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ABSTRACT

Direct-path relative transfer function (DP-RTF) refers to the ratio
between the direct-path acoustic transfer functions of two channels.
Though DP-RTF fully encodes the sound directional cues and serves
as a reliable localization feature, it is often erroneously estimated in
the presence of noise and reverberation. This paper proposes a super-
vised DP-RTF learning method with deep neural networks for robust
binaural sound source localization. To exploit the complementarity
of single-channel spectrogram and dual-channel difference informa-
tion, we first recover the direct-path magnitude spectrogram from the
contaminated one using a monaural enhancement network, and then
predict the DP-RTF from the dual-channel (enhanced-) intensity and
phase cues using a binaural enhancement network. In addition, a
weighted-matching softmax training loss is designed to promote the
predicted DP-RTFs to be concentrated for the same direction and
separated for different directions. Finally, the direction of arrival
(DOA) of source is estimated by matching the predicted DP-RTF
with the ground truths of candidate directions. Experimental results
show the superiority of our method for DOA estimation in the envi-
ronments with various levels of noise and reverberation.

Index Terms— Relative transfer function, binaural sound
source localization, direction of arrival, deep neural network.

1. INTRODUCTION

Sound source localization has been investigated intensively in last
decades due to its wide application in teleconferencing, robot audi-
tion, etc. Many researchers adopt a dual-stage approach which con-
sists of localization feature extraction and feature-to-location map-
ping [1, 2]. Deep learning has been successfully applied to the local-
ization task recently. Under the dual-stage localization framework,
deep neural network (DNN) can be used to either extract localization
features [3, 4], or build the mapping from the localization features
to source location [5, 6]. Commonly used localization feature in-
cludes inter-channel time difference (ITD) [7], inter-channel phase
difference (IPD) [8], inter-channel intensity difference (IID), rela-
tive transfer function (RTF) [9, 10], etc. The source can be easily
localized with aforementioned localization features under a noise-
free and anechoic condition. However, in practical acoustic scenes,
noise and reverberation often contaminate the direct-path propagated
source signal and degrade the accuracy of feature estimation.

Many methods aim to remove the effect of acoustic interferences
on the direct-path feature extraction. One common way to reduce the
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adverse effect is to select the time-frequency (TF) bins dominated by
direct sound. Unsupervised TF bin selection methods include coher-
ence test [11], direct path dominance (DPD) test [12], etc. With
the development of deep learning techniques, supervised methods
[13, 14, 15, 16] are also used to identify single-source-dominant T-
F bins. For these methods, the selection error, i.e. miss-detections
and false-detections, of TF bins, will lead to localization feature es-
timation error. Instead of retaining or discarding certain TF bins,
some methods dedicate to directly remove the acoustic interferences
and retain direct-path information. Knapp et al. adopted a cross-
power spectrum weighting scheme to improve the robustness of ITD
in the presence of noise [7]. Pak et al. trained a DNN to enhance
the interference-contaminated IPD on the sinusoidal tracks [4]. Li et
al. identified the direct-path relative transfer function (DP-RTF) of
a single speaker, with a convolutive transfer function approximation
and an inter-frame spectral subtraction algorithm designed for reflec-
tion exclusion and noise removal respectively [17]. Despite decades
of research, estimating a robust localization feature under adverse
acoustic conditions still remains a challenging problem.

This paper proposes a supervised DP-RTF learning method to
preserve the time and intensity difference cues of direct-path sig-
nal, and meanwhile suppress the contamination of noise and rever-
beration. First, to fit the real-value DNN, the complex DP-RTF is
changed into a real-value representation which is a concatenation of
the IID and the sinusoidal functions of the IPD. Then, the monau-
ral enhancement network (MEnet) and the binaural enhancement
network (BEnet) are employed to learn the DP-RTF. Specifically,
the MEnet predicts the clean direct-path log magnitude spectrogram
from the contaminated one, and then the predicted spectrogram to-
gether with the phase components are passed to the BEnet to predict
the DP-RTF. As the single-channel spectrogram and dual-channel
difference information are complementary and helpful for suppress-
ing the affection of acoustic interferences, the combination of BEnet
and MEnet can provide more reliable DP-RTF prediction. To make
the DP-RTF estimation more suited for direction of arrival (DOA)
estimation, a weighted-matching softmax training loss is designed
to enforce the inter-class compactness and inter-class separability.
Finally, with the predicted DP-RTF, the DOA can be estimated by a
simple but effective matching method. Experiments demonstrate the
effectiveness of our method under various acoustic conditions.

2. PROBLEM FORMULATION

We consider a single source observed by binaural microphone pair,
equipped in the dual ears of a dummy head, in an enclosed environ-
ment with additive ambient noise. The signal received by the m-th
microphone is denoted as xm(t) with t ∈ [1, T ] and m ∈ {1, 2}.
Applying the short-time Fourier transform (STFT) to xm(t), the mi-
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Fig. 1. Framework of the supervised DP-RTF learning for robust DOA estimation.

crophone signal is expressed in the TF domain as
Xm(n, f) = Hm(f, θ)S(n, f) + Vm(n, f), (1)

where n ∈ [1, N ] represents the time frame index, f ∈ [1, F ] rep-
resents the frequency index, and θ denotes the horizontal DOA of
source. N and F refer to the number of utilized frames and frequen-
cies, respectively. Here, Xm(n, f), S(n, f) and Vm(n, f) represent
the microphone, source and noise signals in the TF domain, respec-
tively. The acoustic transfer function Hm(f, θ) involves the direct
and reflected propagation paths of the sound source, i.e.,

Hm(f, θ) = Hd
m(f, θ) +Hr

m(f, θ), (2)

where Hd
m(f, θ) and Hr

m(f, θ) denote the acoustic transfer func-
tions of direct-path and reflected propagations, respectively. The
direct-path relative transfer function (DP-RTF) [17] is defined as the
ratio between the two direct-path acoustic transfer functions, namely

Rd(f, θ) = Hd
2 (f, θ)/Hd

1 (f, θ). (3)
Since the difference between the direct-path signals of two chan-

nels fully encodes the source location, our goal is to accurately es-
timate the DP-RTF from the microphone signals Xm(n, f) in the
presence of noise and reverberation, so that sound source localiza-
tion can be performed by directly matching the estimated DP-RTF
with the ground truths (lookup) of candidate directions.

3. SUPERVISED LEARNING FOR LOCALIZATION
3.1. DP-RTF representation
In theory, the direct-path acoustic transfer function, more specif-
ically the head-related transfer function (HRTF) in the present
binaural localization context, can be expressed as Hd

m(f, θ) =
αm(f, θ)e−jωf τm(θ) , where ωf denotes the angular frequency of
the f th frequency, and αm(f, θ) and τm(θ) are the propagation at-
tenuation factor and the time of arrival from the source to the mth
microphone, respectively. Substituting it into Eq. (3), the DP-RTF
can be rewritten as

Rd(f, θ) =
α2(f, θ)

α1(f, θ)
e−jωf (τ2(θ)−τ1(θ)). (4)

The DP-RTF is indeed a complex value, which encodes IID and IPD
information in its magnitude and argument respectively. However,
the complex DP-RTF cannot be directly processed by the real-value
DNN. Instead of directly learning complex DP-RTF, we carefully
design the DP-RTF representation without information loss to fit the
real-value DNN.

The phase-magnitude decomposition is done to map the com-
plex domain to real values without losing location information. The
phase of DP-RTF is exactly the IPD, and we denote it as ∆P (f, θ) =
∠Rd(f, θ), where ∠ is the phase operator of complex numbers. The
IPD is in the range from−π to π. It tends to be periodically wrapped
with the increasing of frequency or time difference, and discrete
when ωf (τ2(θ) − τ1(θ)) reaches π + 2iπ with an integer i. To
avoid the phase wrapping ambiguity, the sinusoidal functions of IPD

is used instead, namely sin ∆P (f, θ) and cos ∆P (f, θ), which are
continuous in [-1,1] as the location of the sound source varies. Since
the DP-RTF is defined as a ratio between two values, the magnitude
of DP-RTF is asymmetrical w.r.t. the broadside direction of the two
microphones. Instead, we transform the magnitude into log domain,
as the IID defines

∆I(f, θ) = 20 log10

∣∣∣Rd(f, θ)
∣∣∣ /∆Imax, (5)

where ∆Imax is an empirically-set maximum value of IID used for
normalization, which normalizes the IID into the range of [-1,1] to
balance the contribution of the IID and IPD information. The DP-
RTF representation contains the full-band normalized IID, the sine
and cosine of the IPD, namely
r(θ) =[∆I(1, θ), . . . ,∆I(F, θ), sin ∆P (1, θ), . . . , sin ∆P (F, θ),

cos ∆P (1, θ), . . . , cos ∆P (F, θ)]T in R3F×1,
(6)

where (·)T denotes vector transpose. Each element of r(θ) is in the
range of [-1, 1]. The complex DP-RTF can be reversely recovered
using this DP-RTF representation.

To estimate this DP-RTF using the noisy and reverberant micro-
phone signals, we leverage both the monaural spectral pattern learn-
ing and the inter-channel difference learning in this work. Fig. 1
shows the framework of the supervised DP-RTF learning for ro-
bust DOA estimation. It consists of monaural enhancement network
(MEnet) and binaural enhancement network (BEnet). The monau-
ral magnitude spectrogram is first enhanced using a single-channel
speech enhancement method, and then the DP-RTF is estimated us-
ing the dual-channel enhanced-intensity and phase information.

3.2. Monaural enhancement
Deep learning has been widely used for monaural speech enhance-
ment [18]. Deep monaural speech enhancement is especially ef-
fective for the magnitude spectrogram due to the structured mag-
nitude spectral pattern of speech. In contrast, the monaural phase
enhancement is much more difficult. Compared to the normal dual-
microphone setup, the magnitude/intensity difference plays an espe-
cially important role for binaural source localization, since the ”head
shadow” effect makes the magnitude response of the binaural record-
ings prominently different from each other. Therefore, in this work
we adopt the monaural enhancement technique to promote the bin-
aural magnitude difference estimation. Note that the commonly used
enhancement technique is to predict mask and add the mask to local-
ization features [14, 15], while our method aims to directly estimate
the clean single-channel log spectrogram.

Considering the better context modeling ability of RNN over
feed-forward neural networks and convolutional neural networks, we
adopt the bi-directional long short-term memory (BLSTM) to esti-
mate the magnitude spectrogram of clean speech from that of noisy
and reverberant speech. To facilitate training and to be consistent
with the log-IID defined in (5), a log operation is applied to com-
press the dynamic range of the magnitude spectrogram, and the map-
ping from contaminated signal to clean one will be performed in the
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log magnitude domain. The BLSTM model consists of two hidden
layers and each layer contains 1024 units. A fully connected (FC)
layer is used as output layer. The model is trained by minimizing the
mean-squared error (MSE) between the estimated and the clean log
magnitude. The loss function is formulated as

LME =
1

NF

N∑
n=1

F∑
f=1

|M̂m(n, f)−Mm(n, f)|2, (7)

with the clean target log magnitude

Mm(n, f) = log10 |H
d
m(f, θ)S(n, f)|, (8)

where M̂m(n, f) is the predicted log magnitude of clean speech.
Accounting for the following DP-RTF estimation, we consider the
direct sound as the target signal, which means this magnitude en-
hancement network performs both noise reduction and dereverbera-
tion. It is important to note that the two microphones share the same
magnitude enhancement network.

3.3. Binaural enhancement
To imitate the process of building DP-RTF representation, the inten-
sity and phase of two channels are fed into two separate processes to
learn the independent patterns related to DP-RTF, and then are con-
catenated before passed to a joint learning process. The enhanced
log magnitude spectra of the two microphone channels are stacked
along the microphone channel dimension, and then fed into a con-
volutional layer with 64 1 × 1 kernels to extract the inter-channel
intensity features for each frequency and time frame. Similarly, the
phases of the two microphone channels are stacked along the mi-
crophone channel dimension, and then a convolutional layer with 64
1 × 1 kernels is applied to extract the inter-channel phase features
for each frequency and time frame. The phase-based features are
closely related to IPD cues, which are further activated by sine and
cosine functions to obtain a IPD feature in the format of DP-RTF
representation.

The intensity-based and phase-based features produced by the
convolutional layers are flattened and concatenated along the fre-
quency and feature map dimensions. With multiple-frame features,
we use uni-directional long short-term memory (LSTM) model to
capture both long-range and short-range temporal context informa-
tion and output the single-frame full-band DP-RTF r̂. Full bands are
taken into account due to the mutual dependence of the localization
features across frequencies. The LSTM model consists of two hid-
den layers and each layer contains 512 units. The output FC layer
is activated by a tanh function to fit each element of the predicted
feature into the range from -1 to 1.

One straightforward training target for binaural enhancement is
the ground truth DP-RTF, and correspondingly the loss would be a
normal regression loss, such as MSE. The MSE loss tends to min-
imize the distance between the predicted DP-RTF and its ground
truth, which can be considered as an intra-class distance. To improve
the localization robustness, we propose a weighted-matching (WM)
softmax loss to not only minimize the intra-class distance, but also
maximize the inter-class distance, i.e. the distance between the pre-
dicted DP-RTF and the true DP-RTF of other directions. The WM
softmax loss consists of a dictionary atom-wise matching, a weight-
ing scheme, a softmax function and a cross-entropy loss (see Fig. 1),
which is formulated as

LBE = − log

(
e−w(g)u(g)∑C
c=1 e

−w(c)u(c)

)
, (9)

where u(·) represents the dictionary atom-wise matching, and w(·)
is the weighting scheme.

Table 1. Room configuration for training and test data
Dataset Room size [m3] Distance [m] RT60 [s] SNR [dB]

Training

7.0×8.0×5.0 1.50: 0.50: 3.00, 3.40 0: 0.17: 0.85 -5: 5: 20
6.0×6.0×3.5 1.75, 2.25 0: 0.22: 0.88 -5: 5: 20
4.0×5.5×3.0 0.50, 1.00 0: 0.25: 0.75 -5: 5: 20
3.8×3.0×2.5 0.75, 1.25 0: 0.30: 0.90 -5: 5: 20

Test

6.0×8.0×3.8 0.60, 1.50, 2.40, 3.30 0.2: 0.2: 0.8 5
(Large) 0.6 -5: 5: 15

5.0×7.0×3.0 0.70, 1.40, 2.10 0.2: 0.2: 0.8 5
(Medium) 0.6 -5: 5: 15

4.0×4.0×2.7 0.80, 1.30 0.2: 0.2: 0.8 5
(Small) 0.6 -5: 5: 15

Compared with the original softmax loss, we replace the fully
connected layer in softmax loss with a WM strategy. For localiza-
tion, the candidate localization space can be divided into C discrete
directions. The ground truth DP-RTF associated with the cth candi-
date direction is denoted as r(θc), and then the DP-RTF dictionary
can be formed with ground-truth DP-RTF of the candidate direc-
tions R = [r(1), . . . , r(C)]. The dictionary atom-wise matching
is defined as u(c) = ‖r̂− r(θc)‖2, where || · || denotes the Eu-
clidean norm. The matching result can be seen as an indicator of the
source presence possibility in the acoustic candidate space. Normal-
ly, the smaller of the distance between the predicted DP-RTF and
the ground-truth, the closer of the predicted direction and the true
direction of the source. However, the predicted DP-RTFs of the true
direction and the closer directions tend to be confused during test,
due to the mismatch of test and training conditions. To increase the
tolerance of the network to this confusion, we weaken the value u(c)
when c is close to the true direction during training. The weighting
scheme is defined as

w(c) =

{
1, c = g
|c−g|
C−1

, c 6= g
, (10)

where g is the index of ground-truth DOA. The true DOA is given a
weight of 1. For other directions, the closer to the true direction, the
smaller of the weight.

Finally, during test, with the estimated DP-RTF represen-
tation r̂, the DOA of the sound source is estimated by taking
the direction that minimizes the dictionary matching result, i.e.,
θ̂ = θargminc‖r̂−r(θc)‖2 .

4. EXPERIMENTS AND DISCUSSIONS

4.1. Experimental setup
Seven different room configurations are simulated using the image
method [19] which is implemented by the Roomsim toolbox [20].
The data generation configurations are summarized in Table 1, a-
mong which four room settings are used for training and three for
test. All the experiments are carried out for binaural microphones
with prominent shadow effect. The speech sound source is locat-
ed in the same horizontal plane as the two microphones, and the
candidate source directions range from -90◦ to 90◦ with an inter-
val of 5◦. The acoustic impulse response or binaural room impulse
response (BRIR) is generated using the Roomsim toolbox and the
head-related impulse response of the KEMAR dummy head [21].
We randomly select speech recordings from TIMIT dataset [22], and
truncate each to obtain a speech segment with a duration of 0.5 s.
These segments are divided into three parts to act as source signals
for training, validation and test, respectively. The sensor signals are
created by convolving the BRIRs with the source signals. We use the
White, Babble and Factory noise files from the NOISEX-92 database
[23] as noise signals. Each type of noise signal segments are split as
training, validation and test sets, respectively, without overlap be-
tween sets. With these noise files, the arbitrary noise field generator
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Table 2. Localization accuracy (5◦ Tol.) [%] of different methods
under various rooms and noise type conditions.

Method Noise Room Avg.Large Medium Small

DOA-CNN [6]
White 70.76 64.36 62.49
Babble 79.32 73.63 71.99 70.00
Factory 74.01 67.71 65.73

IPD-EN [4]
White 66.68 58.28 55.64
Babble 83.82 77.77 77.69 69.49
Factory 73.85 67.76 63.91

Proposed
White 85.52 81.25 80.87
Babble 93.49 90.80 90.82 86.97
Factory 88.86 85.80 85.31

is employed to generate a diffuse noise field [24]. Diffuse noise is
scaled and added to each sensor signal according to a given signal-
to-noise ratio (SNR), in order to simulate acoustic conditions with
various levels of noise. When generating each instance, the source
signal, noise signal, RT60 and SNR are randomly given within the
aforementioned settings. The numbers of instances for training, val-
idation and test are 133200, 26640 and 159840, respectively.

The binaural signals used for localization are with a sampling
rate of 16 kHz. They are enframed by a window of 32 ms with a
frame shift of 16 ms. The frequency ranges from 0 to 4kHz is used
for localization, and correspondingly the number of used frequen-
cies F is 128. The maximum IID value ∆Imax is set to 20. During
training, we train the MEnet first, and then train the BEnet with the
MEnet frozen. The model is trained using the Adam optimizer, with
a learning rate of 0.0001. We evaluate the performance of DOA
estimation using two types of localization accuracy: (i) 5◦ error tol-
erance (5◦ Tol.), considers a prediction is correct if the difference
between the DOA estimate and the true DOA is not larger than 5◦;
(ii) 0◦ error tolerance (0◦ Tol.), considers a prediction is correct if it
is exactly the true DOA, which is actually a classification accuracy.

4.2. Experimental results

We compare the proposed method with two state-of-the-art methods,
which are referred to as DOA-CNN [6] and IPD-EN [4], respective-
ly. The architecture of the DOA-CNN method is with one convolu-
tional layer and three FC layers. The input vector is the phase of the
STFT coefficient of single-frame sensor signals. This model outputs
the posterior probability of each time frame, and the DOA is deter-
mined by taking the average of the posterior probability of multiple
frames. The network used in IPD-EN contains four FC layers. It
utilizes the sine and cosine of single-frame full-band IPD as local-
ization feature. The DNN architecture maps the contaminated local-
ization features to corresponding clean ones. The DOA estimation in
[4] is designed for regular microphone array. To make it work on the
binaural data, we modified it with the feature matching technique.
The two methods are trained using the same data as our method. Ta-
ble 2 shows the localization accuracy of all the three methods under
various rooms and noise type conditions. Each test signal segment is
with a duration of 0.5 s. It is observed that the DOA-CNN and IPD-
EN methods achieve comparable performance. IPD-EN performs
better for the Babble noise while DOA-CNN works better for the
white noise. Compared with DOA-CNN and IPD-EN which local-
ize sources with phase features only, the proposed method aims to
pursue a robust localization method using the DP-RTF that encodes
both phase and intensity information. As the proposed method takes
full use of the monaural spectrogram and binaural difference infor-
mation to remove the distortion caused by acoustic interferences,
it outperforms DOA-CNN and IPD-EN for all the test conditions,
which demonstrates the superiority of the proposed method.

To further evaluate the effectiveness of each component of the

Table 3. Ablation study for DP-RTF learning (5◦ Tol.) [%].
Method SNR [dB] (RT60 = 0.6 s) RT60 [s] (SNR = 5 dB)

15 10 0 -5 0.2 0.4 0.6 0.8
MEnet-only 63.29 54.64 33.18 24.59 70.02 52.25 42.36 38.38
BEnet-only 94.92 91.76 75.11 58.35 96.43 91.22 85.51 81.80

MEnet + BEnet 94.31 92.03 78.93 63.77 96.40 91.64 87.27 83.26

Table 4. Comparison of different training loss functions.
Method Tol. SNR [dB] (RT60 = 0.6 s) RT60 [s] (SNR = 5 dB)

15 10 0 -5 0.2 0.4 0.6 0.8

MSE 5◦ 93.38 90.17 74.28 58.20 95.63 89.80 84.44 81.07
0◦ 71.32 65.68 46.55 32.58 78.26 66.40 57.96 53.09

Softmax 5◦ 91.32 88.56 74.62 59.86 95.45 89.43 83.32 79.55
0◦ 71.32 66.46 47.25 35.86 80.26 67.46 59.10 55.00

WM softmax 5◦ 94.31 92.03 78.93 63.77 96.40 91.64 87.27 83.26
0◦ 75.45 70.51 52.01 38.68 82.73 71.20 63.75 58.47

proposed method, ablation experiments are conducted in the medium
room with different levels of noise and reverberation. Table 3 shows
the localization results of monaural and binaural models performed
solely and jointly. MEnet-only takes the MEnet output to compute
IID, and uses the contaminated phase difference. BEnet-only takes
contaminated intensities and phases of two microphone channels as
network input. It can be seen that the combination of MEnet and
BEnet achieves the best performance, which indicates that they are
complementary and both contributing to the good performance. The
MEnet-only method performs poorly, which means the noisy local-
ization features are largely contaminated by noise and reverberation
even with enhanced IID. The MEnet+BEnet method performs bet-
ter than BEnet-only, especially under the conditions with high-level
noise and reverberation. This improvement lies in that the MEnet is
able to provide a less contaminated IID to the BEnet.

Table 4 shows the comparison of proposed training loss with the
MSE loss and the softmax loss. When the proposed WM softmax
loss is replaced with a regular softmax loss, the output of the pro-
posed network will not be the DP-RTF feature anymore. Instead,
the network will output the class of source direction, which is the
same as many deep-classification-based sound source localization
methods, such as [5, 25]. With 5◦ error tolerance, the MSE loss
slightly outperforms the softmax loss in most cases, but the soft-
max loss performs relatively better with 0◦ error tolerance. The pro-
posed loss achieves the best performance under all acoustic condi-
tions. This indicates the proposed DOA estimation scheme, i.e. DP-
RTF feature matching-weighted classification, is better than both the
scheme of feature enhancement with MSE loss, and the scheme of
classification-based DOA estimation. This superiority is brought by
the fact that the proposed loss is able to not only cluster the same
direction by minimizing the intra-class distance, but also better dis-
criminate one direction and its neighbor directions by enlarging the
inter-class distances.

5. CONCLUSION
This paper proposes to learn DP-RTF with DNN for binaural sound
source localization under adverse acoustic conditions. Two comple-
mentary enhancement networks are employed, namely MEnet and
BEnet. The combination of MEnet and BEnet makes full use of the
single-channel spectrogram and dual-channel difference information
to remove the distortion on the direct-path signals caused by noise
and reverberation. In addition, a WM softmax training loss is used
to minimize the intra-class distance and meanwhile enlarge the inter-
class separation, which makes the predicted DP-RTF more suited for
DOA estimation. Experiments with binaural microphones verify the
robustness of our method for DOA estimation especially in scenarios
with high level of noise and reverberation.
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