
Two-Layers Local Coordinate Coding

Wei Xiao1(B), Hong Liu1, Hao Tang1, and Huaping Liu2

1 Engineering Lab on Intelligent Perception for Internet of Things (ELIP),
Key Laboratory for Machine Perception, Shenzhen Graduate School,

Peking University, Beijing, China
xiaoweithu@163.com

2 State Key Laboratory of Intelligent Technology and Systems,
Department of Computer Science and Technology,

Tsinghua University, Beijing, China

Abstract. Extracting informative regularized representations of input
signals plays a key role in the field of artificial intelligence, such as
machine learning and robotics. Traditional approaches feature �2 norm
and sparse inducing �p norm (0 ≤ p ≤ 1) based optimization meth-
ods, imposing strict regularization on the representations. However, these
approaches overlook the fact that signals and atoms in the overcomplete
dictionaries usually contain such wealth of structural information that
could improves representations. This paper systematically exploits data
manifold geometric structure where signals and atoms reside in, and thus
presents a principled extension of sparse coding, i.e. two-layers local coor-
dinate coding, which demonstrates a high dimensional nonlinear function
could be locally approximated by a global linear function with quadratic
approximation power. Moreover, to learn each latent layer, correspond-
ing patterned optimization approaches are developed, encoding distance
information between signals and atoms into the representations. Experi-
mental results demonstrate the significance of this extension on improv-
ing the image classification performance and its potential applications
for object recognition in robot system are also exploited.

Keywords: Local coordinate coding · Machine learning · Sparse
coding · Robotics

1 Introduction

Recent years have witnessed a fast growing interest in the research on sparse
representations of signals with overcomplete dictionaries. Scholars from various
research fields promote the progress, such as, Donoho from the statistics commu-
nity [1], Elad from the machine learning community[2], and Kouskouridas from
the robotics community[3], etc. Recent theoretical analyses observed that sparse
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Fig. 1. Left: The traditional image representation pipeline. Right: the proposed two-
layers local coordinate coding.

representation could be extended to “local” representation: nonzero coefficients
are often assigned to atoms nearby to the encoded point [4–6]. An extension to
sparse representation, called Local Coordinate Coding (LCC) is thus proposed,
which learns a nonliear function in high dimension by forming a set of local bases
on the data manifold. The nonlinear function approximation view of sparse rep-
resentation not only brings about in-depth understanding of its fundamental
connotation and success, but also provides opportunities to get a deeper insight
into its parentage ties with the essence – locality.

This paper follows these lines of research, and scratches the surface of its
utilization potential in computer vision and robotics, where we try to make
a principled extension of the traditional single-layer coding to a more general-
ized two-layers local representation problem, called Two-layers Local Coordinate
Coding (Two-layers LCC). This coding strategy takes advantage of the underly-
ing data manifold geometric structure to locally embed points on the manifold
into a lower dimensional two-layers structure, see Figure 1. Therefore, Two-
layers LCC turns a very difficult high dimensional nonlinear learning problem
into a simpler linear learning problem, which could be effectively solved using for
instance, �1 optimization. More important, it could achieve higher approxima-
tion power than its single-layer counterpart, especially in the situation of fewer
or noise-polluted training samples, see theoretical analysis in Section 3.

The remainder of this paper is organized as follows: Section 2 surveys the
evolution of related coding strategies. And Section 3 makes a theoretical intro-
duction into the Two-layers LCC. Accordingly, specific coding formulations to
each layer are proposed in Section 4. Experimental evaluations on popular bench-
marks and a practical application in robotics are presented in Section 5 and
conclusions are drawn in Section 6.

2 Prior Art

This section provides a brief review to help comprehend the underlying relation-
ship between sparsity and locality.
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One of popular extensions of sparse coding is LLC [5,7], which supposes
that although signals Y = [y1,y2, · · · ,yN ] = {yi}Ni=1, yi ∈ R

m are physically
represented by X = [x1,x2, · · · ,xN ] = {xi}Ni=1, xi ∈ R

p, where p � m, they
often lie on a manifold with a much smaller intrinsic dimensionality. Specifically,
let D = [d1,d2, · · · ,dp] ∈ R

m×p be a dictionary with p atoms in R
m, for signals

Y , the corresponding LLC representations X, can be obtained by solving:

min
x

[
N∑

i=1

‖yi − Dxi‖2
2 +λ ‖bi � xi‖2

2] s.t. 1Txi = 1, (1)

where � denotes the element-wise multiplication, and bi ∈ R
p is the locality

adaptor that gives different freedom for each basis vector dj proportional to its
similarity of the input descriptor yi. Specifically,

bi = exp(
dist(yi, D)

σ
), (2)

where dist(yi,D) = [dist(yi,d1), · · · , dist(yi,dp)]T, and dist(., .) is the
Euclidean distance, and σ is used for adjusting weight decay speed for locality.

Diverse representation strategies mentioned above can essentially be inter-
preted as taking fully advantages of infinitely many possible solutions x to the
underdetermined systems of equation y = Dx with different regularization terms
to finally find a solo solution with desired suitable form. Compared with sparse
coding, local coding can achieve: (i) more accurate correlations capturing and
(ii) local smooth sparsity. For instance, the LLC can catch atoms structure of
manifold where the signals reside in, and further use these atoms for coding;
while sparse coding only pursues the solo goal, as sparse as possible in the final
representation, as in the extreme case of sparse coding, i.e. vector quantization,
only a few of atoms without structure would be selected. Similar to sparse cod-
ing, the LLC has achieve less reconstruction error by using multiple atoms [7],
overcoming the shortcoming that sparse-inducing regularization terms are not
smooth, thus provide incoherent atoms for similar signals to favor sparsity, losing
correlations between codes.

However, LLC has a major disadvantage. In order to achieve higher approx-
imation, one has to use a large number of so-called “anchor points”, i.e. atoms
close to the signal, to describe these signals. Finding enough powerful anchor
points plays a key role in the representation pipeline. Unfortunately these anchor
points are vulnerable to noise and inadequate training samples, and some of
them are not necessarily have powerful descriptive ability. Therefore, it is eager
to equip them with more descriptive power for better approximating yi in order
to guarantee accurate inferences from it. Shall we fix it or frankly speaking, fully
explore the potential of the manifold to empower the anchors to better describe
yi? The following section will give the answer.

3 Two-Layers Local Coordinate Coding

Let’s first consider the problem of learning a nonlinear function f(y) defined on
a high dimensional space: Rm, with large m. We have sampled this underlying
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distribution and obtained a set of labeled data: (y1, l1), · · · , (yn, ln). There are
a lot of approaches to learn such a function in low dimension, while many of
them are more or less suffer from the so-called “curse of dimensionality”. One
of intuitive explanation is since we do not have enough expressive data, i.e.,
m � n, it is hard to fully describe how this nonlinear function would appear in
R

m. One would argue, if we obtain more data points than n? While it is still
hard due to the redundance of the data. However, the good news is, in many
real applications with high dimensionality, we do not observe this so-called curse
of dimensionality, this is because although data are physically represented in a
high dimensional space, they often lie on a manifold which has a much smaller
intrinsic dimensionality [4,6]. That is, many areas of this space are empty, or
viewed empty.

The recent coding approach called LCC in [4] addresses this issue, which turns
a difficult high dimensional nonlinear learning problem into a linear learning
problem. While, its approximation accuracy is vulnerable to the limited anchor
points, where this paper systematically makes effort to equip them with more
descriptive power.

3.1 Lipschitz Smoothness

This section reviews the Lipschitz smoothness for further analysis of two-layers
representation.

Definition 1 (Lipschitz Smoothness). A function f(y) on R
m is (α, β, υ)

Lipschitz smoothness with respect to a norm ‖·‖, if
⎧
⎪⎨

⎪⎩

|f(y′) − f(y)| ≤ α ‖y′ − y‖ , (3)

|f(y′) − f(y) − ∇f(y)T (y′ − y)| ≤ β‖y′ − y‖2, (4)

|f(y′) − f(y) − 0.5(∇f(y)T + ∇f(y′)T )(y′ − y)| ≤ υ‖y′ − y‖3, (5)

where we assume α, β, υ ≥ 0, and the norm always refers to the Euclidean
norm (�2 norm). These three types of smoothness would be used in the following
derivations.

Lipschitz smoothness characterizes different levels of smoothness of function
f(y). Intuitively, Lipschitz smoothness offers an opportunity to zoom in on the
function f(y) at different levels, that is at 0th order level (constant approx-
imation level), f(y) could be roughly approximated by f(y′), corresponding
approximation quality could be measured by α ‖y′ − y‖; at 1st order level (lin-
ear approximation level), f(y) could be roughly approximated by f(y′) and
its gradient ∇f(y)T, corresponding approximation quality could be measured
by β‖y′ − y‖2; at 2nd order level (quadratic approximation level), f(y) can
be roughly approximated by f(y′) and its gradient ∇f(y)T and ∇f(y′)T, cor-
responding approximation quality can be measured by υ‖y′ − y‖3. It is also
observed that, if we want to approximate to f(y) more accurately (e.g., at the
level of υ‖y′ − y‖3 in ‖y′ − y‖), higher order approximation item should be
adopted (e.g., ∇f(y)T and ∇f(y′)T), namely, the more information of f(y) are
explored, the more approximation we would achieve.
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3.2 Two-Layers Coordinate Coding

Before defining two-layers coordinate coding, let’s review the single-layer coor-
dinate coding defined in [4] for its close relationship with Two-layers LCC.

Definition 2 (Single-layer Coordinate Coding). A single-layer coordinate
coding is a pair (γ1,C1), where C1 ⊂ R

m is a set of anchor points to y (aka
basis functions in C1), and γ1 is a map of y ∈ R

m to γ1(y) ∈ R
|C1| such

that
[
γ1

v(y)
]

v∈C1 ∈ R
1 and

∑
v∈C1 γ1

v(y) = 1. It induces the following physical
approximation of y in R

m:

hγ1,C1(y)
Δ
= y′ =

∑

v∈C1

γ1
v(y)v, (6)

where, for conciseness, let’s align all γ1
v(y) into a column vector: γ1(y) =

[γ1
v1

,γ1
v2

, · · · ,γ1
v|C1| ]

T ∈ R
|C1|. In fact, the pre-image y is mapped into the image

y′ by the mapping γ1. Following the line of research, here we introduce two-layers
coordinate coding form, accordingly:
Definition 3 (Two-layers Coordinate Coding). A two-layers coordinate
coding is two pairs with close relationship (γ1,C1) and (γ2,v,C2,v), where
C2,v ⊂ R

m is a set of anchor points to v rather than y, and γ2,v is a
map of v ∈ R

m to γ2,v(v) ∈ R
|C2,v| such that

[
γ2,v

u (v)
]

u∈C2,v ∈ R
1 and

∑
u∈C2,v γ2,v

u (v) = 1. It induces the following physical approximation of v in
R

m: v′ =
∑

u∈C2,v
γ2,v

u (v)u, and corresponding two-layers approximation of y in

R
m:

hγ2,v,C2,v (y)
Δ
= y′′ =

∑

v∈C1

[γ1
v (y)

∑

u∈C2,v

γ2,v
u (v)u]. (7)

For conciseness, let’s rearrange all γ2,v
u (v) into a column vector: γ2,v(v)=

[γ2,v
u1

(v),γ2,v
u2

(v), · · · ,γ2,v
u|C2,v|(v)]T∈R

|C2,v|. The condition
∑

u∈C2,v γ2,v
u (v)=1

is shift-invariance requirement, which means the coding v′ should remain the
same if we use a different origin of the R

m coordinate system for representing v.

Lemma 1 (Single-layer Linearization). Let f be a (α, β, υ) Lipschitz smooth
function and (γ1,C1) an arbitrary single-layer coordinate coding on R

m. For all
y ∈ R

m:
∣∣∣∣∣∣
f(y) −

∑

v∈C1

γ1
v (y)f(v)

∣∣∣∣∣∣
≤ α
∥∥y − hγ1,C1(y)

∥∥+ β
∑

v∈C1

[∣∣γ1
v(y)
∣∣ ∥∥v − hγ1,C1(y)

∥∥2
]

= α
∥∥y − y′∥∥+ β

∑

v∈C1

[∣∣γ1
v(y)
∣∣ ∥∥v − y′∥∥2

]
.

(8)
A nonliear function f(y) in R

m could be approximated by a linear func-
tion

∑
v∈C1 γ1

v(y)f(v) with respect to hγ1,C1 , i.e. the linear representation of
y, where [f(v)]v∈C1 is the set of coefficients viewed as unknown vectors and
estimated from data using a standard learning method such as SVM.
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The quality of this approximation is bounded by the right side of the inequa-
tion, which has two terms: the first term

∥
∥y − hγ1,C1(y)

∥
∥ indicates the residual

should be as small as possible; the second term suggests that
∑

v∈C1
γ1

v(y)v should

be localized, that is the sum of weighted distance between y′ and each anchor
point v ∈ C1 should be as small as possible. The first term encourages the
best approximation y′ of y, in particular, as illustrated in [4], for a smooth
manifold, one can choose appropriate anchor points C ∈ R

|C1| so that the
first layer linearization could achieve local linear approximation power. While
please note that, this approximation power is guaranteed under the precondi-
tion that we have to find enough descriptive anchor points to minimize the
first term

∥
∥y − hγ1,C1(y)

∥
∥, however, these anchor points are usually insufficient

and noise-polluted in practical. The motivation of this paper is just to find this
approximation at the second-layer level that provides an opportunity for zoom-
ing into each single basis v ∈ R

|C1| of the first layer for finer local details, in
order to finally incorporate more details about f extracting from the second
layer and improve the approximation quality. Along the lines of researches, we
principled generalize it to the two-layers structure, which is illustrated in the
following lemma:
Lemma 2 (Two-layers Linearization). Let f be a (α, β, υ) Lipschitz smooth
function and (γ2,C2) =

{
(γ1,C1)

} ∪ {
(γ2,v,C2,v) : v ∈ C1

}
be an arbitrary

two-layer coordinate coding on R
m. For all y ∈ R

m:

|f(y) − ∑
v∈C1

[γ1
v (y)

∑
u∈C2,v

γ2,v
u (v)f(u)]|

≤ α1

∥∥y − hγ1,C1(y)
∥∥+ β1

∑
v∈C1

[
∣∣γ1

v(y)
∣∣ ∥∥v − hγ1,C1(y)

∥∥2]

+α2

∑
v∈C1

[
∣∣γ1

v(y)
∣∣ ||v − ∑

u∈C2,v
γ2,v

u (v)u||]
+β2

∑
v∈C1

[|γ1
v (y)|

∑
u∈C2,v

∣∣γ2,v
u

∣∣ ||u− ∑
u∈C2,v

γ2,v
u (v)u||2]

= α1 ‖y − y′‖ + β1

∑
v∈C1

[
∣∣γ1

v (y)
∣∣ ‖v − y′‖2

]

+α2

∑
v∈C1

[∣∣γ1
v(y)
∣∣ ‖v − v′‖] + β2

∑
v∈C1

[
∣∣γ1

v(y)
∣∣ ∑

u∈C2,v

∣∣γ2,v
u

∣∣ ‖u − v′‖2
].

(9)

On the left side of the inequation, a nonlinear function f(y) in R
m is approx-

imated by a linear function:
∑

v∈C1
[γ1

v(y)
∑

u∈C2,v
γ2,v

u (v)f(u)] with respect to

hγ2,v,C2,v , where [f(u)]u∈C2,v is the set of coefficients, which could also be esti-
mated using the same approach as in the single-layer linearization. The quality
of this approximation is bounded by the right side of the equation: the first
two terms have the same meaning as the ones introduced in the Lemma 1. The
third term indicates the weighted residual should be as small as possible, i.e.,
v′ ∈ R

|C2,v| should be close to its preimage v ∈ C1; while the forth term
encourages localization in the coding v′ of v.

In addition, we also make a critical observation that a nonlinear function f(y)
in R

m could be approximated by a linear function with two-layers structure: at
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first layer, the original f(y) is divided into
∣
∣C1

∣
∣ components: f(v1), · · · , f(v|C1|),

which are then linearly combined to compose f(y′), and if some preconditions
are guaranteed (i.e., the first two terms of the bound in Lemma 2), the 1st order
approximation f(y′) could achieve a satisfactory result; while in second layer,
each f(v) is further divided into

∣
∣C2,v

∣
∣ sub-components f(u1), · · · , f(u|C2,v|),

which are then linearly combined to compose corresponding f(v′). Then, all
these various f(v′

1), · · · , f(v′
|C1|) are delivered up to the first layer for finally

composing f(y′′) linearly, and if some preconditions are guaranteed (i.e., the
remainders of the bound in Lemma 2), the 2nd order approximation f(y′′) could
achieve a more satisfactory result than its single-layer counterpart.

Moreover, the two-layer structure also incarnates the quality of computation
saving, namely, each set of sub-bases u ∈ C2,v corresponding to v with nonzero
coefficients at the first layer could be calculated simultaneously, for instance,
instead of fitting a single model with many atoms in the dictionary C ∈ R

m,
two-layer hierarchical structure need only fit a dozens of small local system
with grouped atoms in parallel, which dramatically improves the computational
complexity. So in the next section, we will pay more attention to practical com-
putational procedure.

4 Two-Layers Coding Formulation

This section will discuss practical computational procedure. In the spirit of
reducing the error and encouraging the locality at different levels, a hierarchical
method accommodating the underlying intuition is designed.

4.1 First-Layer Formulation

Let Y be a set of m-dimensional local descriptors extracted from a sam-
pled data, i.e., Y = [y1, · · · ,yN ] ∈ R

m×N . Given a first-layer codebook
with D1 entries, V = [v1,v2, · · · ,vD1 ] ∈ R

m×D1 , first-layer coding schemes
will convert each local descriptor yi into a D1-dimensional code γ1

i =
[
γ1
i (v1),γ1

i (v2), · · · ,γ1
i (vD1)

]T ∈ R
D1 , hence, arrange all codes into a matrix:

γ1 =
[
γ1
1 ,γ1

2 , · · · ,γ1
N

] ∈ R
D1×N . Specifically, each code could be obtained using

the following optimization form:

min
γ1
i

[
1
2

∥∥yi − V γ1
i

∥∥2
2
+ β
∥∥γ1

i � d1
i

∥∥
1

]
s.t. 1Tγ1

i = 1 (10)

where d1
i ∈ R

D1 is a distance vector, each item of which measures the distance
between yi and vi, and � denotes the element-wise multiplication, which enables
corresponding items of both vectors (γ1

i and d1
i ) to multiply. Typically, d1

i can be
obtained using �2 norm, that is d1

i = [‖yi − v1‖2, ‖yi − v2‖2, · · · , ‖yi − vD1‖2]T.
The constraint 1Tγ1

i = 1 follows the shift-invariant requirements of the two-layer
code.
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4.2 Second-Layer Formulation

At the second layer, we would further refine each basis v belonging to the first
layer. Concretely, the third and fourth terms of the bound in Lemma 2 spec-
ify how we refine each basis vector v at the second layer, during which, more
information about the gradient of f : ∇f(v′)T are then be incorporated. Before
optimizing the third and fourth terms, both of them are further transformed
into the following form:

min[
∑

v∈C1
[
∣∣γ1

v(y)
∣∣ (‖v − v′‖ +

∑
u∈C2,v

∣∣γ2,v
u

∣∣ ‖u − v′‖2
)]]

≤ ∑
v∈C1

min[
∣∣γ1

v(y)
∣∣ (‖v−v′‖+ ∑

u∈C2,v

∣∣γ2,v
u

∣∣ ‖u−v′‖2
)],

(11)

which indicates the problem could be further divided into a set of small models
at the second layer, and thus be tackled individually. In addition, fitting the
small models can be done in parallel, from which two-layer coding is benefited.

Therefore, this leads to the following formulation for each small model:

min
[
1
2

∥∥vi − Uγ2,v
i

∥∥2
2
+ β
∥∥γ2,v

i � d2
i

∥∥
1

]
s.t. 1Tγ2,v

i = 1, (12)

where d2
i ∈ R

D2 is also a distance vector recording the distance between
vi and each atom in the dictionary matrix U = [u1,u2, · · · ,uD2 ]; vi ∈
V is one of basis vectors adopted in the representation of yi at the
first layer, which could then be augmented into a D2-dimensional code

γ2,v
i =

[
γ2,v
i (u1),γ

2,v
i (u2), · · · ,γ2,v

i (uD2)
]T

∈ R
D2 , hence after rearrang-

ing each code corresponding to each basis vector v into a matrix, we obtain
the coding matrix for all v adopted in the representation of yi: γ2,v =[

γ2,v
1 ,γ2,v

2 , · · · ,γ2,v

|C1
yi

|
]

∈ R
D2×|C1

yi
|. This matrix comprises the second

layer coding for each local descriptor yi indirectly. Furthermore, the final
form of two-layers coding for each yi could be obtained by integrating
each single-layer coding organically. Specifically, each item (e.g., the jth
item) in the first layer coding γ1

i is augmented into a vector, γi =
[
γ1
i (vj), γ1

i (vj)[γ
2,v
j (u1),γ

2,v
j (u2), · · · ,γ2,v

j (uD2)]
]T

∈ R
1+D2 , which consti-

tutes the final form of two-layer coding in R
D1×(1+D2).

5 Experiment Verification

We present experiments on: the Extended YaleB [8], Caltech101 [9], the MNIST
[4], and a realistic robot system to evaluate the every aspect of the proposed
strategy.

5.1 Quantitative Results

Due to the space limitation, we omit brief introduction of these popular
databases, for more details, one can refer to the references marked behind them.
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Table 1. Description of experimental settings.

Database Training samples V U Train\Test
eYaleB 32 570 64 2000\ 600

Caltech101 5,10,20,30 510,1020,2040,3060 64 8230\ 914
MNIST 3000 500 64 60000\ 10000

Table 2. Recognition results and computation time comparisons on the extended YaleB
database.

Method LLC [7] SRC [10] LC-KSVD1 [11] LC-KSVD2 [11] ITDL [12] Ours (15 per person)
Included 0.9070 0.8050 0.9450 0.9500 0.9539 0.9813

Excluded1 0.9670 0.8670 0.9830 0.9880 0.9886 0.9903
Average Time (ms) - 11.22 0.52 0.49 - 55.90

1: This column is the result when 10 poor-quality images excluded for each class.

Table 3. Recognition results on the MNIST database.

Method Laplacian Eigenmap [13] Deep Belief Network [14] LLE [15] LCC [4] DCN [6] RGF [16] Ours
Accuracy(%) 0.9727 0.9810 0.9762 0.9810 0.9815 0.9809 0.9857

Table 4. Recognition results on Caltech101 database.

Training samples LLC [7] SRC [10] K-SVD [2] LC-KSVD2 [11] SSC [17] Ours
5 0.5115 0.4880 0.4980 0.5400 0.5560 0.5783
10 0.5977 0.6010 0.5980 0.6310 0.6550 0.6572
20 0.6774 0.6770 0.6870 0.7050 0.7620 0.7535
30 0.7344 0.7070 0.7320 0.7360 0.7760 0.7989

Table 5. Recognition results (computation time (ms) for classifying a test image) on
the Caltech101 dataset (varying dictionary size).

Dictionary size 510 1020 2040 3060
SRC [10] 0.48 (173.44) 0.60 (343.12) 0.67 (662.40) 0.71 (987.55)

LC-KSVD1 [11] 0.71 (0.59) 0.72 (1.09) 0.72 (2.21) 0.74 (3.50)
LC-KSVD2 [11] 0.72 (0.54) 0.73 (0.98) 0.73 (1.94) 0.74 (3.17)

Ours 0.72 (99.85) 0.75 (196.52) 0.79 (384.23) 0.80 (595.93)

For fair comparison, we adopt the same experiment setups suggested by the
homepages of the databases and related literatures [7,10–12,17], etc. We sum-
marize the key details of experimental settings in Table 1. From Table 2 to
Table 5, it is consistently observed that our method exhibits a prominent recog-
nition accuracy in all databases, even with fewer training samples and smaller
dictionary size. The main reason lies in, two-layers strategy fully exploits the
intrinsic structure of the manifold where datapoints reside in, and incorporates
more information about the nonlinear function f in anchor points of each layers,
which could greatly benefit their approximation power, especially in the situation
of fewer training samples.
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5.2 Applications in Robotics

Since the proposed coding strategy exhibits outstanding performance on popular
databases, how it works in practical use, especially in noise polluted conditions?
This section reveals applications of our theoretical results on a real robot sys-
tem. For better understanding, we briefly present the experimental settings and
tasks as follows: we have employed BarrettTMrobot hand fixed on a 7-DOF
SchunkTMmodular robot to perform a task of multi-objects grasping and classi-
fication, see Figure 2(a). One of features of this robotic system lies in its large
amount of informative tactile data provided by the tactile sensor matrix mounted
on the fingers and palm, see Figure 2(b), illustrating distributions of tactile sen-
sors mounted on each fingertip (F1, F2 and F3) and the palm of BarrettTMhand,
and each part samples the force variation in the contact area. Distributions and
magnitude of tactile time-series have the ability to reflect meticulous state of
fingertips and objects, therefore we could infer target class from it. While this
type of data has a major disadvantage: it is vulnerable to noise, which greatly
challenges signal processing, see the bottom of Figure 2(b).

(a) Targets grasping.

F1 F2

F3

Palm
Tactile sensor 

matrix

(b) Sensors and data.

Fig. 2. Targets grasping and distributions of tactile data.

How to fully exploit this informative data for an accurate inference is a chal-
lenging problem, which provides just an nice opportunity for our proposed repre-
sentation approach. To verify the proposed strategy, we repeat grasping dozens
of targets with various shape and material, and record the tactile time-series;
then various coding strategies are further employed to describe these signals and
finally classified by linear SVM. Classification accuracy comparison is presented
in Table 6. It is observed that our two-layers coding strategy outperforms sparse
coding and LLC methods at every signal-to-noise (SNR) level, except at 5dB
SNR, showing that it is capable of resisting the noise even in some extreme case
of noise level 10dB or 15dB SNR.
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Table 6. Recognition results on robotic testbed with varying noise levels.

Noise level 5dB 10dB 15dB 20dB 30dB 40dB
LLC[7] 0.70 0.74 0.78 0.81 0.83 0.85
SRC[10] 0.71 0.74 0.83 0.84 0.88 0.89
Ours 0.71 0.76 0.85 0.87 0.89 0.91

6 Conclusions

This paper systematically proposes a principled extension of the traditional
single-layer sparse coding scheme for high dimensional nonlinear learning. The
proposed method is viewed as generalized local linear function approximation,
but can achieve higher approximation power due to additional gradient informa-
tion about the nonlinear function included. The main advantages of two-layers
coding is that it can potentially achieve better performance due to the intro-
duction of the second layer, which incorporates abundant information about
nonlinear function. Experiment evaluations on both popular benchmarks and
robotic application further confirm our analysis.
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