect detection. In
tradition, there are mainly three kinds of methods in PCB defect
detection: reference comparison methods [4, 5], non-reference
comparison methods [6] and hybrid methods [7]. Reference
comparison methods detect defects by comparing with defect-free
PCBs. Non-reference comparison methods are based on pre-
defined PCB design rules. Hybrid methods combine the above two
kinds of methods. These methods are basically supervised methods
which rely heavily on a large amount of labelled data. In addition,
due to the need for clearly defined types of defects in these
methods, unknown defects cannot be detected. However, in
industry, undefined defects are inevitable. To this end, in this paper,
semi-supervised learning is used for detecting unknown defects on
PCBs.

1.1.2 Abnormal detection: Anomaly detection is a classic
problem in computer vision, usually used in fraud detection,

intrusion detection, and the medical field. They usually use an
explicit representation of the normal data distribution in the feature
space and determine the outliers based on the local density of the
observation points in the feature space. The traditional method is
based on distance metrics [8]. With the successful application of
deep learning in many fields, it shows that deep learning can
express the rich relationships and structures inherent in data. Based
on the deep learning method, some unsupervised anomaly
detection algorithms have gained lots of attention recently. For
instance, Sabokrou et al. proposed a sparse representation model
for video anomaly detection which can measure for separating
normal and abnormal samples [9]. In some other works, by using
the sample reconstruction to test samples of the target category, the
reconstruction error can be used to judge whether the data is
normal or abnormal [10–12]. That is, the high reconstruction error
of the sample indicates that it is more likely to be an abnormal
sample. Moreover, due to generative adversarial networks (GANs)
can model high dimensional distributions of data, some works
explored the use of GANs for the anomaly detection task [12–15].

However, due to the unavailability of the abnormal class during
training, it is hard to train an end-to-end deep network. In recent
works, few of them could train an end-to-end feature learning and
classification model.

1.2 Our works

Inspired by the framework in [13], we propose an improved
anomaly detection architecture for detecting the unknown defects
on PCBs, especially for the tiny defects. The network proposed in
this paper consists of three sub-networks, including a generator, a
discriminator and an encoder. By training the normal samples, it
transforms images from the image space into the feature vectors
space. The distance between the generated image and the real
image is compared under the vector space, and the gap is narrowed
during the adversarial training so that the generator network can
learn the feature expression of the normal class. However, since the
generator network does not learn the characteristics of the
abnormal samples during the training, the generated images and the
corresponding real images have a large difference in the potential
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vector space. Therefore, the normal class and the abnormal class
can be classified by the distance between the generated image and
the real image under the potential vector space. Considering that
the main feature of the PCB is a texture feature and the semantic
information of the PCB is weak, here we propose to use the
residual network as the main structure of the network to enhance
the proportion of the underlying features in the final decision.
Moreover, regardless of the comparison at the image pixel level,
the features obtained in our approach cannot achieve well image
reconstruction but more representative of the image category
information. It demonstrates the model in our approach achieves
the reconstruction at the feature level.

The contributions of this study are threefold

(i) We propose a semi-supervised method based on the adversarial
generation network for industrial detection, which effectively
reduces the requirement for large amounts of labelled data. To the
best of our knowledge, this is the first work to achieve semi-
supervised learning using the adversarial generation network in
industrial detection.
(ii) Different from previous works to obtain low-level features, we
obtain image information at the semantic level through deep
learning to enrich the diversity of PCB information to better
represent image categories.
(iii) For detecting tiny unknown PCB defects, this paper proposes
to select features by comparing the reconstructed image with the
feature vector of the real image instead of the image level
reconstruction effect. It reduces redundant information and makes
the obtained PCB features more representative.

The remainder of the paper is organised as follows: Section 2
details the methods used in this work. Experiments on the PCB
data set and two benchmarks are shown in Section 3. Finally,
Section 4 concludes this work.

2 Tinynomaly approach
The aim of the work is to train a network that can detect unknown
defects on PCBs, and the proposed detection framework is
composed of three main modules: (i) a generator network (network
G), (ii) a discriminator network (network D) and (iii) an additional
encoder network (network E). The network G acts as the
reconstruction, while the network D is discrimination. These three
networks are learned in an end-to-end adversarial and unsupervised
manner. In this section, we will cover them in details. The overall
network architecture is shown in Fig. 1, and the pipeline of the
proposed approach is based on [13]. The architecture contains two

encoders, a decoder, and discriminator networks, employed within
three sub-networks. Here, the encoder–decoder pipeline acts as the
generator, and the structure of the discriminator is an encoder. The
additional encoder sub-network transforms the images from the
image space to the latent vector space.

2.1 Generator network architecture

A lot of research works have shown that the reconstruction error
obtained by training the target class samples by the auto-encoder
can effectively distinguish the normal category and the anomaly
category. Since auto-encoder only trains for the normal samples, it
just learns the features of the normal samples. On the contrary, it
would loose the features of the abnormal samples. Therefore, the
reconstruction error of the abnormal category would be high. Using
the same idea, the network G in the paper is an auto-encoder
structure which consists of an encoder and a decoder.

The structure of most auto-encoder networks is symmetrical.
Different from most works, the encoder and decoder structures in
the paper are different. To implement the image compression, the
encoder network is mainly composed of several simple convolution
layers. Besides, convolution layers are utilised to realise invariant
feature extraction without supervision. For reducing the loss of
important information and improving network stability, the pooling
layer is not used in the network structure. Moreover, after each
convolution layer, the batch normalisation [16] operation is
adopted, which increases the stability of the structure. Eventually,
through the encoder network, the image would be transformed into
an m-dimensional feature vector. The main requirement of an
encoder is to retain (as much as possible) important information
about the original data. To determine whether the encoding vector
retains important information, there is a natural idea that the
encoding vector should also be able to restore the original image.
Therefore, the aim of training a decoder is to try to reconstruct the
original image. For obtaining valid features, instead of the simple
convolution layers, the decoder is a residual network structure
composed of a series of residual blocks [17]. Through the residual
blocks, it is better to retain the low-level features and pass the
compressed features. The main purpose of the decoder is to restore
the image to verify that the feature information extracted by the
encoder is complete and valid.

2.2 Discriminator network architecture

The discriminator is trained to maximise the probability of
distinguishing the real training samples and the generator samples.
The discriminator in this paper is an encoder structure. Similar to

Fig. 1  Architecture of Tinynomaly: the architecture contains three sub-networks a generator, a discriminator and an encoder. Here, the generator is not the
symmetric simple convolutional network and the discriminator is not the same structure as the additional encoder
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the encoder in network G, it is composed of a series of residual
blocks. In addition, spectral normalisation [18] is added in the
structure to solve the problem of unstable GAN training. 

Spectral normalisation: Applying regularisation by means of
spectral normalisation from the perspective of ‘layer parameters’,
discriminator has the Lipschitz continuous condition [19]. Spectral
normalisation replaces all the parameters in f with w/∥ w ∥2. Here,
the Lipschitz condition can be described as

∥ f w x1 − f w x2 ∥ ≤ C w ⋅ ∥ x1 − x2 ∥, (1)

where C w  is a constant which depends on the parameters rather
than the input, f is the model and x is the input. Through this
Function, the model is constrained by linear function which can
satisfy the Lipschitz condition to increase the robustness of the
model.
The residual blocks: Here, the residual blocks in the discriminator
consist of the activation function ReLU [20], the average pooling
layer and spectral normalised convolutional layers. Using the
residual blocks makes the network to have a better converge and
reduces the probability of gradient disappearing. The details of the
residual blocks are shown in Fig. 2.
The dilated convolution: The size of the receptive field expands
with the increased deep of the network layers. It requires the large
size of convolution kernels which may lose some details
information. However, the details information is important for PCB
defect detection. In order to solve the loss of internal data
structures and loss of spatially hierarchical information, the dilation
convolution is used in the discriminator. The dilation convolution
expands the receptive field without resolution loss and also reduces
the additional parameters.

2.3 Additional encoder network architecture

An additional sub-network E of encoder structure comes on the
heels of the G network. In order to keep the feature vectors
obtained from the generated image as consistent as possible with
the feature vectors of the real image compression, network E has
the same network structure as the encoder in the generated
network. The purpose of it is to obtain the efficient features of the
generated image. Through a series of the convolution layers, the
generated image is transformed into an m-dimensional feature
vector which contains the important information of the image.
Thus, the comparison between generated images and the real
images transform from the image space into the feature vector
space.

2.4 Adversarial training

Goodfellow et al. [21] introduced an effective method of
adversarial learning between the generator and discriminator,
which is called GANs. In this work, given M images without
defects perform the distribution of the normal category. The input
image x belongs to the defect-free category M first feeds to
network G. Through the encoder part in network G, x is
compressed to a vector z, where z is an m-dimensional vector. zis
also referred to as the bottleneck feature of G and is assumed to
have a minimum dimension containing the best representation of x.
From experiments, we set m = 100 in the work. Then, the decoder
part upsamples the vector z to reconstruct the image x as x^. Similar
to the decoder part in network G, network E compresses the image
x^ into its feature representation z^. For comparison, the dimension
of the vector z^ is the same as the dimension of z. The discriminator
output D x  can be interpreted as the probability that the given
input of network D is the real image × sampled by the training data
x or G z  generated by the network G. Network D tries to
discriminate between actual data and the fake data generated by
network G. Network D and network G are simultaneously
optimised through the following two-player mini-max game with
value function V G, D

min
G

max
D

V G, D = Ex ∼ pdata x log D x

+Ez ∼ pz z log 1 − D G z ,
(2)

where pdata is the data distribution and pz z  is the generator
distribution to be learned through the adversarial min–max
optimisation.

In the process of the training, the adversarial generator
improves the ability to generate realistic images, and the
discriminator improves the ability to correctly identify real images
and generate images. When the adversarial training is completed,
the generator has learned from the potential space representation z
to the mapping G(z) of the real image x.

In this paper, encoder loss and adversarial loss are proposed for
the tiny unknown defects detection. Different from GANomaly
[13], we remove reconstruction loss and only perform the detection
in feature vector space. In our opinion, reconstruction is not a
necessary condition for important feature selection, especially for
the abnormal region occupying a small proportion of the whole
image. The basic principle of important features should be the
ability to identify the sample from the entire data set, i.e. to extract
(the most) unique information about the sample. The majority of
the PCB defects are tiny, such as mouse bite, spur and so on.
Therefore, the anomaly category and the normal category may be
similar, and it increases the difficulty of distinguishing between
normal and abnormal category. Therefore, unlike most existing
work, the method proposed for the PCB unknown defect detection
in this paper no longer compares images in the pixel level, but only
compares the feature vectors in the potential vector space.
Moreover, the model adding reconstruction loss is proposed for the
anomaly area taking up a large proportion in the whole image.

The encoder loss enhances the similarity between the feature
vector compressed by generated image G x  and the feature vector
compressed by the real image x. The aim of it is to minimise the
distance between the bottleneck features of the input x and the
encoded features of the generated image x^. It is formally defined as

Lenc x = 1
m∥ D x − D(GE(x))) ∥, (3)

where m denotes the number of the vector dimension which is
equal to 100 in our experiments.

Since lacking label information during adversarial training,
learning the features of classification is not the aim of the
discriminator. Instead, it concentrates on learning good
representations. Thus, during adversarial training, the training
objective of the discriminator regardless of classification but
instead, it uses the idea of feature matching to improve the
mapping to the latent space. Therefore, the adversarial loss in the
paper is also under the latent vector space. It compares the
difference between the generated image and the real image through
the last fully connected layer in the discriminator. Using a richer
intermediate feature representation of the discriminator, it is
formally defined as:

Ladv x = 1
m∥ GE x − E(GD(GE(x))) ∥2 . (4)

The reconstruction loss is a similarity comparison of the generated
image and the original image at the image level. In the case where
the abnormal region occupies a large area in the whole image, and
the image lacks details, the extracted features are limited.
Therefore, the difference between the abnormal image and the
normal image mainly lies at the image level

Lrec x = 1
m∥ x − GD(GE(x)) ∥ . (5)

For mapping to the latent space, the overall loss is defined as the
weighted sum of three components

L x = αLenc x + βLadv x + λLrec x . (6)
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For the PCB unknown defect detection where the abnormal region
is tiny, we set α = 1, β = 1 and λ = 0.

3 Experiments and discussions
In this section, the proposed method is evaluated on PCB defect
data set. The experimental results are analysed in details and are
compared with state-of-the-art techniques. In addition, the validity
of the model is verified on MNIST and CIFAR-10.

3.1 Data set and metric protocols

The data set used in this paper is split into the training set and test
set which are two separate parts of the data set. Since there is not a
public data set of PCB defects images, we perform image
acquisition and get a small PCB defect data set. As shown in
Fig. 3, the categories of defects include open circuit, short circuit,
spurious copper, mouse bite, spur and missing hole. In the
detection task, one category of defects is chosen to be an abnormal
category. The PCB without defects is regarded as the normal
category. In the original data set, the number of the defect-free
images is 10 and each defects category has 20 images. There are
commonly three or four defects in each defect image. The data set
in this paper is extended by clipping the original image into the
fixed-size image blocks. In our data set, the total number of normal
images in the training set is 4400 in the test set. The number of
images in each abnormal category in the test set is 50. Here, the
number of images in the normal category is larger than the
abnormal category.

3.2 Implementation details

In this section, we briefly introduce the image pre-processing and
the implementation details of our approach. 

Pre-processing: Since the defects in the PCB are tiny and the
circuits among it are dense, it is not easy to detect. To solve the
difficulty in detection, sliding window processing is taken in the
paper. As shown in Fig. 4, first, the original PCBs are scaled to the
same size (1280 × 1280). The slider processing is performed in a
fixed step size to obtain a small image block of the same size.
Here, to expand the data set, the step size is chosen to be 32, 64
and 128 pixels. In addition, the image blocks are different scales of
the original image but they are resized to the size of 128 × 128 in
the final. We obtain the number of defect-free image blocks we
need from ten defect-free PCBs as the normal samples.
Training details: The approach is implemented in PyTorch (v0.4.0
with Python 3.6.5). Adam [22] is chosen to optimise the networks
and the initial learning rate of it is set as 0.0001. Meanwhile, the
batch sizes of the training set and test set are both 16. Here, each
abnormal class is trained for 200 epochs.
Testing process: In the test phase, the whole image is divided into
patches of the same size, and then the image patches are fed into
the model for classification.
Metrics: The evaluation of the experimental results are based on
the area under curve (AUC) [23]. AUC is a model evaluation index
which is often used as the evaluation of the two-category model. It
is defined as the area under the receiver operating characteristic
curve. AUC evaluates the two-category model by the probability
that the positive example is in front of the negative example. It can
well describe the overall performance of the model. AUC is
defined in

AUC = ∑i ∈ positiveClass ranki − (M(1 + M)/2)
M × N , (7)

where M is the number of positive samples and N is the number of
negative samples.

3.3 Results on PCB defect data set

The results in Table 1 show that our approach improves the
detection performance among different defects. We consider each
class in the data set as an abnormal class and the defect-free class
as a normal class. Here, * denotes reconstruction loss is added in
our model. Compared with GANomaly, our network structure is
more capable of detecting tiny defects. The main reason is that the
comparison of GANomaly is under the image space, while our
approach only under the feature vector space without the
reconstruction loss. Compare Tinynomaly with Tinynomaly*, the
results demonstrate our approach without reconstruction loss

Fig. 2  Details of residual modules
(a) The residual module in G, (b) The residual module in D. The most striking
divergence of the residual module between G and D is that the spectral normalisation
layer [18] is used in D to increase the stability of training

 

Fig. 3  Unknown defects
(a) Short circuit, (b) Open circuit, (c) Spurious copper, (d) Mouse bite, (e) Spur, (f)
Missing hole. The red bounding box marks the defective area. All of them have no
appearance in the training phase and belong to unknown defects

 

Fig. 4  Preprocessing: Through the bilinear interpolation, the original
image is resized into the same size 1024 × 1024, and the image blocks are
obtained as the network input through the sliding window processing. The
size of the image block is 128 × 128

 

4 J. Eng.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



function achieves better performance on PCB defect data set.
GANomaly depends on the performance of image reconstruction
and it is hard to distinguish the abnormal category and the normal
category when they are similar to each other. Thus, this method is
not suitable for tiny defect detection. It leads to weak detection
performance on PCB defect data set. Instead, the approach without
reconstruction loss in the paper concentrates on the representation
of features and pays no attention to image reconstruction. The
reason is that the PCB is complicated and the defects only occupy a
small part of the image. It leads to more redundant feature
information in image level comparison. Therefore, although the
approach without reconstruction loss in the paper does not perform
well at the reconstructed pixel level, its reconstruction at the
feature level is successful. Therefore, the approach can capture the
important features of the normal category which can help
distinguish the abnormal category and the normal category.

In a word, instead of the accurate recovery of the pixel level,
the model without reconstruction loss in this paper learns the
advanced abstract features. The experiments denote the best feature
for PCB defect detection task is the worst one to reconstruct the
input at the pixel level. The model in our approach can extract
effective features, especially for the tiny defects. Fig. 5 presents the
experimental results more intuitively. The experimental results on
the PCB data set show that important features can be obtained by
comparing them from the feature vector level.

3.4 Results on MNIST and CIFAR-10

To evaluate our detection model, the other two benchmarks:
MNIST [24] and CIFAR-10 [25] is used. In addition, we compare
and do the analysis with other anomaly detection methods on these
two benchmark data sets.

3.4.1 Results on MNIST: The MNIST data set is a handwritten
digital data set where each image is a single number from 0 to 9.
Treating one category as an anomaly and the rest categories as a
normal category, there are 10 sets of experiments in total. The
model is trained for 15 epochs on MNIST. Table 2 presents the
results obtained on MNIST. Each digit is regarded as an abnormal
class. All but Tinynomaly and Tinynomaly* results are obtained
from [13]. Compared with some typical anomaly detection
methods, our method achieves the best AUC performance among
most anomaly categories on MNIST data set. Our method without
image reconstruction loss performs better than VAE [14], AnoGAN

[15] and EGBAD [12] but worse than GANomaly. The main
reason is that the anomaly area is the whole image in MINIST and
the difference between the anomaly category and the normal
category is the pixel-level to a large extent. Besides, a single
channel is used as the input, texture, colour and some details are
ignored. The feature distribution difference between the normal
class and abnormal class is weaker than the appearance distribution
difference. Therefore, anomaly detection in the image space is
easier, which results in a different representation of the PCB data
set and the MNIST data set. In the condition, comparing the image
in the pixel-level is required. Adding the reconstruction loss which
compares the image under image space, our approach is superior to
the GANomaly. It represents our method can extract effective
image features through better fusing the image space and potential
feature space.

3.4.2 Results on CIFAR-10: The CIFAR-10 data set consists of
colour images in ten classes, with 6000 images per class. The same
with MNIST, one class is chosen as the normal and the rest are
considered as the abnormal. The results are shown in Table 3. Our
method can achieve the best performance both with or without the
reconstruction loss. It demonstrates whether the main judgment
basis is the pixel difference at the image level or the distribution
difference at the feature level, our model can extract effective
features containing the category representation information. Unlike
the MNIST data set, the images in the CIFAR data set are based on
colour images and contain more image feature information, which
facilitates identification in the feature space.

Each class in the data set is regarded as an abnormal class. All
but Tinynomaly and Tinynomaly* results are obtained from [13].
The results show some categories as abnormal classes perform
slightly worse in the experiment. The main reason is that some
categories in the data set have greater commonality, which leads to
a higher similarity of the obtained features and misjudgment.

4 Conclusions
This paper presents a semi-supervised method based on GANs,
which can detect unknown defects on PCBs, especially for the tiny
defects. By training an end-to-end network which consists of a
generator, a discriminator and an encoder network, the
identification of images only needs to train the normal category. It
weakens the requirement of data equilibrium and data quantity. In
other words, the model enables the novel category can be detected
without training.

Replacing detection from image space to feature vector space,
the method addresses the issue of tiny unknown defect detection.
Unknown defect detection is realised in the feature vector space by
comparing image feature vectors. In contrast to the prior works, the
approach underlines the deep semantics of features rather than
judges the importance of features only by image reconstruction.
The results show that our method achieves good performance on
the tiny unknown PCB defect detection and has better
generalisation ability.
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Table 1 AUC results on PCB defect data set
Method Average AUC Short circuit Open circuit Spurious copper Mouse bite Spur Missing hole
GANomaly [13] 0.559 0.553 0.587 0.556 0.552 0.468 0.637
Tinynomaly 0.869 0.876 0.908 0.899 0.810 0.860 0.861
Tinynomaly* 0.728 0.709 0.734 0.661 0.756 0.773 0.734
*denotes that reconstruction loss is added in our model.
 

Fig. 5  Diagram of AUC results on PCB data set
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Table 2 AUC results on MNIST data set
Anomalous digit Average AUC 0 1 2 3 4 5 6 7 8 9
VAE [14] 0.332 0.515 0.075 0.640 0.245 0.335 0.325 0.430 0.145 0.500 0.110
AnoGAN [15] 0.430 0.610 0.300 0.535 0.440 0.430 0.420 0.475 0.355 0.400 0.335
EGBAD [12] 0.500 0.775 0.290 0.670 0.520 0.450 0.430 0.570 0.400 0.545 0.345
GANomaly [13] 0.757 0.850 0.330 0.920 0.771 0.770 0.800 0.880 0.780 0.890 0.580
Tinynomaly 0.706 0.906 0.465 0.827 0.645 0.693 0.671 0.753 0.827 0.673 0.600
Tinynomaly* 0.850 0.915 0.704 0.942 0.900 0.905 0.880 0.865 0.820 0.878 0.693
 

Table 3 AUC results on the CIFAR-10 data set
Anomalous class Average AUC Plane Car Bird Cat Deer Dog Frog Horse Ship Truck
AnoGAN [15] 0.434 0.516 0.492 0.411 0.399 0.335 0.393 0.321 0.399 0.567 0.511
EGBAD [12] 0.462 0.577 0.514 0.383 0.448 0.374 0.481 0.353 0.526 0.413 0.555
GANomaly [13] 0.605 0.625 0.629 0.505 0.577 0.593 0.633 0.653 0.601 0.622 0.614
Tinynomaly 0.774 0.789 0.860 0.618 0.631 0.791 0.727 0.758 0.781 0.970 0.812
Tinynomaly* 0.768 0.793 0.826 0.621 0.732 0.657 0.859 0.683 0.786 0.834 0.893
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