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Abstract: Using Complete Coverage Path Planning (CCPP), a cleaning robot could visit every accessible area in the
workspace. The dynamic environment requires the higher computation of the CCPP algorithm because the path needs
to be replanned when the path might become invalid. In previous CCPP methods, when the neighbours of the current
position are obstacles or have been visited, it is challenging for the robot to escape from the deadlocks with the least
extra time cost. In this study, a novel CCPP algorithm is proposed to deal with deadlock problems in a dynamic
environment. A priority template inspired by the short memory model could reduce the number of deadlocks by giving
the priority of directions. Simultaneously, a global backtracking mechanism guides the robot to move to the next
unvisited area quickly, taking the use of the explored global environmental information. What’s more, the authors
extend their CCPP algorithm to a multi-robot system with a market-based bidding process which could deploy the
coverage time. Experiments of apartment-like scenes show that the authors’ proposed algorithm can guarantee an
efficient collision-free coverage in dynamic environments. The proposed method performs better than related
approaches on coverage rate and overlap length.
1 Introduction

Complete Coverage Path Planning (CCPP) requires robots to pass
over every part of the workspace completely in collision free
paths. The robot must fill the region with few overlapping paths
within a limited time. Comparing with CCPP methods with
stationary environments, when more computation is applied to
detect the moving obstacle correctly and efficiently, the path in the
dynamic environment getting from the last computing might
become invalid at any time. Therefore, the algorithm requires
higher efficiency to replan in real time. There are few mature
methods suitable in a dynamic environment. In this paper, we
focus on CCPP algorithm for cleaning robots in the environment
with dynamic elements like pets and kids, for example. It is of
great importance to replan effectively in order to get a safer and
better path. There are many robotic applications using CCPP
algorithms [1–3], such as demining robots [4], lawn mowers [5],
automated harvesters [6], underwater robots [7], cleaning robots
[8] and so on.

Great efforts have been made on CCPP methods in known and
stationary environments [9–16]. However, few methods pay
attention to dynamic environments with non-stationary obstacles.
Luo and Yang [17] proposed a bio-inspired method where the
dynamics of each position on the map is topologically organised
in a network. However, in the Luo’s method, the robot is easily
trapped in a situation named deadlock where all the neighbouring
locations are neither obstacles nor visited locations. The network
inspired by the biologic shunting model is lack of global
information to escape from deadlocks quickly.

Both the single-robot based approaches and the approaches using
multiple robots have been developed, such as Multi-Robot Spanning
Tree Coverage (MSTC) [18], Multi-Robot Forest Coverage [19],
Backtracking Spiral Algorithm Cooperative Multi-robot [20] and
Boustrophedon and Backtracking mechanism [21]. These
approaches reduce the coverage time in general.

In this paper, a priority template and a novel global backtracking
mechanism are proposed to coverage task in a dynamic environment.
To deal with deadlock problems, where all the neighbouring
positions of the robot are neither obstacles nor visited locations,
the robot uses a priority template to reduce deadlocks by limiting
the uncertainty of directions. Meanwhile, the robot activates the
global backtracking mechanism to escape from deadlocks when it
is stuck. It determines the best backtracking point using a greedy
criterion and plans an optimal path. Our method generates the path
by incrementally repairing the path costs as new information
discovered. Moreover, the proposed method can be extended to
the multi-robot system, different from the single-robot system. Our
multi-robot mechanism determines the best backtracking point by
starting a market-based bidding process [22] among robots. The
bidding process takes into account both the length of the path and
the conflict with the others.

The remaining of this paper is organised as follows. Section 2
describes the assumptions, definitions and notations. Section 3
presents the proposed method including four parts, the
introduction of short-term memory CCPP model, the global
backtracking mechanism dealing with deadlocks, multi-robot
extension by the market bidding process and the analysis of the
proposed neural-dynamics-based approach. Experiments in various
dynamic scenes are implemented in Section 4. Section 5 concludes
our work.
2 Assumptions, definitions and notations

Some notations, assumptions and definitions in this paper are
described as follows:
2.1 Assumptions

(i) The robot obtains information on a limited range and locates itself
accurately or within a tolerable error, uncertainties via its on-board
sensors (e.g. radar, laser-scanner and sonar), multi-sensory fusion
and simultaneous localisation and mapping are beyond our scope.
(ii) The robot can move to eight potential directions (front, back, left,
right, front left, front right, back left, and back right) as a real
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cleaning robot works in indoor environments. The algorithm also has
the latent capacity to apply on three-dimensional (3D) workspace as
long as extending directions with up and down.
(iii) In multi-robot systems, communication between robots
guarantees that each robot can share its position with the others
and treat the other robots as obstacles.

2.2 Definitions

(i) The point (x, y) indicates the coordinate position of the robot in
the workspace. The autonomous mobile robot is able to turn on
the spot.
(ii) The 2D Cartesian workspace is modelled as an occupancy grid
incrementally as the robot moves. Each grid, being regarded as a
neuron, is the same size as the robot.
(iii) There are four states of neurons introduced to the CCPP
algorithm, which are visited, unvisited, obstacle, and deadlock. In
deadlock state, the neighbours around current position are either
visited or obstacles [17]. The position where the robot arrives in a
deadlock situation is defined as the deadlock position.
(iv) The backtracking position is defined as the point which has more
than one unvisited neighbour, that is to say, it can be a start point of
the future coverage.

2.3 Notations

Here are some notions of the proposed method.
BTlist
66
list of backtracking points

Sdl
 start deadlock point
Fig. 1 Flowchart of the proposed method
Gbt
 goal backtracking point

Rdl
 robot who arrives in a deadlock situation

p
 candidate point of Gbt

Dmin
 minimum distance between the p and the robot
3 Proposed method

The framework of the proposed approach is illustrated in Fig. 1 with
a single robot case as an example.

The prior knowledge of the environment is completely unknown,
by gathering the local information via sensors. The robot is expected
to cover all accessible grids. The first two subsections describe the
proposed CCPP algorithm in single robot case. In the bio-inspired
motion coverage process, the robot covers unvisited regions by
calculating the activities of the neuron network, the network was
constructed by the short-memory CCPP method and with a prior
template to reduce deadlocks. When a deadlock situation occurs,
the backtracking process actives, this process including three steps:
(i) searching for candidate backtracking points and updating the
backtracking list; (ii) selecting the best backtracking point;
(iii) planning the shortest path from a deadlock point to a
backtracking point. The coverage process will not finish until all
points have visited. What’s more, in Section 4, we extend the
approach to the multi-robot case with a market-bidding process.
Overall, the analysis of the approach in a dynamic environment is
given in the last subsection.

3.1 Shunting short-memory-based coverage path
planning with a prior template

A human brain could use the short-memory model [23] to deal with
the information in a dynamic environment. We adapt the model to
path planning problems, especially in the coverage task.

3.1.1 Landscape of neural activities: The core of the
algorithm is to propose a neural network for the coverage task.
The neural activities could represent the coverage state of the
robot. Through the neural activity propagation, the robot will be
This is an open access article publis
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attracted by the activities of neighbour neurons, in the way that
inspired by shunting short-term memory mechanism.

A short-memory model is introduced by Hodgkin and Huxley
[23]. It describes how information to transport between the paths
of membranes in a biological neural system of humans. This
model understands the real-time adaptive behaviour of individuals
to complex and dynamic environmental contingencies. In [23], the
neural activities across the membranes are described as follows:

dxi
dt

= −Axi + (B− xi) [Ii]
+ +

∑k
j=1

vij[xj]
+

( )
− (D+ xi)[Ii]

− (1)

Parameters A, B and D are non-negative constants representing
the passive decay rate, and the upper and lower bounds of the
neural activity, respectively. k is the number of neural connections
from the ith neuron to its neighbours. Here, the term
[Ii]

+ +∑k
j=1 vij[xj]

+ is the excitatory input and [Ii]
− is the

inhibitory input.
We adapt this biological model to the robot coverage path

planning task. The architecture of the CCPP neural network is
shown in Fig. 2a.

xi and xj are neural activities of the central and neighbouring
neurons, respectively, with a radius r0. Central neuron represents
the current location of the robot, each central neuron has only
local lateral with k connections where k represents the number of
directions that the robot could move. In this case, k is 8. vij is the
connection weight between central neural and its neighbour.
Especially, in our CCPP neuron network, we define the external
input Ii to the ith neuron as follows:

Ii =
E, if it is an unvisited region
−E, if it is an obstacle region
0, otherwise

⎧⎨
⎩ (2)

where E ≫ B is a very large positive constant, which guarantees that
unvisited regions attained at the peak of the landscape and obstacles
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Fig. 4 Illustration of backtracking list updating

Fig. 2 Landscape of neural activities
a Architecture of a neural network with neighbouring neurons
b Neuron activities of robot different states

Fig. 3 Algorithm 1: Updating backtracking List
stay in the valley, as shown in Fig. 2b. The connection weight vij
between the ith and jth neurons can be defined as
vij = f (|xi − xj|), where |xi − xj| represents the Euclidean distance
between vectors xi and xj in the state space and f (a) can be any
monotonically decreasing function, such as a function defined in
this paper

f (a) = m/a, if 0 , a ≤ r0
0, if a . r0

{
(3)

where m and r0 are positive constants. The proposed method
guarantees the positive neural activity propagates globally, while
the negative activity only stays local.

3.1.2 Prior template: In the proposed method, we add a prior
template in the process of coverage planning in order to reduce the
uncertainty of directions and make the path grow like repeated
mowing when the neighbour neurons have the same activities. The
regularity in our prior template is the up and down. This template
is triggered when the activities of neighbour neurons have more
than one in rank one class after updating. In the rand one class,
the robot decides to move left or right unless there is no
up-and-down direction. This template is very effective in complex
environments, making the path more regularly and reduces the
number of deadlocks.

3.2 Global backtracking mechanism

We active a global tracking mechanism to escape from the deadlock
situation quickly. Our backtracking mechanism mainly lays in two
aspects: First, while updating the BTlist, a restriction is imposed
according to the spatial characters. Second, a greedy criterion is
used to select the best backtracking point, and then robot escapes
from deadlocks by dynamic A* algorithm straightly.

3.2.1 Updating the backtracking list: Backtracking points are
the points which have more than one unvisited neighbouring
neurons, that is to say, the potential backtracking point can be a
starting point for next coverage path. Backtracking list is a list of
backtracking points which are updated as the robot moves. Once
the robot moves, the states of the eight neighbours update. An
unvisited point will be marked as backtracking point and added
into the backtracking list. As shown in Algorithm 1 (see Fig. 3).
Neighbour points are the 8 points around the current point (x, y).
State (position) denotes the state of a neuron at the position.
Activity (position) returns the neuron activity of this position.
Select (backtrackinglist) selects the best point for backtracking list.
Move (current, target) is a point-to-point planner.

As shown in Fig. 4, the current neuron X is coloured in black and
the blue dashed circle represents the reception field. Its neighbours
which have already been visited are coloured in grey, and
occupied by the obstacles are dashed. The neighbours X3, X4 and
X5, coloured in white, are free and unvisited. Therefore, the
neuron X is a backtracking point candidate, which should be added
to the backtracking list. When the robot moves, the current
CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 65–72
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position effects on the states of eight neighbours, so we also
update the state of neighbours instantly. As the top picture to the
bottom picture in Fig. 4 shows the robot moves from X6 to X,
the points X, X1, X7, X8 are removed from the backtracking list,
the points X2, X3, X4, X5, X6, including X are kept in the
backtracking list.
3.2.2 Deadlock detection and escaping: We introduce a
novel deadlock detection phase to detect the deadlock. It checks
the state of the grid around the current grid, when the state is
visited or an obstacle, while the activities around the current
position are lower than the activity of the current grid, it meets
deadlock situation. Note that when the robot has finished the
coverage, the robot will also be in a deadlock situation, but the
backtrack list is empty this time. This deadlock detection phase is
given in Algorithm 2 (see Fig. 5). The phase is always on during
the coverage until the end. To choose the best backtracking point,
we choose the newest point in the backtracking list as the goal,
directly go there using dynamic A* which could provide an
optimal path.

3.3 Extend proposed method to multi-robot

In multi-robot systems, one robot needs to move as far as possible
away from the other robots to avoid conflict and replanning.
However, if the robots are close to each other, the proposed
method with a market-based bidding process is performed to
ensure collision avoidance.

In single-robot systems when the robot drops into backtracking
point selecting process, we aim at choosing the best backtracking
point as Gbt for the deadlock robot Rdl, the most recent point p in
the BTlist is chosen as Gbt according to the above discussions.
However, while in multi-robot systems, the selection is more
complex and can be regarded as a task allocation problem. The
market-based architecture is proved to be an effective distributed
mechanism for multi-robot task allocation [24], in which each
67n for Artificial Intelligence and
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robot works independently. In our market-based bidding process,
each robot selects the best backtracking point which satisfies both
conditions: (i) close to the deadlock robot; (ii) far away from the
other robots.

The market-bidding process work as follows: the most recent
point p is just a candidate. Moreover, Gbt should be away from the
Fig. 5 Algorithm 2: Deadlock detection and escaping

Fig. 6 Algorithm 3: Bidding process in multi-robot systems

Fig. 7 Experiment scenes. The back area shows the obstacles, the line with arrowh
Green point is the start point, blue points are backtracking point, red points are d
a Double H space
b Indoor apartment-like scene including a sofa, which can be regarded as an H space
c Scene has complex obstacles
d Large scene four times bigger than the others
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other robots so that it will not be covered by the others in a short
time. Every robot computes its Euclidean distance to p as a tender
price. If the tender price of the bidder Rdl is lower than any other
robots, Rdl will win the right to cover p and the region around it.
In other words, p is the Gbt and the bidding process is complete.
On the contrary, if the tender price of Rdl is not the lowest price,
Rdl must select the next recent point in the BTlist and start a
bidding process again. However, if all the points in the BTlist have
already been considered and none of them satisfies the above
condition, the most recent point in the BTlist is chosen as Gbt. See
Algorithm 3 (see Fig. 6).
4 Experiments and discussions

In the experiment section, we analyse the performance of our method
on complete coverage path planning, three groups of experiments are
conducted to evaluate the time efficiency, coverage rate and overlap
rate among methods, two experiments use the single robot, one
experiment uses multi-robot. Moreover, we implement the
proposed method on the real robot in an apartment-like scene.
4.1 In unknown apartment-like workspace for
single robot

The first experiment is implemented to demonstrate the complete
coverage in an unknown environment. In the beginning, the robot
has no prior knowledge about the workspace. The sensor range is
twice the size of the robot. Figs. 7 and 8 show that the proposed
method performs well both in easy and complex scenes.

Take Fig. 8a as an example. When the robot reaches a point
M (10, 8) in Fig. 8a-1, the dynamic activity landscape is illustrated
in Fig. 8a-2 with visited, unvisited, obstacle and unknown regions.
The neural activities of unvisited areas have very large values
represented by peak, the negative values represented the obstacles.
When the robot reaches a point N (4, 28) in Fig. 8a-1, i.e. a
deadlock situation where the neural activities of eight neighbours
are all lower than the current neuron N. In the previous method, it
is time consuming that neuron waits for the decay of neighbour
neural activities. In the proposed method, the backtracking
mechanism is activated here to plan the shortest path directly by
using the backtracking list. The robot constructs and updates the
backtracking list based on the accumulated information, and
selects the best backtrack point P(4, 22) by choosing the most
recent point in backtracking list. Then, the dynamic A* algorithm
is called to plan a short path. When the robot reaches P(4, 22), a
new coverage will begin. The final path is shown in Fig. 8a,
which illustrates that the proposed method can cover every
accessible grid in the workspace.
eads represents the coverage paths which calculated by the proposed method.
eadlock points, right lines are the backtracking paths. There are four scenes
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Fig. 8 Complete coverage path and its neural activity landscapes in the robot current position
a Proposed complete coverage planning in an unknown environment
a-1 Path generated by the proposed method
a-2 Neural activity landscape when the robot reaches M (10, 8).
b Proposed complete coverage planning in an unknown environment with a non-stationary obstacle
b-1 and c-1 Paths with a C-shaped and a non-stationary square obstacle
b-2 and c-2 Neural activity landscapes when the robot reaches F(25, 10) and J (22, 21)

Fig. 9 Path using the proposed method in unknown environments with a
non-stationary obstacle. Left: The path before detecting the squared
obstacle. Right: The path after updating the costs
4.2 In the workspace with non-stationary obstacles

This group of simulation is conducted to verify the effectiveness of
the proposed method in the workspace with non-stationary obstacles.
A square obstacle can be detected when it appears within a certain
range of detection. The obstacle is introduced into the coverage
process of simulation A, as shown in Figs. 8b and c and
backtracking process in simulation B, as shown in Fig. 9. If an
obstacle moves to another position which is out of detection, the
robot will not cover that region for lack of knowledge. That is
beyond the scope of this paper.

Simulation A is also performed in the workspace with a C-shaped
obstacle and a square obstacle, as shown in Figs. 8b-1 and c-1. When
the robot reaches a point J (22, 21), it has not yet detected the square
obstacle. The robot plans the path from J (22, 21) to the bottom side.
Once the robot reaches the point K(22, 16), the square obstacle
moves in front of the robot (compared Fig. 8b-1 with Fig. 8c-1).
CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 65–72
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Fig. 10 Coverage paths performed by the proposed method with four
robots. The red points are the revisited points
The robot cannot detect the square obstacle until it is close enough
(i.e. with a radius of r0 shown in Fig. 4). The neural activities of
the positions occupied by the square obstacle decay sharply in the
valley, as shown in Figs. 8b-2 and c-2. The robot cannot move
forward, and hence turn left to avoid the obstacle.

Simulation B tests the situation where the obstacle appears during
the backtracking process. When the robot reaches the deadlock point
V (27, 2), it chooses the best backtracking point U (3, 11), as shown
in Fig. 9. By applying the dynamic A* algorithm, as the robot
moving along the path, it acquires sensor measurements and
updates the costs. When the robot discovers the square obstacle, it
repairs the costs and searches for a new shortest path from the
current point to the goal point. The final path is shown in Fig. 9.

4.2.1 Time consumption analysis: To show the time
efficiency, we compared proposed methods with backtracking
mechanism or without the backtracking mechanism in four
dynamic scenes. These scenes are from easy to difficult, as shown
in Fig. 7. From Table 1, we can see that the more complex the
scene is, the more deadlocks it has the better proposed method
performs. In Fig. 7c, backtracking mechanism saves 70% time.
A backtracking mechanism needs extra little more storage to save
backtracking list.

4.2.2 Coverage rate, overlap rate and path length
analysis: To verify the efficiency of the proposed algorithm, we
conduct two versions of the proposed method (with and without
backtracking). Three challenging target scenes are tested, which
are shown in Fig. 7. For each scene, 30 different initial poses were
randomly selected to get the generalised performance of the
approaches. As shown in Table 2, the proposed method performs
much better than the method without backtracking in terms of
coverage rate and path length. Our backtracking mechanism uses a
prior template can get fewer deadlocks. When a deadlock happens,
our method including an optimal point-to-point path planning,
which we get a shorter path length.

4.3 Experiments on multi-robot

In this subsection, the proposed method is extended to multi-robot
systems which distributes the workload to multiple robots and
reduces the coverage time overall. In multi-robot systems, one
robot needs to move as far as possible away from the other robots
to avoid conflict and replanning.

Fig. 10 depicts the complete coverage paths generated by four
robots using the proposed method. The green, blue, orange and
Table 1 Time consuming performance of proposed methods, with or
without proposed backtracking mechanism

Approach Escaping time from
deadlock(s)

Time-to-completion(s)

Easy
scene

Hard
scene

Easy
scene

Hard
scene

without
backtracking

1.21 10.22 34.77 160.62

with backtracking 0.38 0.51 32.51 144.35
Improvement,% 68.59 95.01 6.49 10.1

Table 2 Quantities measured during the process of three algorithms

Approaches Quantity

Coverage rate,% Path length, cm

Mean Std. Mean Std.

STC 73.8 4.2 420 13
without backtracking 97.6 0.6 670 18
with backtracking 98.9 0.4 641 12

70 This is an open access article publis
Chongqing University of Technology u
black points are covered by robot 1, 2, 3 and 4, respectively. Red
points are the points in the backtracking paths which are covered
more than once.

We can clearly see that the algorithm is complete which covers all
the accessible grids and the workload of each robot is almost
balanced. Time taken by the robots is 8.86, 9.25, 9.17 and 9.09 s,
respectively. However, for single-robot coverage, it costs 33.92 s.
As a result, the coverage time is significantly reduced by
deploying multiple robots.

Due to the market-based task allocation, each robot covers its area
separately with few conflicts. If some robots fail, all the unvisited
grids which are accessible will be covered by the other living
robots. Therefore, robustness and completeness can be guaranteed.

To compare the performance of our approach with two versions of
the MSTC, non-backtracking MSTC (NB-MSTC) and backtracking
MSTC (B-MSTC), the total length of the coverage paths, the
workload distribution of the robots and the repetition rate are
calculated. Coverage paths are illustrated in Fig. 11 and their
length are shown in Table 3. Since the spanning tree algorithm
divides the workspace into grids of a size 4D where D is the size
of the robot, some grids along obstacles do not belong to the
graph grid used to construct the tree. As a result, MSTC cannot
cover these grids (see Fig. 11), the proposed method does not have
this problem due to the grid size of D. Task allocation in our
approach is more balanced than two versions of MSTC, as shown
in Table 3, as the backtracking mechanism assigns backtracking
points to the robots until the task is complete. The coverage time
(the maximum coverage time of the robots) using the proposed
method is 30.31 s which is less than NB-MSTC (43.16 s) and
B-MSTC (34.24 s).

However, due to the backtracking, the repetition rate of our
approach is higher than NB-MSTC but lower than B-MSTC.
Considering the better performance of the proposed method on the
task allocation and coverage rate, the repetition rate is tolerable in
real-world applications.
4.4 Tests on real cleaning robot

Experiments in a real environment are also provided. The results are
shown in Fig. 12.

The entire approach has been embedded into a laptop while a
ceiling camera is used to extract the ground truth of the robot. The
indoor home-like environment is 5 m by 5.5 m. The robot contains
three infrared sensors to avoid the forward bump. A laser on the
robot provides information on the surroundings. The accuracy of
the robot poses estimation is a key factor affecting the overall
performance of the approach. Odometry system is designed
combining the measurements of the encoder and gyro which limits
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hed by the IET, Chinese Association for Artificial Intelligence and
nder the Creative Commons Attribution-NonCommercial License

(http://creativecommons.org/licenses/by-nc/3.0/)



Fig. 11 Coverage paths using the proposed method and two versions of MSTC in multi-robot systems. The red points are the revisited points
a BNNB
b NB-MSTC
c B-MSTC

Table 3 Performance comparison between proposed method and two
versions of MSTC

Approaches Number of
grids

Coverage
rate of R1,%

Coverage
rate of R2,%

Repetition
rate,%

ours 1126 50.1 49.9 1.9
NB-MSTC 982 12.6 87.4 0.0
B-MSTC 982 32.3 67.7 7.0

Fig. 12 Real world experiments
a Real apartment-like scene
b Robot view of the scene
c Proposed coverage path in the simulation
d Coverage path shows in the sketch map
the estimation error within a tolerable range which is defined as the
half size of a grid. The averages of the time-to-completion and
coverage rate are 5 min and 92.21%, respectively. These results
show that the proposed method is also applicable to cluttered
indoor environments.
5 Conclusions

We present here a sensor-based CCPP algorithm which combines a
bio-inspired shunting short memory method with a backtracking
mechanism and prior template, dealing with a deadlock situation.
Instead of waiting for the decay of activities, a backtracking
mechanism is activated that it selects the best backtracking point
efficiently and plans the shortest path. Experiments show that the
proposed method performs more efficiently in most workspaces in
terms of the coverage time and the length of coverage paths.
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Besides, the proposed method is extended to multi-robot systems
with a market-based bidding process, and the workloads are
deemed more balanced than other multi-robot approaches. For
future research, we plan to consider the energy and timing
constraints that allow robots to carry limited energy and to
complete the coverage task before the deadline.
6 Acknowledgment

This work was supported by the National Natural Science
Foundation (NSFC, nos. 61340046, 61673030, U1613209),
Natural Science Foundation of Guangdong Province (no.
2015A030311034), Scientific Research Project of Guangdong
Province (no. 2015B010919004), Specialized Research Fund for
Strategic and Prospective Industrial Development of Shenzhen
City (no. ZLZBCXLJZI20160729020003), Shenzhen Key
Laboratory for Intelligent Multimedia and Virtual Reality
(ZDSYS201703031405467).
7 References

[1] Galceran, E., Carreras, M.: ‘A survey on coverage path planning for robotics’,
Robot. Auton. Syst., 2013, 61, (12), pp. 1258–1276

[2] Kurabayashi, D., Ota, J., Arai, T., et al.: ‘Cooperative sweeping by multiple
mobile robots’. Proc. Int. Conf. Robotics and Automation (ICRA),
Minneapolis, MN, USA, 1996, pp. 1744–1749

[3] Svennebring, J., Koenig, S.: ‘Building terrain-covering ant robots: a feasibility
study’, Auton. Robots, 2004, 16, (3), pp. 313–332

[4] Acar, E.U., Choset, H., Zhang, Y., et al.: ‘Path planning for robotic demining:
robust sensor-based coverage of unstructured environments and probabilistic
methods’, Int. J. Robot. Res., 2003, 22, (7-8), pp. 441–466

[5] Hameed, I., Bochtis, D., Sørensen, C.A.G.: ‘An optimized field coverage
planning approach for navigation of agricultural robots in fields involving
obstacle areas’, Int. J. Adv. Robot. Syst., 2013, 10, (231), pp. 1–9

[6] Ollis, M., Stentz, A.: ‘First results in vision-based crop line tracking’. Proc. Int.
Conf. Robotics and Automation (ICRA), Minneapolis, MN, USA, 1996,
pp. 951–956

[7] Galceran, E., Carreras, M.: ‘Efficient seabed coverage path planning for asvs and
auvs’. 2012 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS),
Vilamoura, Portugal, 2012, pp. 88–93

[8] Hess, J., Beinhofer, M., Burgard, W.: ‘A probabilistic approach to
high-confidence cleaning guarantees for low-cost cleaning robots’. Proc. Int.
Conf. Robotics and Automation (ICRA), Hong Kong, 2014, pp. 5600–5605

[9] Ramaithitima, R., Whitzer, M., Bhattacharya, S., et al.: ‘Sensor coverage robot
swarms using local sensing without metric information’. Proc. Int. Conf.
Robotics and Automation (ICRA), Seattle, Washington, USA, 2015,
pp. 3408–3415

[10] Galceran, E., Campos, R., Palomeras, N., et al.: ‘Coverage path planning with
realtime replanning for inspection of 3d underwater structures’. Proc. Int. Conf.
Robotics and Automation (ICRA), Hong Kong, 2014, pp. 6586–6591

[11] Gabriely, Y., Rimon, E.: ‘Spiral-STC: An on-line coverage algorithm of grid
environments by a mobile robot’. Proc. Int. Conf. Robotics and Automation
(ICRA), Washington, USA, 2002, pp. 954–960

[12] Gonzalez, E., Alvarez, O., Diaz, Y., et al.: ‘BSA: A complete coverage
algorithm’. Proc. Int. Conf. Robotics and Automation (ICRA), Barcelona,
Spain, 2005, pp. 2040–2044
71n for Artificial Intelligence and
ribution-NonCommercial License



[13] Viet, H.H., Dang, V.-H., Laskar, M.N.U., et al.: ‘BA*: an online complete
coverage algorithm for cleaning robots’, Appl. Intell., 2013, 39, (2), pp. 217–235

[14] Gabriely, Y., Rimon, E.: ‘Spanning-tree based coverage of continuous areas by a
mobile robot’, Ann. Math. Artif. Intell., 2001, 31, (1-4), pp. 77–98

[15] Hart, P.E., Nilsson, N.J., Raphael, B.: ‘A formal basis for the heuristic
determination of minimum cost paths’, IEEE Trans. Syst. Sci. Cybern., 1968,
4, (2), pp. 100–107

[16] Acar, E.U., Choset, H.: ‘Sensor-based coverage of unknown environments:
incremental construction of Morse decompositions’, Int. J. Robot. Res., 2002,
21, (4), pp. 345–366

[17] Luo, C., Yang, S.X.: ‘A bioinspired neural network for real-time concurrent map
building and complete coverage robot navigation in unknown environments’,
IEEE Trans. Neural Netw., 2008, 19, (7), pp. 1279–1298

[18] Hazon, N., Kaminka, G.: ‘Redundancy, efficiency and robustness in multi-robot
coverage’. Proc. Int. Conf. Robotics and Automation (ICRA), Barcelona, Spain,
2005, pp. 735–741
72 This is an open access article publis
Chongqing University of Technology u
[19] Zheng, X., Jain, S., Koenig, S., et al.: ‘Multi-robot forest coverage’. Proc. Int.
Conf. on Intelligent Robots and Systems (IROS), Edmonton, Canada, 2005,
pp. 3852–3857

[20] Gonzalez, E., Gerlein, E.: ‘BSA-CM: a multi-robot coverage algorithm’. Proc.
WI-IAT, Milan, Italy, 2009, 3, pp. 383–386

[21] Viet, H.H., Dang, V.-H., Choi, S., et al.: ‘BoB: an online coverage approach for
multi-robot systems’, Appl. Intell., 2015, 42, (2), pp. 157–173

[22] Dias, M.B., Stentz, A.: ‘A comparative study between centralized, market-based,
and behavioral multirobot coordination approaches’. Proc. Int. Conf. Intelligent
Robots and Systems (IROS), Las Vegas, Nevada, USA, 2003, 3, pp. 2279–2284

[23] Hodgkin, A.L., Huxley, A.F.: ‘A quantitative description of membrane current
and its application to conduction and excitation in nerve’, J. Physiol., 1952,
117, (4), p. 500

[24] Dias, M.B.: ‘Traderbots: A new paradigm for robust and efficient multirobot
coordination in dynamic environments’. Ph.D. thesis, Carnegie Mellon
University Pittsburgh, 2004
CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 65–72
hed by the IET, Chinese Association for Artificial Intelligence and
nder the Creative Commons Attribution-NonCommercial License

(http://creativecommons.org/licenses/by-nc/3.0/)


