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Abstract. The target-driven visual navigation is a popular learning-
based method and has been successfully applied to a wide range of appli-
cations. However, it has some disadvantages, including being ineffective
at adapting to unseen environments. In this paper, a navigation method
based on Semantic Spatial Relationships (SSR) is proposed and is shown
to have more reliable performance when dealing with novel conditions.
The construction of joint semantic hierarchical feature vector allows for
learning implicit relationship between current observation and target ob-
jects, which benefits from construction of prior knowledge graph and se-
mantic space. This differs from the traditional target driven methods,
which integrate the visual input vector directly into the reinforcement
learning path planning module. Moreover, the proposed method takes
both local and global features of observed image into consideration and
is thus less conservative and more robust in regards to random scenes.
An additional analysis indicates that the proposed SSR performs well on
classical metrics. The effectiveness of the proposed SSR model is demon-
strated comparing with state-of-the-art methods in unknown scenes.

Keywords: Visual navigation · Semantic graph · Hierarchical rela-
tionship.

1 Introduction

Vision-based mobile robot navigation has produced countless research contri-
butions, both in the field of vision and in the field of control. However, it is
difficult for mobile robots to run at high speeds due to the huge radar data and
dimensionality disasters when processing real-time status information.

As a research hotspot in machine learning, deep reinforcement learning pro-
vides us with an important intelligent control method. It relies on the perception
ability of deep learning without model information, and can collect sample data
for learning during the navigation process of mobile robots. Interacting with the
environment to obtain feedback for strategy is an effective method in field of
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mobile robot navigation. In recent years, many visual navigation methods based
on reinforcement learning have emerged.

Traditional navigation algorithms firstly build the environment map, and
then realize the path planning. Compared with these algorithms, using current
environment observation and target information as prior conditional input of
model, and planing the optimal path afterwords is a current research hotspot.
These methods can be collectively referred to as end-to-end visual navigation.
Zhu et al. [29] used a pre-trained residual network as feature extraction module
and designed a twin network architecture to improve the goal and scenario gener-
alization performance. Mirowski et al. [17] proposed a dual-path agent structure
that uses end-to-end reinforcement learning for training and can handle real-
world visual navigation tasks on city-level scale. Pathak et al. [20] exploited the
collected samples to train general navigation strategies in a small range, and then
used the expert teaching method to transfer the navigation target information
to the agent, which can be summarized as an unsupervised learning mode.
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Fig. 1. Semantic Cues Based on Knowledge Graph. The navigation goal for agent
is GarbageCan, which is invisible from observation (a). We use locational features as
cues such as Television that can be easily detected. From prior semantic knowledge
graph, we can learn that the connection between GarbageCan and TissueBox is strong
as shown in (b). So their spatial locations should be very close. The agent can navigate
to the target simply though it’s invisible at the moment.

In above tasks, with target location and self-centered observations as input,
the agent needs to persistently execute one possible action until it reaches the
target. Target-driven visual semantic navigation is very challenging since the
location and appearance of the target are unknown to the agent. The navigation
system needs to estimate both the coordinates of the target and the path to it at
the same time. Considering the disadvantages of current navigation methods, we
propose an innovative visual navigation algorithm based on deep reinforcement
learning and knowledge graph. The main idea is shown in Fig. 1. We capture the
global semantic features and local location features of the current observation
simultaneously. The prior knowledge graph can be used to perform semantic
guidance and encode the spatial relationship of objects naturally, so that agent
can infer the general direction of target even if the target is temporarily invisible.
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We list the main contributions of this paper: (1) We propose an efficient end-
to-end model Spatial Semantic Relationship (SSR) that takes visual images and
target semantic labels as model inputs without map of the environment. (2) We
use the deep graph neural network to introduce the external semantic prior in-
formation between objects, to encode the current visual observation of scene and
the target infomation, learning the implicit relationships between these objects.
(3) Our model improves the navigation performance and generalization ability to
unknown environments and new target objects. (4) We construct the simulation
environment as a robot navigation environment for algorithm comparison.

2 Related Work

Visual Navigation Without Map Common navigation tasks are mainly di-
vided into two categories. One task is actively exploring the environment, and
the other is exploiting devices such as GPS sensors to send direction signals to
the target. Visual navigation has powerful scene recognition capabilities because
it can obtain massive amounts of environmental information through visual sen-
sors. There have been some research recently in field of visual navigation. Lu et
al. [14] proposed a novel abstract map Markov Network for deep reinforcement
learning visual navigation method, and used graph neural network for proba-
bilistic inference. It solved the problem that the agent is restricted in the new
environment of acquiring the map and improved the success rate of navigation.
Wu et al. [25] proposed a way to incorporate information theory regulariza-
tion into deep reinforcement learning framework to improve the cross-target and
cross-scene versatility of visual navigation. Gupta et al. [6] used visual infor-
mation and self-motion to navigate in a vast indoor environment in the way of
building potential map.

Deep Reinforcement Learning Methods for Navigation Methods based
on deep reinforcement learning have been combined with the traditional naviga-
tion algorithm [18] and achieved great process recently. Yu et al. [27] proposed
a neural network and a hierarchical reinforcement learning mobile robot path
planning model, which mapped the robot’s actions and current state through
hierarchical reinforcement learning. This method made robot perceive the envi-
ronment and perform feature extraction to solve the problems of autonomous
learning in path planning and slow path planning convergence speed. Mousavian
et al. [19] proposed a deep reinforcement learning framework that used LSTM-
based strategies for semantic target driven navigation, and learned navigation
strategies based on capturing spatial layout and semantic contextual clues. Wen
et al. [22] proposed an integrated navigation method Active SLAM which com-
bined path planning with SLAM (simultaneous localization and mapping). They
used fully convolutional residual network to identify obstacles to obtain depth
images. They employed dual DQN algorithm to plan obstacle avoidance path
and established 2D map of the environment based on FastSLAM at the same
time during navigation process.
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Object Goal Navigation Object navigation is a valuable research problem,
which refers to the robot autonomously navigating to a specific object. Differ-
ent from point navigation related methods [23], the goal of object navigation is
to navigate to the target category object, not global coordinates. Object navi-
gation means that agent needs to make full use of the prior knowledge of the
scene, which is very important for the efficiency of navigation. Chaplot et al. [2]
proposed a modular system Goal-Oriented Semantic Exploration, which can ef-
fectively explore the environment by constructing episodic semantic maps and
using it according to target object categories. Wortsman et al. [24] proposed
Self-Adaptive Visual Navigation (SAVN) method, where the agent used meta-
learning to adapt to the invisible environment. Martins et al. [15] solved the
problem of enhanced metric representation by using semantic information from
RGB-D images to construct scenes. They proposed a complete framework to
use object-level information to create an enhanced map representation of the
environment to assist robots in completing the object goal visual navigation.
They exploited CNN-based object detector and 3D model-based segmentation
technology to perform instance semantic segmentation, and used Kalman filter
dictionaries to complete semantic class tracking and positioning.

Semantic Reasoning Using GNNs Graph Neural Network (GNN) was first
proposed by Gori et al. [5]. It is a deep learning method for processing graph
data. GNNs have great effect on extracting features of data containing graph
structures. Kawamoto et al. [9] proved that untrained GNN can perform well
with a simple architecture. Deepmind [7] proved that the graph network sup-
ports relational reasoning and combinatorial generalization, which is of great
significance for probabilistic reasoning. Guo et al. [28] pointed out that GNN is
applied to tasks such as relation extraction and contextual reasoning, and the
results are significantly better than other methods. Kim et al. [10] proposed a
F-GCN module based on graph convolutional network, which used GNN to ex-
tract knowledge from multi-modal context and solve problem reasoning. In our
proposed model, we adopt GCN to encode the prior knowledge graph and learn
the spatial semantic relationship between agent and target object.

3 Proposed Approach

Our task is to introduce prior knowledge graph and spatial location information
into the target-driven visual semantic navigation system. In order to achieve
this goal, our method Spatial Semantic Relationship (SSR) contains three main
components as shown in Fig. 2: (1) Spatial relationship between objects building
module: we take local features observed by the agent and semantic label of the
target object as input to explore the hidden internal spatial relationship and
construct the context vector; (2) Semantic scene building module: we take the
global visual features observed by agent and prior knowledge graph as input
to form semantic scene representation; (3) Reinforcement learning navigation
module: we combine the output of first two modules to obtain a joint visual
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semantic knowledge feature vector. We then input this vector into reinforcement
learning navigation network, making the agent interact with environment and
generate the next action strategy with judgement.
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Fig. 2. Illustration of Spatial Semantic Relationship Model

3.1 Task Definition
We aim at training an agent, which receives RGB images as observation informa-
tion, and semantic tags as target information. The agent is trained to look for an
instance of the specificated target category object. During the navigation, agent
perceives target location and environment through RGB images and finds the
minimum length of action sequence to reach the target location while avoiding
obstacles. Given the sequential decision characteristics of visual navigation, we
can define this task as a Markov Decision Process (MDP) problem.

ConsideringG = {g0, g1, ..., gn} as the set of target objects, S = {s0, s1, ..., sm}
as the set of states that agent may exist. st is defined by function st = f(ot;α),
where ot is the current agent’s observation of the environment from the first per-
spective, α is the network parameter. At each time step t, the agent needs to act
according to the current state st and the target object gi. Agent choose action at
from setA = {MoveAhead,RotateRight,RotateLeft, LookUp, LookDown,DONE}
to achieve the maximum policy expectation π∗ according to the strategy function
π(at|st, g; θ), which is expressed as follows:

π∗ = argmax
π

Eπ

[
N∑
k

rk+t|st = s, at = a

]
,∀s ∈ S, ∀a ∈ A,∀t ≥ 0 (1)

The optimal strategy π∗ represents the prediction of the maximum cumula-
tive reward value that can be obtained in the future.

We add a special termination action DONE to the agent’s action set. If the
agent executes DONE and the target object is visible, then the navigation task
is considered successful. If the agent executes DONE while the target object is
invisible, it is judged as failure. The target object is visible only when it is in
the agent’s view, and the geodestic distance between them is less than twice the
width of the agent [1].
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3.2 Construction of Semantic Relation Graph

Global Visual Feature Extraction Visual feature extraction is divided into
local visual representation and global feature extration. The global features of
image describe the spatial position relationship between objects. In contrast,
the local features contain richer information of specific object. Therefore, we use
different networks to extract the global and local features of objects at the same
time, which are respectively used for the joint representation of spatial relation-
ships and the construction of semantic relationship maps. He et al. [8] proposed
a Residual Neural Network (ResNet) to learn features from visual images, which
have shown excellent performance in a variety of computer vision tasks. We use
ResNet18 [8] pre-trained in the ImageNet [4] to extract global feature vector of
environment for each input observation to perceive surroundings. This vector
will be input into the GCN later together with the knowledge graph embedding
as a node feature to form the construction of prior semantic knowledge graph.

Prior Graph Embedding We exploit the Visual Genome [13] to integrate
semantic knowledge in the form of graph representation to construct a knowledge
graph, and use GCNs [3] to calculate the relationship characteristics. GCN is an
extension of the graph structure of CNN, and its goal is to learn the functional
representation of a given graph G = (V,E), where V is the set of nodes and
E is the set of edges. The input of each node in V is a feature vector xi. We
summarize the input of all nodes into a matrix X =

[
x1, . . . , x|V |

]
∈ R|V |×D,

where D represents the dimension of the input feature. The graph structure is
represented as a binary adjacency matrix A ∈ R|V |×|V |. We normalize A to get
Ā. The structure of neural network can be expressed as follows:

H(l+1) = f(Ā ·H(l) ·W (l)) (2)

where f(·) denotes the activation function, W (l) is the parameter of the lth
layer, and l is the index of GCN layers. We construct a knowledge graph by
including all object categories that appear in the simulation environment we
use. Each object category is represented as a node in the graph. We input the
global visual features extracted in the previous section into the GCNs together
with the pre-built knowledge graph embedding. Consistent with [26], we use a
three-layer GCN. The first two layers output the potential features of the joint
input, and the last layer outputs a single value for each node. The final output is
a |V |-dimensional feature vector. This feature vector basically encodes the global
features of the current scene and the semantic priors in the environment.

3.3 Joint Representation of Spatial Context Information

We employ YOLOv3 [21] for local feature representation since it is a advanced
real-time object detection system. The image of the current frame obtained by
the agent is first input into YOLOv3 for target detection. We use the stacks of
[x, y, b, e] to represent the local features of the extracted image. For each detected
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object, x and y represent the center of the detected bounding box, and b repre-
sents the size of the bounding box; e represents the word vector corresponding to
the category label of the object. Considering objects that are not in the current
frame but may exist in the scene, we form the local feature representation of
the current observation image cembed = [t, x, y, b, e], t = 1 if the object exists in
the current frame. The target tag gets its word embedding through pretrained
Word2Vec [16]. We then calculate the Cosine Similarity (CS) between each ob-
ject and the target based on the embedding of their labels. The last column in
cembed is replaced with CS, so that we obtain the joint feature representation of
the spatial relationship with five columns, which also called location-aware vec-
tor. After flattening the current local feature representation, we merge it with
the global visual feature graph embedding of Section 3.2. The final vector is the
visual representation of semantic knowledge of our environment. We introduce
this vector into the policy network for decision making later.

3.4 Navigation Driven by Spatial Semantic Relationships of Objects

We use the Asynchronous Advantage Actor-Critic (A3C) [18] algorithm to pre-
dict the strategy and reward value of each time step. The input of our A3C
module is the output feature of the joint representation, which consists of the
current state, the prior relationship, and the semantic task goal. The A3C mod-
ule produces two outputs, strategy and reward value. The hidden layer of the
network consists of several fully connected layers and ReLU layers. The joint
input is first mapped to the latent space, and then two branches of the network
generate |A| dimension of strategies and values, as shown in the Fig. 2. Different
from previous researches using different strategy networks for different scenar-
ios [29], we use a single strategy network for samples in different scenarios. This
improves the navigation efficiency and generalization ability in unseen scenes.

4 Experiments

4.1 Datasets

The dataset used in this article is AI2-THOR (The House Of inteRactions) [12].
There are 120 scenes in the AI2-THOR environment, covering four different
room categories: Kitchen, Living Room, Bedroom and Bathroom. Each category
room has 30 different scenes. Each room has a set of objects that can be found.
Certain object types can be found in all scenes of a given category, and certain
object types can sometimes only be found in scenes of a specific category. Similar
to [24], we use the first 20 scenes of each scene type as the training set, 5 scenes
for verification, and the remaining 5 scenes for test. For each current state, the
agent will take an action at from the set of actions A. For our experiment,
we set the same target classes for different types of scenes. The initial position
of the agent is randomly generated by the AI2-THOR framework, and then
the navigation algorithm is trained and tested. We use 0.5m to discretize the
environment, meaning the distance between each location is 0.5m.
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4.2 Implementations and Evaluation Metircs

We use PyTorch to implement the framework partly based on the public imple-
mentation [29]. When learning navigation strategies, we use −0.01 to punish each
action step. If an agent reaches a goal and sends a termination signal DONE, we
will reward the agent with a reward value of 10. We use the Adam optimizer [11]
to update the network parameters with a learning rate of 1e−4. In order to make
meaningful comparison, we use the same hyperparameters in each experiment,
such as episode number and reward function. We also use pretrained models like
ResNet18 during the training process to speed up the process.

In this article, we refer to [1] and use two indicators to evaluate our method:
SuccessRate (SR) and Successweighted by PathLength (SPL). SR is defined
as the ratio of the number of times that the agent successfully navigates to the
target to the total number of episodes:

SR =
1

N

N∑
i=1

Si (3)

where N is the total number of episodes, Si is the binary indicator of whether
the ith episode is successful.

SPL is called normalized inverse path length weighted success, which con-
siders both success rate and optimal path length:

SPL =
1

N

N∑
i=1

Si
li
pi

(4)

where N is the number of evaluations. Si = 1 if the evaluation is successful,
otherwise 0. li represents the length of the shortest path between the agent’s
starting position and one of its successful states, and pi is the length of the
current episode. The length used here is the number of operations, which means
that performing an operation will increase the length by 1. This indicator can
balance the length of the episode and the success rate.

4.3 Comparison Models

Here we describe models that are evaluated and compared in experiments. The
following models are used: Random Policy. The agent randomly selects an
action from the action set A at each time step, which is the simplest navigation
method. Pure DRL agent. The classical deep reinforcement learning algorithm
A3C is used to complete the navigation task. Target-Driven. This corresponds
to the visual navigation model proposed by Zhu et al. [29]. They use the visual
features from the last observation and the target image as input to predict the
next action. Scene Priors. It uses prior knowledge in the form of a knowledge
graph of object relationships to navigate. SAVN.The agent constantly under-
stands its environment through the interactive loss function [24] in this model,
even during inference time.
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Table 1. Comparison with state-of-the-art models. We use the metrics of
SuccessRate (%) and Successweight by PathLength (%).

Methods ALL L≥5
SR SPL SR SPL

Random Policy 10.1 2.2 0.8 0.3
Pure DRL 21.8 6.9 12.1 6.5
Target-Driven [29] 37.0 11.9 25.7 11.2
Scene Priors [26] 35.6 10.7 22.9 10.4
SAVN [24] 37.2 11.2 26.7 10.3
Ours 55.9 19.5 49.5 19.1

4.4 Results

Quantitative Results We show the evaluation results of five comparison mod-
els in Table 1, where L ≥ 5 means that the length of the optimal navigation path
is more than 5 steps. In order to make a fair comparison, when measuring the
performance of this methods, we use the same episodes for training and test
them on the same test set. The starting position of the agent is random. Table 1
shows the result on unseen tasks. We can see that the best results are obtained
by using our SSR model, and its performance is better than Scene Priors and
Target-Driven models. The SR of our model in unknown scene is 56%, SPL to
19%, which is better than other methods.

Table 2. The effect of action DONE on navigation in different scenes.

Settings Kitchen Living Room Bedroom Bathroom Average
SR SPL SR SPL SR SPL SR SPL SR SPL

with DONE 65.2 21.8 50.8 17.7 39.1 14.1 79.9 24.8 55.9 19.5
without DONE 84.0 45.8 72.8 39.8 60.7 33.1 88.9 51.7 76.6 42.6

Since we use unseen scenes as test set, the experimental results in Table 1
also verify the generalization ability of our model for unknown situations. In
fact, Target-Driven model’s original extraction of visual features for positioning
ability gradually lost because of multi-layer full connection layer. The general-
ization performance of the model for new targets is also reduced. Scene priors
uses the knowledge graph of object relations to extract object relations, but fails
to consider the hierarchical relationships between objects. However, we use dif-
ferent modules to learn local and global visual features, and combine them with
target semantic information and prior knowledge graph respectively. By using
the implicit spatial semantic relations, our model can overcome the shortcomings
of previous methods and make the object search easier.

We also evaluated our model with different stop criteria. In this case, the
agent does not just rely on its DONE actions to learn to terminate. On the
contrary, it stops even when the environment signals that the target object has
been found. Table 2 shows the evaluation results with and withoutDONE signal
respectively. If we don’t use DONE signal, the average SR of our model in four
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Fig. 3. Navigation example of SSR model.

scenarios is about 76.6%. That’s because in this simple environment, the agent
will stop automatically when it reaches the goal.
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Fig. 4. Compsrison between Ours (SSR) and Scene Priors

Case Study Fig. 3 is an example of the agent’s view sequence when navigating
to Bread in the Kinchen scene. The target object is displayed in red rectangle,
and the objects detected in current observation are displayed in white box. If the
target object exists in the object list of the current frame, the geometric distance
between the agent and the target is less than the threshold, and the next decision
of the agent is DONE, the navigation is considered successful and the episode
is ended. Otherwise, the similarity between the object detected in the current
frame and the target object will be calculated, and the spatial relation vector will
be modified to make the next decision. Fig. 4 shows the number of steps required
for an agent to navigate to the same target object in four types of scenes. We
compare our SSR model with Scene Priors model in unseen environment. Under
the same setting, our model can achieve the target position with less operations.

5 Conclusion
We propose an effective target-driven visual navigation method. By learning the
spatial visual semantic features and the prior relationship knowledge graph of
the scene, our agent is capable of localizing target effectively. In our method, we
extract the global and local visual features separately of the observation image
through different network modules. Thus we get a joint representation of the
spatial relationship to learn the potential connection between the target and
the observation. Experiments demonstrate that our method provides obvious
advantages for generalizing invisible scenes and targets in navigation.
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