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Abstract: Printed circuit board (PCB) defect detection is one of the primary problems in quality control of the most electronic
products. Usually, the industrial PCB imagery has high resolution, but defects take up a small proportion (often only ∼10 pixels
in size), which makes it difficult to use traditional machine vision methods. To this end, a novel single shot object detector
(SSDT) is proposed for tiny defect detection in PCBs in this study. Specifically, a semantic ascending module, which propagates
the semantic property of deep layers to shallow layers, is presented by fusing features of different levels. An attention
mechanism is utilised to learn the relationship of the features to be fused across channels and a shuffle module is used to
eliminate the aliasing effect after fusion. Moreover, the improved non-maximum suppression is proposed to extenuate the
overlap effect for testing the whole PCB image. The proposed detector can rapidly detect tiny defects and the results of SSD
and SSDT are further compared not only in PCB defect dataset but also the object detection public dataset PASCAL VOC2007
where SSDT achieves 81.3% mAP, better than SSD (79.5%). In final, the proposed detector is validated to be robust to rotation
and blur.

1 Introduction
In industrial production, a printed circuit board (PCB) may exist
some tiny defects, such as mouse-bite, missing-hole and spur,
which would affect industrial use. Generally, on production lines,
tiny defects need to be manually picked up, which is extremely
time-consuming, inefficient and labor intensive. Therefore, there
are many machine vision methods for defect inspection. Lu et al.
[1] tried the support vector machine with feature fusion to detect
the PCB defects. Ozturk and Akdemir [2] used fuzzy c-means
algorithm in unsupervised learning to detect pad defects in the PCB
and get a better performance than some existing methods. Zhang et
al. [3] proposed a three-layer convolutional neural network to
classify defects. Compared with manual inspection, these methods
have many advantages, such as persistence, high speed and low
cost, but they cannot locate the defects precisely. For this reason,
object detection techniques are used to locate and recognise tiny
defects in PCB imagery taken by the industrial camera in this
paper.

Computer vision techniques have made great strides in the past
few years since the introduction of convolutional neural networks
[4–7] in the ImageNet [8] competition. In terms of object detection,
there are three main frameworks: Faster R-CNN [9–11], SSD [12],
and YOLO [13]. Faster R-CNN typically ingests 1000 × 600 pixel
images, and YOLO runs on either 416 × 416 or 544 × 544 pixel
images, whereas SSD uses the input images with 300 × 300 or 512 
× 512 pixels. Although the performance of all these frameworks is
commendable, none can handle the typical PCB images with an
input size of ∼3000 × 3000. Among these three frameworks, SSD
has the greatest inference speed and highest accuracy on the
PASCAL VOC dataset. Besides, SSD can be flexibly adapted to
the different detection tasks. Due to the speed, accuracy, and
flexibility of SSD, we use it as the backbone and then make a
series of improvements based on it.

Compared with objects of general size, SSD has the limitation
that small objects cannot be detected well. This is not the problem
only for SSD but the problem for most object detection algorithms.
Also, SSD does not consider the relationship between the different
scales because each layer predicts the various scale boxes for one
object, respectively. The low-level features in the shallow layer
which detects small objects have little semantic information, and
the high-level features in the deep layer have little spatial

information. Hence, the low-level features are helpful for object
location regression sub-task and the high-level features are
discriminative for classification. The original SSD has poor ability
for small object detection, because of the lack of semantics in low-
level features. To this end, we propose a novel single shot detector
called single shot object detector (SSDT). Specially, our SSDT
propagates the features from deep layers after up-sampling to
shallow layers to enrich the semantics by a semantic ascending
module. After fusion, a shuffle module is proposed to eliminate the
aliasing effect. To guarantee the effectiveness of fusion features,
the squeeze-and-excitation module is used to inhibit the useless
channels. All these help solve the problem that low layer has less
semantic information to increase the detection performance for
small objects.

It is not easy to utilise deep learning method to traditional
machine vision detection pipelines because the unique aspects of
PCB imagery necessitate algorithmic contributions to address
challenges related to the small spatial extent of tiny defects,
rotation variance and a large scale search space. The proposed
algorithms must adjust for following aspects: 

Small spatial extent: In PCB imagery, defects are often very small
as Fig. 1 shows rather than the large and prominent subjects typical
in ImageNet data [8]. The area of a PCB usually is 10 cm × 10 cm
and a tiny defect only has 3 mm × 3 mm, which means that tiny
defects will be only ∼10 pixels in extent even at really high
resolution. If the entire image is input into the detector, it is
difficult to extract features of defects.
Rotation variance: In actual production lines, camera may shake
and shift, so the captured images may be askew. Tiny defects
viewed from above can have any orientation.
Lack of enough training data: Today, there are many datasets for
common objects in actual scenarios. However, industrial datasets
are really rare. The main reason is that factories and companies
almost do not disclose their data. There is a relative dearth of
training data.
Ultra high resolution: In general, industrial PCB imagery is large
scale and the input size of the detector is generally small. If we
resize it directly, tiny defects may be hard to be discovered and
even disappear. So simply down-sampling to the input size
required by most algorithms is not an option.
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The contributions of this work can be summarised as follows:

(i) A novel single-shot detector called SSDT is proposed for tiny
defects detection. It consists of three modules: a semantic
ascending module for the enhancement of semantics in low-level
features, an attention mechanism for learning the relationship of
features across channels and a shuffle module for easing the
aliasing effect.
(ii) An improved non-maximum suppression method is proposed to
reduce the error rate for testing the whole PCB images by sliding
window.
(iii) Extensive experiments on PCB defect dataset and VOC2007
dataset are carried out to evaluate the effectiveness of our method.n
PCB production process.

2 Single shot detector for tiny defects
In SSD, although multi-stages are used for localisation and
classification, there is no connection between stages, as shown in
Fig. 2d. The SSD uses the shallow layer's feature map to detect
small objects, but lower layers have less semantic information. So
it is not robust enough for SSD to detect small objects. To address
this challenge in PCB tiny defect detection, we propose a novel
object detection framework for PCB image: single shot detector for
tiny defect detection (SSDT).

The architecture is shown in Fig. 3. Like SSD, VGG16 is used
as the backbone. In order to make the defects as large as possible,
the 512 × 512 size is used as the input size. Two independent
semantic ascending modules are built to deliver high-level features
to shallow layers to enrich its semantic information. Followed by
them there are two shuffle modules to eliminate the aliasing effect.
Some training strategies are designed to meet our requirements for
PCB tiny defect detection. Meanwhile, we improve the non-
maximum suppression (NMS) method due to the truncation of
defects for testing the whole PCB images.

2.1 Semantic ascending module

As shown in Fig. 2, there have been a lot of algorithms trying to
effectively utilise the pyramidal features. Fig. 2a shows that images
with different scales compute features independently. Sometimes
only the top features are used to detect objects, which is used in
some two-stage detectors such as Faster R-CNN [11] and R-FCN
[14], as shown in Fig. 2b. In Fig. 2c, feature are fused from top to
bottom layer by layer which is adopted by feature pyramid
networks (FPN) [15]. Fig. 2d uses each feature layer generated
from a ConvNet to predict like SSD [12]. Our proposed feature
fusion method is shown in Fig. 2e. Features from high layers are
added to the bottom layer to enrich the semantics specifically for
small objects. The most common method is like Fig. 2c. This type
of feature fusion is used in FPN [15] and DSSD [16], and is
verified to improve the detector's performance a lot. However, this
design needs multiple feature merging processes and consumes a
lot of time since multiple features are processed by element-wise
summation. Hence, we propose a lightweight and efficient
semantic ascending module for small objects and tiny defects in
PCB images. Our motivation is to let high-level rich semantic
information pass to the shallow features. Assuming that Xi, i ∈ C
are the feature maps that we want to fuse, and X f , i ∈ F are the
shallow feature maps, the feature fusion module can be described
as follows:

Xf = ζf ∈ F Ti Xi i ∈ C, (1)

lloc, class = ζc, l Xf ∪ Xi f ∈ F, i ∈ C, (2)

where Ti is the transform function of each feature map before
feature fusion. ζf is the feature fusion function. ζc, l is the loss
function of localisation and classification. There are several factors
we should consider:

C and F: In the conventional SSD500 based on VGG16, the
author chooses conv4_3, fc_7 (we change it to conv_7) of the

VGG16 and newly added layer conv6_2, conv7_2, conv8_2,
conv9_2, conv10_2 to generate features to perform object
detection. The corresponding feature size is 64 × 64, 32 × 32, 16 × 
16, 8 × 8, 4 × 4, 2 × 2, 1 × 1. We add the feature map of layer
conv6_2, conv7_2, conv8_2, conv9_2, conv10_2 to the layer
conv_7 and add the feature map of layer conv_7, conv6_2,
conv7_2, conv8_2, conv9_2, conv10_2 to the layer conv4_3. So F
is the set of layer conv4_3 and conv_7 and it means there are two
feature fusion pathways independently.

ζ f : Usually, there are two ways to fuse different feature maps
together: concatenation and element-wise summation.
Concatenation does not need feature maps with the same channels
but it will increase the number of channels. If using concatenation
in SSDT, the channels of conv4_3 will be up to 2816. So we prefer
to use the element-wise summation. The result in Section 3.5.3 that
element-wise summation performs better than concatenation also
proved our opinion.

Ti: To match the channels and the size between each feature
map with different scales, the following strategy is adopted. First,
Conv 1 × 1 is applied to each of the feature layer ∈ C to unite the
number of channels. Then feature maps fused to the layer conv4_3
are up-sampled to 64 × 64 and feature maps fused to the layer
conv_7 are up-sampled to 32 × 32 by bilinear interpolation. By this
way, all the features have the same size on spatial dimension and
the same number of channels.

2.2 Attention mechanism

If simply passing the deep features to the shallow layers, the
features of most channels are beneficial, but it is also possible that
features of some channels are useless or even will decrease the
performance. Hence, an attention mechanism is requisite to filter
out features of useless channels. In SSDT, as Fig. 4c shows, the
‘squeeze-and-excitation’ block [17] is utilised to model
interdependencies between channels. It mainly consists of two fully

Fig. 1  Example of PCB image (2838 × 2316 pixels). One mouse-bite
defect (5 × 12 pixels) is shown in red

 

Fig. 2  Five kinds of feature pyramid methods
 

2 J. Eng.
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



connected layers and a sigmoid layer. Two fully connected layers
squeeze features along the spatial dimension, turning each two-
dimensional feature channel into a real number. This number is
sent into the sigmoid layer to generate weights of each feature
channel. These weights will be weighted to previous features by
element-wise multiplication as the importance of each feature
channel.

In SSDT, global average pooling is first used to get the spatial
information. Assuming F ∈ RC × H × W are feature maps to be fused,
the global squeeze can be described as

Zi = 1
H × W ∑

h, w
Fi, H × W, i ∈ C, (3)

where Zi ∈ RC × 1 × 1. After squeeze operation, a simple attention
mechanism is adopted with a sigmoid activation:

S = Sigmoid W2 ⋅ ReLU W1Z , S ∈ RC × 1 × 1, (4)

where W1 ∈ R(C /r) × C and W2 ∈ RC × (C /r). Those two are produced by
two fully connected layers around the non-linearity and r is a
reduction ratio to reduce computation. At last, the input F are
rescaled by S:

Fout = δ Fi, Si , i ∈ C, (5)

where Fout ∈ RC × H × W is the output of this attention mechanism
and δ is the multiplying operation. By all this, useless features
across channels are restrained.

Batch normalisation (BN) is used in the layer conv4_3 after
element-wise summation but not in the layer conv_7. It can achieve
better performance compared to using BN in both two layers.

2.3 Shuffle module

As mentioned in FPN [15], the up-sampling has aliasing effect on
fusion features. The conventional method appends a 3 × 3
convolution after feature fusion. However, in SSDT, the layer
conv4_3 has 512 channels and conv_7 has 1024 channels. If we
directly use the architecture like Fig. 4a, the parameters will
increase a lot.

Inspired by Bottleneck [18], our method is to use 1 × 1 kernel to
reduce the dimension as Fig. 4b shows. Suppose that the original
feature map has C channels, 1 × 1 convolution kernel is first used
to reduce to (C /r) channels. Then the 3 × 3 convolution and 1 × 1
convolution kernel are utilised to increase the number of channels
to the original number. Our shuffle module can effectively ease the
aliasing effect and wouldn't add too much computation. As Table 1
shows, our shuffle module only increases 5M parameters while
conventional convolution increases 44M parameters. 

2.4 Training strategy

We follow almost the same training policy as SSD. First, a set of
default boxes are matched to target ground truth boxes. For each
ground box, it is matched with the best overlapped default box and
any default box whose Jaccard overlap is larger than a threshold
(e.g. 0.5). Among the non-matched default boxes, certain boxes are
selected as negative samples based on the confidence loss so that

Fig. 3  Architecture of SSDT. The shallow features are fused with deep features after upsampling and attention mechanism. Then the fusion features are used
for classification and localization following the shuffle module

 

Fig. 4  Detailed architecture
(a) The conventional 3 × 3 convolution, (b) The shuffle module we used, (c) Attention
mechanism, C is the channels of feature map X, r is a real number to reduce dimension

 

Table 1 Comparison of parameters
Shuffle module No. of parameters
none 117 M
our method 122 M
conventional convolution 161 M
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the ratio with the matched ones is 3:1. Then the joint localisation
loss (e.g. Smooth L1 loss) and confidence loss (e.g. Softmax loss)
are minimised. Extensive data augmentation is done by randomly
cropping the original image plus random photometric distortion
and randomly flipping of the cropped patch. Particularly, a random
expansion augmentation trick is proved to be extremely helpful for
detecting small objects [16] and it is also adopted in our SSDT
framework.

The input size of SSDT is 300 or 512. If the PCB images of
high resolution directly resize (e.g. 2400 × 3000) into the
corresponding scale, tiny defects will shrink or even vanish. At the
same time, global information in PCB image is similar to the local
information. Hence, the PCB images of arbitrary size are first
resized into 2048 × 2048. This scale ensures that the defects cannot
change too much. Then the images are partitioned into cutouts of
256 × 256 size with overlap. The overlap rate (overlap area divided
by cutout area) is 0.5. However, partitioning cannot change the size
of tiny defects. In the PCB images, some tiny defects only account
for 10 pixels. The object with the size of 10 pixels is very difficult
to detect for SSDT. The minimum size of conv4_3 is 35.84, and the
aspect ratios are 2 and 3. So effective minimum size of object is 20
(35.84 divided by the square root of 3). In order to make the
defects occupy more pixels, the size of cutouts is doubled by
bilinear up sampling so that the pixel number of defects also
double. It is worth noting that when partitioning the images,
cutouts in the dataset would not truncate the defects, and cutouts
would retain the entire defects (see Fig. 5). 

For each cutout the bounding box position predictions returned
from the classifier are adjusted according to the row and column
values of that cutout. This provides the global position of each
bounding box prediction in the original input image. The 50%

overlap ensures all regions will be analysed, but also results in
overlapping detections on the cutout boundaries. So improved non-
maximum suppression is applied to the global matrix of bounding
box predictions to alleviate such overlapping detections.

2.5 Improved non-maximum suppression

For testing a whole PCB image, the sliding window method is used
with stride 128. The size of window is the same as the cutouts in
the dataset. For the block in the window, we also use bilinear up-
sampling method. However, when sliding, the window may cut off
the defect like Fig. 6, and the next window will contain the whole
defect. If the defect is detected in both two blocks, a special
situation may appear as shown in Fig. 6c.

In traditional NMS, when the detection frame M of the
maximum score is selected, any detection frame that overlaps with
the detection frame M by more than the overlap threshold will also
be removed. If the smaller bounding box in the figure has higher
score, NMS would filter the bigger one. Nevertheless in fact, the
bigger one is better. So in our framework, we propose an improved
NMS as

B = arg max i ∈ I Ci + λ × Si
Smax

, (6)

where I is the set of indexes of bounding boxes that IoU with each
other more than the threshold, λ is the adaptive parameter, Ci is the
score of the ith bounding box, Si is the area of the ith bounding
box. The improved NMS considers the area factor and the problem
of selecting between the small cutouts with partial defect and the
cutouts with integral defect.

3 Experiments and discussions
3.1 Datasets

The design drawings of the PCB used in the dataset are designed
by ourselves and processed by the factory. The PCB images are
taken by a 16 megapixel industrial camera equipped with a CMOS
sensor that can be adjusted by manual, remote control or computer
software. In order to maintain the proper proportion of all PCB
boards in the image without distortion if the height of the camera is
not adjusted, the camera is also equipped with an undistorted zoom
industrial lens, and the focal length can be adjusted between 6 and
12 mm.

There are six kinds of defects in our PCB images: missing-hole,
mouse-bite, open circuit, short, spur and spurious-copper, as Fig. 7
shows. Defects are synthesised according to common defects
standards in the factory and meet the condition of ‘tiny’. In training
set, there are 5379 images including 902 missing-holes, 978
mouse-bite, 993 open circuits, 765 short, 887 spur and 854
spurious-copper. The testing set has 1270 images including 244
missing-holes, 230 mouse-bite, 240 open circuits, 168 short, 196
spur and 192 spurious-copper. It is worth noting that the images of
training set and testing set are taken from different PCB to ensure
the effectiveness of evaluation.

Fig. 5  Partition of a PCB image (only show a part) into cutouts of 256 × 
256 pixels with overlap 0.5 from left to right

 

Fig. 6  Schematic diagram of defect truncation
(a) A cutout that cuts off a defect, (b) A cutout that contains the whole defect, (c) The
detection result if the red bounding box has higher score

 

Fig. 7  Six types of PCB defects
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3.2 PCB defect detection

Stochastic gradient descent is used with a momentum of 0.9 and a
weight decay of 0.0005 when training. We first train the model
with 2 × 10−4 learning rate for 20K iterations, and then continue
training for 10K iterations with 2 × 10−5 and 10K iterations with 2 
× 10−6. The batch size is 16 and training and testing are on the
NVIDIA 1080Ti GPUs. As Table 2 shows, our SSDT performs
better than SSD on the PCB tiny defect detection by nearly 4.1%
mAP although the speed is the half of SSD. The reason is that the
two extra feature fusion pathways enrich the semantics in shallow
layers and the gate mechanism enhances the representation ability
of features. However, such processing speed can still meet the
requirements of the factory. The effectiveness of attention
mechanism and feature fusion module in SSDT is also evaluated
on PCB defect dataset. Table 2 shows that each module increases
the performance of our method for PCB tiny defect detection.

3.3 Generalisation capacity

In actual industrial production, PCBs may have offsets and PCB
images captured by cameras may blur. For these two problems, two
experiments are done to validate the robustness of our detector.

Rotation consistence: In the actual production line, the camera
may have a slight rotation, causing the rotation of the captured
PCB images. If using traditional image processing method to align
the image, a certain amount of time will be wasted. So the detector
is supposed to have the characteristic of rotation consistence.

In the test set, we randomly select sixty images and rotate them
at different angles (randomly rotate −10∘ − 10°). Then these PCB
images are tested using the SSDT512 trained with PCB defect
dataset. The result is 0.8854 mAP which can be acceptable.

Low-resolution test: Sometimes, the pixel of camera may be not
very high, so the defects in the image are not clear. Hence, the
detector needs to be robust to slight blur. To study the effects of
resolution on defect detection, the raw 256 × 256 cutouts are
convolved with different size Gaussian kernel. The larger the size
of the Gaussian kernel, the more blurred the image will be.

The SSDT512 is tested with different size of the Gaussian
kernel blurring the images in the test set. Fig. 8 demonstrates that
both SSD and SSDT are poor to inference in high degrees of blur. 
However, SSDT still performs better than SSD in almost all levels
and the performance of it on low-level blur is acceptable.

3.4 Results on PASCAL VOC

We use VOC2007 trainval and VOC2012 trainval to train
SSDT following SSD [12]. The SSDT300 is trained on four Nvidia
1080Ti GPUs with batch size 32 for 150k iterations. The initial
learning rate is 4 × 10−3 and then divided by 10 at 80k, 100k, 120k
iterations. For VOC2007, Table 3 shows that our low resolution
SSDT300 model is already more accurate than some classic two-
stage detection methods, surpassing Fast R-CNN [10] by 9.1%,
Faster-RCNN [11] with VGG16 backbone by 5.9% and Faster-
RCNN [19] with ResNet-101 backbone by 2.7%. The accuracy of
SSDT300 is higher than some one-stage detectors such as SSD300
[12], SSD321 [12] and DSSD321 [16].

Table 3 demonstrates that although DSSD513 with backbone
ResNet101 has higher average precision than SSDT512, SSDT512
is more accurate on small object detection as well as SSDT300,
such as bottle and potted plant. It means that the several modules
that we proposed are useful for small object detection.

3.5 Ablation experiments

3.5.1 Attention mechanism: The semantic ascending module
does not learn the relationship of features across channels.
Actually, passing deep features to shallow features will enrich the
semantic information, but it will also bring some useless
information. If the fusion features are directly used for
classification and regression, it may reduce the detection
performance. Our attention mechanism suppresses unwanted
channels by applying weights to each channel of the feature map.
Its benefit is noted by comparing the SSDT w or w/o it (mAP
increases 0.8%) in Table 4. 

3.5.2 Shuffle module: Table 4 summarises the performance of
shuffle module. We can see that the aliasing effect caused by
element-wise summation has a great influence on object detection.
The shuffle module we add can eliminate this effect to a certain
extent. Also as mentioned in Section 3.2, the shuffle module would
not increase computational complexity a lot.

3.5.3 Feature fusion: In Table 4, using element-wise summation
to fuse features can achieve 79.1% mAP while concatenation can
only achieve 77.3% mAP. The result shows that element-wise
summation can better fuse high-level semantics into low-level
features. On the other hand, if the concatenation operation is
adopted, the number of channels of feature map after fusion will
increase, which will cause the addition of computation complexity.

3.5.4 Improved non-maximum suppression: Due to the overlap
effect for testing the whole PCB image, the improved non-
maximum suppression method is proposed. The effectiveness of
our method is validated in 60 PCB images with 293 defects in
them. In Fig. 9, the different λ values are tested and we can see that
when λ ≥ 1 the performance achieves the best. Two main factors
are responsible for this: (i) sliding windows may truncate defects
for testing the whole PCB image. (ii) our improved non-maximum
suppression method considers the area and the confidence score of
the candidate bounding box simultaneously.

4 Conclusions
In this paper, we present a novel single-shot detector for PCB tiny
defect detection, called SSDT. This framework contains a semantic
ascending module to convert the semantics of high-level features to

Table 2 Detection results on PCB defect dataset
Method mAP, % Missing-hole Mouse-bite Open circuit Short Spur Spurious copper FPS
SSD [12] 0.9277 0.9017 0.9933 0.9050 0.8908 0.9033 0.9720 125
SSTD* 0.9489 0.8995 0.9987 0.9969 0.8861 0.9921 0.9168 110

SSTD+ 0.9563 0.8996 0.9973 0.8845 0.9869 0.9849 0.9846 84

SSTD 0.9785 0.9907 0.9982 0.9975 0.9028 0.9968 0.9847 67
SSTD* does not fuse features into conv_7 and excludes attention mechanism. SSTD+ excludes attention mechanism.
 

Fig. 8  Blur test result of SSD and SSDT
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the low-level features to enhance the discrimination ability of
shallow prediction layers which mainly detect small objects.
Moreover, a lightweight shuffle module is proposed to eliminate
the aliasing effect caused by feature fusion and an attention
mechanism is utilised to learn the relationship of fusion features
between channels. An improved non-maximum suppression is
proposed for testing the whole PCB images, which is shown to be
available. Our SSDT is proven to be effective not only on PCB
defect dataset but also on PASCAL VOC dataset. Our framework
also shows robustness to rotation and blur of PCBs in the industrial
production process.
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faster
RCNN
[19]

ResNet101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

RON384+
+ [21]

VGG16 77.6 86.0 82.5 76.9 69.1 59.2 86.2 85.5 87.2 59.9 81.4 73.3 85.9 86.8 82.2 79.6 52.4 78.2 76.0 86.2 78.0

SSD300
[12]

VGG16 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 84.0 79.4 52.3 77.9 79.5 87.6 76.8

SSD321
[12]

ResNet101 77.1 76.3 84.6 79.3 64.6 47.2 85.4 84.0 88.8 60.1 82.6 76.9 86.7 87.2 85.4 79.1 50.8 77.2 82.6 87.3 76.6

DSSD321
[16]

ResNet101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4

SSDT300 VGG16 79.1 82.7 86.7 77.6 75.1 55.6 87.5 87.1 87.6 62.2 84.8 77.7 85.4 88.8 86.8 80.1 51.6 79.2 78.6 87.4 78.8
SSD512
[12]

VGG16 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0

SSD513
[12]

ResNet101 80.6 84.3 87.6 82.6 71.6 59.0 88.2 88.1 89.3 64.4 85.6 76.2 88.5 88.9 87.5 83.0 53.6 83.9 82.2 87.2 81.3

DSSD513
[16]

ResNet101 81.5 86.6 86.2 82.6 74.9 62.5 89.0 88.7 88.8 65.2 87.0 78.7 88.2 89.0 87.5 83.7 51.1 86.3 81.6 85.7 83.7

SSDT512 VGG16 81.3 87.6 87.8 82.5 74.8 64.5 88.9 88.8 86.0 65.2 89.0 76.0 86.3 88.6 87.3 83.9 57.8 84.5 79.4 87.7 80.3
aAll models are trained on VOC2007 trainval and VOC2012 trainval and tested on VOC2007 test.
 

Table 4 Ablation experiments of SSDT300 on VOC2007
Shuttle module Attention mechanism Feature fusion mAP, %
✕ ✕ ele-sum 76.5
✕ ✓ ele-sum 77.3
✓ ✕ ele-sum 78.8
✓ ✓ ele-sum 79.1
✓ ✓ concat 78.6
 

Fig. 9  Performance of different λ in improved non-maximum suppression
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