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Abstract: Tiny defect detection which aims to perform the quality control of PCBs is a basic and essential task in the production of
most electronic products. Though significant progress has been made in PCB defect detection, traditional methods are still difficult
to cope with the complex and diverse PCBs. To deal with these problems, this paper proposes a Tiny Defect Detection Network
(TDD-Net) to improve performance for PCB defect detection. In this method, the inherent multi scale and pyramidal hierarchies of
deep convolutional networks are exploited to construct feature pyramids. Compared with existing approaches, the TDD-Net has
three novel changes. Firstly, reasonable anchors are designed by using k-means clustering. Secondly, TDD-Net strengthens the
relationship of feature maps from different levels and benefits from low-level structural information, which is suitable for tiny defect
detection. Finally, considering the small and imbalance dataset, online hard example mining is adopted in the whole training phase
in order to improve the quality of Region-of-Interest proposals and make more effective use of data information. Quantitative results
on the PCB defect dataset show that the proposed method has better portability and can achieve 98.90% mAP, which outperforms
the state-of-arts. The code will be publicly available.
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1 Introduction

The Printed Circuit Board (PCB) is essentially a board that mechan-
ically supports and electrically connects electronic components. It is
the basic building block of any electronic design and has developed
into a very sophisticated component over the years. PCBs are widely
used in all but the simplest electronic products. In 2018, the Global
Single Sided Printed Circuit Board Market Analysis Report esti-
mated that the PCB market would reach $79 billion by 2024. Visual
defect inspection which ensures PCB product quality is generally the
largest cost of PCB manufacturing [1]. In recent years, automatic
optical inspection (AOI) system has replaced most of human inspec-
tions, which improves the inspection precision and reduces the cost
consistency [2]. Although AOI system is more convenient and effi-
cient than human inspection, the false detection rate and the missing
detection rate are still too high [3].

Three major challenges exist in PCB defect detection. First, there
are a broad range of different PCBs in the real market, different PCBs
have different complex wring design rules. As making general algo-
rithms compatible with various PCBs is difficult, instability in the
traditional PCB defect detection methods may occur. Second, the
categories and characteristics of PCB defects are generally varied.
Third, collecting large number of PCB defect samples is extremely
difficult in industry, resulting in a data imbalance for some traditional
methods.

PCB defects can be divided into two categories: functional defects
and cosmetic defects [4]. Functional defects can seriously affect
the performance of PCB, which may lead to the abnormal usage
of PCBs. These defects are the most serious defects. Cosmetic
defects mainly affect the appearance of PCB, but also damage its
performance in the long run due to abnormal heat dissipation and
distribution of current [1]. Among the two categories, there are 6
kinds of defects which frequently appear in the actual industrial
scene. In this paper, we mainly study these 6 known and common
defects which contain missing hole, mouse bite, open circuit, short,
spur, and spurious copper. Some defects examples are shown in Fig.
1. In this figure, defect areas are indicated by thicker and red outlines.
Best viewed in color.

(a) missing hole (b) mouse bite

(c) open circuit (d) short

(e) spur (f) spurious cropper

Fig. 1: Some defects examples. From (a) to (f), the defects are
classified as missing hole, mouse bite, open circuit, short, spur and
spurious copper,respectively (best viewed in color).

In recent years, various image processing algorithms are widely
investigated for PCB defect detection, such as binary morpholog-
ical image processing [5], similarity measure approach [6] and
segmentation-based method [7]. However, these methods require the
inspected images to be aligned with the standard sample in defect
inspection, suffering from low contrast, uneven brightness or irregu-
lar shape. Therefore, it is necessary to build a novel defect detection
framework that has strong adaption for diverse defects.
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Since 2014, algorithms based on deep learning have been made
significant improvements in object detection, such as Faster R-CNN
[8], Single Shot MultiBox Detector [9], and You Only Look Once
[10]. Deep learning methods have shown a good performance in
automatically extracting features and realizing end-to-end control.
However, deep learning algorithms are limited in the field of PCB
defect detection due to the local feature property of CNN, while
the defect regions usually occupy a tiny portion of a defective PCB
image. Therefore, almost no feasible network has been proposed
for PCB defect detection until now. Among region based detec-
tors, Faster R-CNN [8] has shown significant competitiveness in
object detection due to its detection accuracy on public benchmarks
(COCO [11], PASCAL VOC2007 [12]). Faster R-CNN improves the
region proposal quality and object detection accuracy by combining
the region proposal network with Fast R-CNN [13]. However, for
tiny objects, the Region-of-Interest (ROI) pooling layer which per-
forms on a low-resolution feature map can result in “plain” features
while the size of small objects can even be smaller than stride. So
it will introduce some challenges while naively employing Faster
R-CNN for PCB defect detection. We review the issues why Faster
R-CNN is not suitable for small object detection, and redesign the
architecture to specifically address them in order to adapt for tiny
defect detection. We focus on two challenges:

(1) How to design reasonable anchors? The PCB defect images
are different from common images in open-source datasets. The
defects only occupy a tiny proportion of a PCB image. However,
the general detection methods of R-CNN series often have prede-
fined anchor scales which are suitable for large object detection,
such as pedestrian detection and vehicle detection. Thus, a naturally
challenge is to design reasonable anchors for tiny defects.

(2) How to fuse multi-scale feature maps by redesigning the
architecture of Faster R-CNN? Finding a tiny defect is fundamen-
tally challenging because the features of tiny defects will gradually
disappear in the feed-forward computation of the backbone Con-
vNets. Hence we need to rethink the architecture of Faster R-CNN
[8] and Feature Pyramid Network [14] based on the considerations
of tiny scale and irregular shape of PCB defects.

Given the aforementioned concerns, we propose a novel tiny
defect detection network to tackle the PCB defect detection problem.
Firstly, considering the small PCB defect dataset, data augmenta-
tion methods are naturally adopted to provide more training data.
Adequate training data can effectively avoid overfitting. Secondly,
we propose a novel tiny defect detection network (TDD-Net) which
strengthens the relationship of feature maps from different levels and
benefits from low-level structural information. Finally, to address
the significant actual factory problem, some tricks are explored to
enhance the detection performance. More details are presented in
Section 4.

Contributions: With aforementioned methods we proposed, the
main contributions of this paper can be conducted as:

(1) This paper presents a novel tiny defect detection network
(TDD-Net), which can learn better features for tiny defect detec-
tion and address some issues of traditional methods. The code will
be publicly available.

(2) This paper first attempts to apply deep learning algorithms
combined with feature pyramid ConvNets to tackle the PCB defect
detection problem.

(3) Extensive experiments are carried out on PCB defect dataset
to demonstrate the effectiveness of our proposed network. TDD-Net
achieves state-of-the-arts performance on the task of PCB defect
detection. Moreover, TDD-Net is easy to be extended to other fields
of defect detection, such as fabric defect detection and aluminum
defect detection.

2 Related Work

In the last decades, different defect detection methods have been
proposed in the field of PCB defect detection. Moganti [15] firstly
proposed three categories of PCB inspection algorithms: referential
approaches, non-referential approaches, and hybrid approaches.

2.1 Referential methods

The referential methods use a real pixel to pixel (or feature to fea-
ture) comparison between a standard PCB image and inspected PCB
image. These methods can detect obvious defects like short, open
circuit, and missing track.

Image subtraction is the simplest and most direct referential
approach by XOR logic operator. The subtraction operation runs
fast because it has only two types of pixel values to compare. The
advantage of this approach is that it is simple to implement in dedi-
cated hardware and it allows verification of the overall defects in the
geometry of PCB [15].

The main difficulty of XOR operation is to determine a pre-
cise alignment of the reference image and the inspected image.
Consequently, feature matching as an improved classical referential
approach has been proposed, feature matching extracts more robust
features from whole images and establishes the registration mapping
relationship. Generally, the extracted features include points, edges,
outlines, and centroid of a particular area, such as HOG, SIFT and
SURF. The SIFT features are robust to scale, rotation, affine and illu-
mination change. The SIFT feature matching is currently the most
effective algorithm in the feature detection and matching algorithms.

Another significant referential method is similarity measure.
Gaidhane et al [6] proposed a symmetric matrix which calculated
using the companion matrices of two compared image. The rank of a
symmetric matrix is then used as similarity measure metric for defect
detection. The numerical value of rank is zero for the defectless and
distinctly large for defective images. The advantage of this approach
is that the measurement of similarity is taken without computing fea-
tures such as eigenvalues and eigenvectors. However, it still suffers
from environment noise.

In the referential methods, there are several critical practical prob-
lems: misalignment, color variation, reflectivity variation, surround-
ing variations and fuzzy boundary defect segmentation. Moreover,
to obtain such a totally standard PCB image from actual production
environment is relatively unrealistic.

2.2 Non-referential methods

Non-referential methods are based on the verification of the general
design rules. Nowadays, feature learning by using deep neural net-
works has been applied to defects recognition and classification. And
some superior object detection approaches, such as R-CNN series
(R-CNN [16], Fast R-CNN [13], Faster R-CNN [8]), DarkNet [17],
SSD [9], and R-FCN [18] show obvious improvements in defect
detection.

F. Shahrzad et al [19] presented a deep learning approach for
automatic detection of rail surface defects. This paper contains three
DCNN (for small, medium and large) structures based on the classi-
cal neural network. Soukup. D et al [20] trained CNNs on a database
of a photo-metric stereo images of metal surface defects. The classi-
cal CNN already distinctly outperforms the model-based approach.
However, these traditional CNN methods often use a sliding win-
dow to localize the defects, which are difficult to determine the size
of window if the input images have different sizes and scales. Y.
Cha et al [21] developed a structural damage detection method based
on Faster R-CNN to detect five types of surface damages: concrete
cracks, steel corrosion (medium and high levels), bolt corrosion, and
steel delamination. Nevertheless, there is almost no defect detection
network which has been proposed for PCB defects until now.

2.3 Hybrid methods

The hybrid defect detection techniques combine both referential and
non-referential approaches. Z. Qu et al [22] proposed a new idea
to construct a deep convolutional network called PartsNet comb-
ing traditional feature processing and deep learning for automotive
engine precision parts defect detection. And they also constructed a
refining network consisting of several typical traditional methods to
improve adaption ability and achieve an end-to-end learning. Thus,
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Fig. 2: The Faster R-CNN architecture for object detection.

PartsNet exploited the strengths of typical feature processing meth-
ods such as density slicing, region segmentation and area filtration to
overcome the weakness of deep convolutional networks in detecting
small defect regions.

3 Overview of Faster R-CNN

In this section, we briefly review the Faster R-CNN detection archi-
tecture and naturally redesign some experiment details for PCB
defect detection. Faster R-CNN is first proposed to address object
detection [8], where given an input image, the network can simulta-
neously output object bound and class label score at each position.
The full pipeline contains two stages: proposal generation and
classification. Fig. 2 illustrates the full pipeline.

Generating region proposals is the core task of region proposals,
and Faster R-CNN uses k reference boxes (anchors) to k proposals.
The anchors have 3 scales and 3 aspect ratios, yielding 9 anchors at
each sliding position.

For training RPNs, Fig. 2 shows that RPN is a multi-task that
needs to predict object/non-object in proposal and regression bound-
ing boxes. The loss function for an image is defined as [8]:

L({pi}, {ti}) =
1

Ncls

∑

i

(pi, p
∗
i ) + λ

1

Nreg

∑

i

p∗iLreg(ti, t
∗
i ),

(1)
where i is the index of an anchor in a mini-batch and pi is the pre-
dicted probability of anchor i being an object. The ground-truth label
p∗i is 1 if the anchor is positive, and p∗i is 0 if the anchor is negative.
ti is a vector representing the 4 parameterized coordinates of the pre-
dicted bounding box, and t∗i is a ground-truth box associated with a
positive anchor. For the regression loss, Smooth L1 is used as robust
loss function [14]:

SmoothL1(x) =

{
0.5x2, |x| ≤ 1

|x| − 0.5, otherwise
. (2)

For regression, as Faster R-CNN [9], the parameterizations of the
4 coordinates are adopted as following:

tx =
(x− xa)
wa

, ty =
(y − ya)
ha

, (3)

tw = log(w/wa), th = log(h/ha), (4)

t∗x =
(x∗ − xa)

wa
, t∗y =

(y∗ − ya)
ha

, (5)

t∗w = log(w∗/wa), th = log(w∗/ha), (6)

where x, y, w, and h denote the two coordinates of the box center,
width, and height, respectively. Variables x, xa, and x∗ denote the
predicted box, anchor box, and ground-truth, respectively (likewise
for y,w,h).

Our goal is to minimize L({pi}, {ti}) through back-propagation
and stochastic gradient descent (SGD) [23]. For each generated
region proposal, features within the region proposal are pooled to
a fixed feature map in RoI Pooling layer [13].

Using the pooled feature, a full connected layer then computes
object class probability and simultaneously regresses the detection
boundaries for each object class.

4 Tiny Defect Detection Network

The proposed Tiny Defect Detection Network (TDD-Net) follows
the Faster R-CNN detection paradigm for PCB defect detection but
has three novel changes as shown in Fig. 3. First of all, the CNN
model of Faster R-CNN is trained on the PCB defect dataset. Dur-
ing the fine-tuning process, we apply data augmentation techniques
and design reasonable anchors. To enhance the detect performance
of tiny defects, multi-scale feature fusion strategy is adopted. And
online hard example mining is applied in the training phase for
improving the quality of RoI proposal. The whole training process
follows the end-to-end training paradigm as Faster R-CNN.

4.1 Reasonable anchors design and data augmentation

The PCB defect images are different from common images in open-
source datasets (COCO [11], PASCAL VOC2007 [12]). The PCB
images which collected by industrial camera often have large resolu-
tion (e.g. 2, 777× 2, 138), while defects in an image only occupy a
tiny proportion of whole image area. At training time, Faster R-CNN
uses 3 scales {1282, 2562, 5122} and 3 aspect ratios {1:1, 2:1, 1:2},
yielding 9 anchors at each sliding position, which are not appropriate
for detecting tiny defects. With the respect of tiny defects, we must
design reasonable anchor.

Inspired by YOLO 9000 [24], instead of casually choosing anchor
scale, k-means clustering is used on the PCB training set bounding
boxes to automatically find reasonable anchor scales. The standard
k-means with distance metric is used as follows [24]:

d(box, centroid) = 1− IoU(box, centroid). (7)

Then the scales with box areas are {152, 252, 402, 602, 802} pix-
els, and 4 aspect ratios of {2., 3., 4., 5.}. On the other hand, the
success of recent deep learning algorithms greatly relies on large-
scale labeled training data. Conversely, without enough training
samples, CNNs with numerous parameters have a risk of over-
fitting. Large-scale PCB defect dataset is also a limiting requirement
due to confidential circuit design and expensive acquisition. Con-
sequently, data augmentation techniques have been proposed to
prevent over-fitting while enriching dataset.

In this work, 6 traditional data augmentation techniques are nat-
urally adopted which including add Gaussian noise, change light,
rotate image, flipping, random crop, and shift. The simple opera-
tions like adding Gaussian noise or changing light do not required
change value of bounding boxes. Nevertheless, while rotating, crop-
ping and shifting image, the corresponding value of bounding boxes
has changed.

The key issues of data augmentation are defects truncated in the
stage of random crop (as shown in Fig. 4). Therefore, we need to
setup a threshold value and discard these abnormal bounding boxes.

4.2 Multi-scale feature fusion

A deep convolutional network computes a feature hierarchy layer
by layer, and through sub-sampling layer, the feature hierarchy has
an inherent multi-scale, pyramidal shape. This in-network feature
hierarchy produces feature maps of different spatial resolutions, but
introduces large semantic gaps caused by different depths. High res-
olution feature maps are semantically weak and structurally strong,
while low-resolution feature maps are semantically strong. The tiny
defect detection can be classified as low-level vision tasks, thus we
focus on multi-scale feature fusion.

The features of small objects will gradually disappear in the
feed-forward computation of the backbone ConvNets, which is
quite unfavourable for detecting small objects. Therefore, the high-
resolution feature maps of feature hierarchy are important for detect-
ing small objects. TDD-Net adopts feature pyramid architecture [14]
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Fig. 3: The proposed tiny defect detection network architecture which makes use of feature maps on multiple scales. In addition to the
bottom-up feature extraction, TDD-Net adds a top-down path which summarizes multi-scale feature representations into a single feature map.

(a) original defect (b) truncated defect

Fig. 4: (a) it is an original missing hole defect in the image; (b)
random crop may lead to truncated defect which has negative impact
on feature learning.

which fuses low-resolution features, semantically strong features
with high-resolution, structurally strong features via a top-down
pathway and lateral connections.

First of all, ResNet-101 is used [25] as our backbone Con-
vNet to extract features. The ResNet-101 models are pre-
trained on the ImageNet classification set and fine-tuned on
the PCB defect dataset. The ResNets have 5 residual blocks
{conv2_x, conv3_x, conv4_x, conv5_x}, and the output of the
last residual block is selected as our reference set of feature
maps. And the outputs of these last residual blocks are denoted as
{C2, C3, C4, C5} for conv2, conv3, conv4, conv5 outputs, and note
that they have strides of {4, 8, 16, 32} pixels with respect to input
image.

Secondly, the high-resolution feature maps have strong structural
information which help for detecting small objects. Our top-down
feature map is constructed by up-sampling the spatial resolution
by a factor of 2, for simplicity, nearest neighbor up-sampling has
been selected. Inspired by [14], we propose to concatenate the fea-
ture maps both low-level and high-level. Thus, the corresponding
bottom-up feature map undergoes a 1× 1 convolutional layer in
order to reduce channel dimensions. Then the up-sampled map is
concatenate with the corresponding bottom-up map by element-wise
addition. For example, the last output feature map {C5} of the last
layer undergoes a 1× 1 convolutional layer to produce the coarsest
resolution map, then the coarsest feature map is up-sampled by a
factor of 2, and finally the up-sampled feature map is merged with
low-level feature map. Last but not least, a 3× 3 convolutional layer
is appended on each merged map to generate the final feature map.
And the final sets of feature map are denoted as {P2, P3, P4, P5},
corresponding to {C2, C3, C4, C5}, which are of the same spatial
sizes, respectively.

(a) feature pyramid (b) multi-scale feature fusion pyra-

mid

Fig. 5: (a) extracting feature maps from last level of ResNet-101;
(b) TDD-Net adopts feature pyramid network to form a multi-scale
feature fusion pyramid (best viewed in color).

In the stage of assigning RoIs of different scales to the pyramid
levels, the level {Pk} of feature pyramid is calculate by [14]:

k = |k0 + log2
√
wh/224|, (8)

where 224 is the canonical ImageNet pre-training size, and k0 is the
target level on which a RoI with w × h = 2242. w is the width of
RoI and h is the height of RoI.

For a better understanding, feature fusion results on different
convolutional layers are visualized in Fig. 5.

4.3 Online hard example mining

We first attempt to apply online hard example mining strategy to
the task of PCB defect inspection. Inspired by [26], the readonly
RoI network runs a forward pass on the feature map and all RoIs.
Then the hard RoI module uses these RoI losses to select examples.
Online Hard Example Mining (called OHEM) can be used for train-
ing any region-based ConvNets, and it automatically selects hard
examples rather than uses several heuristics and hyper-parameters,
thus improving detecting efficiency.

4.4 Loss and training

The total loss is a weighted sum of 4 different losses: rpn_loss_bbox,
rpn_loss_cls, fast_rcnn_loss_bbox, and fast_rcnn_loss_cls. A Fast
R-CNN network has two sibling output layers (cls score and bound-
ing box score). The first outputs a discrete probability distribution
(per RoI), p = {p0, ..., pk}, over k + 1 categories. As usual, k is
computed by a softmax over the k + 1 outputs of a fully connected
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layer. The second sibling layer outputs bounding-box regression off-
sets, tk = (tkx, t

k
y , t

k
w, t

k
h), for each of the k object classes, indexed

by k. The classification loss Lcls is log loss over two classes (object
vs. not object), Lcls can be computed by:

Lcls(pi, p
∗
i ) = −log(p∗i pi + (1− p∗i )(1− pi)), (9)

where pi is the predicted probability of anchor i being an object.
And p∗i is the ground-truth label.

p∗i =

{
0, negative label

1, positive label
. (10)

The regression loss Lreg is computed by:

Lreg(ti, t
∗
i ) = R(ti − t∗i ), (11)

where R represents Smooth L1 function, the definitions of ti, t∗i
have been introduced in Section 3.

5 Experiments and Discussions

The experiments are conducted on a computer with 4 NVIDIA
GeForce GTX 1080 GPU. The calculation software environment is
set with python 2.7.12, CUDA 8.0.44 and cuDNN 5.1.10.

5.1 Dataset

Extensive experiments are carried out on the PCB defect dataset.
∗. The dataset contains 693 PCB defective images and correspond-
ing annotation files. For this dataset, the average pixel size of each
image is 2, 777× 2, 138. The PCB defects include 6 classes (miss-
ing hole, mouse bite, open circuit, short, spur, and spurious copper).
One image contains several defects. The more details of dataset are
shown in Table 1.

Table 1 The original PCB defect dataset.
Type of defects Number of images Number of defects

missing hole 115 497
mouse bite 115 492
open circuit 116 482

short 116 491
spur 115 488

spurious copper 116 503
total 693 2953

With the respect of such small dataset, data augmentation tech-
niques are adopted before data training. The images are then cropped
into 600× 600 sub-images, forming our training set and testing
set with 9920 and 2508 images, respectively. The more details of
augmented PCB defect dataset are shown in Table 2.

Table 2 The augmented PCB defect dataset.
Type of defects Number of images Number of defects

missing hole 1832 3612
mouse bite 1852 3684
open circuit 1740 3548

short 1732 3508
spur 1752 3636

spurious copper 1760 3676
total 10668 21664

∗http://robotics.pkusz.edu.cn/resources/dataset/

Fig. 6: Three scenarios about the results of ground truth and
detection.

Fig. 7: The comparisons between TDD-Net and state-of-the-arts on
the PCB defect dataset.

5.2 Evaluation metrics

Two tasks are considered: defects region localization and defects
classification. For defects region localization, Intersection-over-
Union (IoU) is calculated, and by default an IoU threshold of 0.5
is used for determining true positives on the PCB defect dataset.

IoU =
GT ∩DR
GT ∪DR, (12)

where GT means ground truth, DR means detection results. And
for better understand, there are three scenarios about the results of
ground truth and detection in Fig. 6.

For defects classification, mean Average Precision (mAP) is cal-
culated as evaluation metric. In general, mAP using an IoU threshold
of 0.5 is reported as evaluation metric.

5.3 Experimental details and results

Our implementation is based on the TensorFlow Object Detection
API. The input image is cropped such that its shorter side has 600
pixels. We perform experiments using a pre-trained ResNet-101
model from [25]. Synchronized SGD is used to train the model on
1 GPU. Each mini-batch involves 2 images per GPU and 512 RoIs

Fig. 8: The precision and recall curve results based on proposed
network.
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Table 3 The comparison of TDD-Net(proposed) with all recent state-of-the-arts methods on the PCB defect dataset.
Model Backbone Anchors Feature Head mAP@0.5

Faster R-CNN [8] VGG-16 2k the last layer 2fc 58.57%
Faster R-CNN [8] ResNet-101 2k C5 2fc 94.27%

FPN [14] ResNet-101 2k {Pk} 2fc 92.23%
Faster R-CNN(fine-tuned) ResNet-101 2k C5 2fc 96.44%

TDD-Net(Ours) ResNet-101 2k {Pk} 2fc 98.90%

Fig. 9: Defect detection results using the proposed TDD-Net (best viewed in color).

per image. A weight decay 0.0001 and a momentum of 0.9 are used.
The learning rate is 0.001 for 30k mini-batches. The whole training
takes about 7 hours on the PCB defect dataset.

Some defects region proposals highly overlap with each other. To
reduce redundancy, non-maximum suppression (NMS) is adopted on
the proposal regions based on their classification scores. The IoU
threshold for NMS is fixed at 0.7, which leaves about 2000 proposal
regions per image.

Comparisons with state-of-the-arts: We compare TDD-Net
with state-of-the-arts methods on the PCB defect dataset. The results
are summarized in Table 3 and Fig. 7, where we compare our method
with main stream detection network such as Faster R-CNN with
backbone VGG-16 and ResNet-101. TDD-Net achieves the highest
mAP when the tIoU threshold is 0.5, demonstrating the effectiveness
of TDD-Net and justifying the importance of reasonable anchors
design and multi-scale feature fusion. As discussed in Section 4.1
and Section 4.2, the anchor scales of Faster R-CNN are not appro-
priate for detecting tiny defects. And TDD-Net adpots multi-scale
feature fusion strategy, it will get structurally strong features which
is quite important for detecting tiny defects.

Then, we draw Precision-Recall curve to evaluate the perfor-
mance of defect detection. Fig. 8 compares detection performance
among different defect types of PCB on the test set. TDD-Net
achieves the superior performance compared with other state-of-the-
arts . The mean Average and Precision is 98.90%. And examples of
defect inspection results are presented in Fig. 9.

Ablation experiments: To investigate the behavior of reasonable
anchors design, multi-scale feature fusion and OHEM, we validate
the design by comparing four ablation experiments: (1) a naïve
Faster R-CNN using ResNet-101; (2) faster R-CNN using ResNet-
101 with anchor fine-tuned; (3) the addition of multi-scale feature
fusion based on former design; and (4) the addition of online hard
example mining.

Table 4 Ablation study on TDD-Net (ours).
Metric Test set mAP@0.5 Up

Original 2134 94.27% 0%
+Reasonable anchors 2134 96.44% 2.17% ↑
+Multi-scale feature 2134 98.02% 1.58% ↑

+OHEM 2134 98.90% 0.88% ↑

The ablation experiments results are reported in Table 4. From
the table, we can see that the original algorithm (Faster R-CNN with
ResNet-101) performs worst, since it relies on the last level feature
map which has wilder receptive field and is not suitable for detecting
small defects. The algorithm (Original + Reasonable anchors) per-
forms better than original algorithm, but still suffers from misaligned
receptive fields; TDD-Net (Original+ Reasonable anchors + Multi-
scale feature fusion + online hard example mining) outperforms the
others, as it combines structurally strong features with semantically
strong features, which is help for detecting tiny defects.

6 Conclusion

This paper presents a Tiny Defect Detection Network (TDD-Net),
a clean and simple network that aims to perform the quality con-
trol of PCBs. To tackle with the problems of low efficiency, high
false detection rate, and high missing detection rate, this paper
first attempts to apply deep learning algorithms combined with fea-
ture pyramid ConvNets to PCB defect detection problem. TDD-Net
has three novel changes to adapt to tiny defect detection. Firstly,
experiments demonstrate that reasonable anchors design can obtain
more precision IoU scores to accurately locate defects. Secondly,
it can extract better features of tiny defects through feature pyra-
mids. Finally, TDD-Net adopts online hard example mining in the
whole training stage to improve the quality of RoI proposals. In
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these ways, extensive experimental results on the PCB defect dataset
demonstrate that TDD-Net achieves better mAP of 98.90% than
state-of-the-arts. Ablation studies verify the robustness of TDD-
Net. Moreover, TDD-Net has strong expansibility and can be easily
extend to other fields, such as fabric defect detection and aluminum
defect detection.

Future works will include: (1) exploring zero-shotting methods
due to small training dataset; (2) optimizing of networks and post-
process methods; and (3) extending TDD-Net to more types of PCB
defects.

7 Acknowledgments

This work is supported by Specialized Research Fund for Strate-
gic and Prospective Industrial Development of Shenzhen City (No.
ZLZBCXLJZI20160729020003).

8 References
1 Putera, S., Ibrahim, Z.: ‘Printed circuit board defect detection using mathemat-

ical morphology and matlab image processing tools’, International Conference
on Education Technology and Computer (ICETC), Shanghai, China, June 2010,
pp. 359–363

2 Chin, R.T., Harlow, C.A.: ‘Automated visual inspection: A survey’. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4, pp. 557–573

3 Deng, Y.S., Luo, A.C.,Dai, M.J.: ‘Building an automatic defect verification system
using deep neural network for pcb defect classification’, International Confer-
ence on Frontiers of Signal Processing (ICFSP), Poitiers, France, September 2018,
pp. 145–149

4 Wu, W.Y., Wang, M.J., Liu, C.M.: ‘Automated inspection of printed circuit boards
through machine vision’, Computers in Industry, 1996, 28, (2), pp. 103–111

5 Malge, P. S , R. S. Nadaf.: ‘PCB Defect Detection, Classification and Localiza-
tion using Mathematical Morphology and Image Processing Tools’, International
Journal of Computer Applications, 2014, 87, (9), pp. 40–45

6 Gaidhane, V., Hote, Y., Singh, V.: ‘An efficient similarity measure approach for pcb
surface defect detection’, Pattern Analysis and Applications, 2018, 21, (1), pp. 277–
289

7 Kaur, B., Kaur, G., Kaur, A.: ‘Detection and classification of printed circuit board
defects using image subtraction method’, Recent Advances in Engineering and
Computational Sciences (RAECS), Chandigarh, India, 2014, pp. 1–5

8 Ren, S., He, K., Girshick, R.,et al.: ‘Faster r-cnn: Towards real-time object detection
with region proposal networks’, Pattern Analysis and Machine Intelligence, 2017,
39, (6), pp. 1137–1149

9 Liu, W., Anguelov, D., Erhan, D.,et al.: ‘Ssd: Single shot multibox detector’,
Computer Vision – ECCV 2016, Amsterdam, Netherlands, 2016, pp. 21–37

10 Redmon, J., Divvala, S., Girshick, R.,et al.: ‘You only look once: Unified, real-time
object detection’, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, November 2016, pp. 779–788

11 Lin, Tsung-Yi, Maire, M., Belongie, S, et al.: ‘Microsoft coco: Common objects in
context’, ArXiv.org (2015): ArXiv.org, Feb 21, 2015

12 Everingham, M., Eslami, S., Gool, L., et al.: ‘The pascal visual object classes chal-
lenge: A retrospective’, International Journal of Computer Vision, 2015, 111, (1),
pp. 98–136

13 Girshick, Ross.: ‘Fast R-CNN’, IEEE International Conference on Computer
Vision (ICCV), Santiago, America, December 2015, pp. 1440–1448

14 Lin, T.Y., Dollar, P., Girshick, R., et al.: ‘Feature pyramid networks for object
detection’, Computer Vision and Pattern Recognition (CVPR), Hawaii, America,
July 2017, pp. 936–944

15 Moganti, M., Ercal, F.: ‘Automatic pcb inspection systems’, Potentials, 1995, 14,
(3), pp. 6–10

16 Girshick, R., Donahue, J., Darrell, T., et al.: ‘Rich feature hierarchies for accu-
rate object detection and semantic segmentation’, Computer Vision and Pattern
Recognition (CVPR), Columbus, America, June 2014, pp. 580–587

17 ‘Darknet: Open source neural networks in c’, http://pjreddie.com/darknet/,
accessed 15 December 2018

18 Dai, J., Li, Y., He, K., et al.: ‘R-fcn: Object detection via region-based fully
convolutional networks’. ArXiv.org (2016): ArXiv.org, Jun 21, 2016

19 Faghih-Roohi, S., Hajizadeh, S., Nunez, A., et al.: ‘Deep convolutional neural
networks for detection of rail surface defects’, International Joint Conference on
Neural Networks (IJCNN), Vancouver, Canada, July 2016, pp. 2584–2589

20 Soukup, D., Huber-Mork, R.: ‘Convolutional neural networks for steel surface
defect detection from photometric stereo images’, International Symposium on
Visual Computing, 2014, 8887, pp. 668–677

21 Cha, Y., Choi, W., Suh, G., et al.: ‘Autonomous structural visual inspection using
region-based deep learning for detecting multiple damage types’, Computer-Aided
Civil and Infrastructure Engineering, 2018, 33, (9), pp. 731–747

22 Qu, Z., Shen, J., Li, R., et al.: ‘Partsnet: A unified deep network for automotive
engine precision parts defect detection’, ArXiv.org (2018): ArXiv.org, Oct 29, 2018

23 Lecun, Y., Boser, B., Denker, J.S., et al.: ‘Backpropagation applied to handwritten
zip code recognition’. Neural Computation, 1989, 1, (4), pp. 541–551

24 Redmon, J.,Farhadi, A.: ‘Yolo9000: Better, faster, stronger’, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Hawaii, America, July 2017,
pp. 6517–6525

25 He, K., Zhang, X., Ren, S., et al.: ‘Deep residual learning for image recognition’,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
America, June 2016, pp. 770–778

26 Hrivastava, A., Gupta, A., Girshick, R.: ‘Training region-based object detectors
with online hard example mining’, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, America, June 2016, pp. 761–769

IET Research Journals, pp. 1–7
c© The Institution of Engineering and Technology 2015 7

ReView by River Valley Technologies CAAI Transactions on Intelligence Technology

2019/04/11 11:33:46 IET Review Copy Only 8

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.


