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Abstract

Self-attention mechanism has been widely used for var-

ious tasks. It is designed to compute the representation of

each position by a weighted sum of the features at all po-

sitions. Thus, it can capture long-range relations for com-

puter vision tasks. However, it is computationally consum-

ing. Since the attention maps are computed w.r.t all other

positions. In this paper, we formulate the attention mech-

anism into an expectation-maximization manner and iter-

atively estimate a much more compact set of bases upon

which the attention maps are computed. By a weighted

summation upon these bases, the resulting representation is

low-rank and deprecates noisy information from the input.

The proposed Expectation-Maximization Attention (EMA)

module is robust to the variance of input and is also friendly

in memory and computation. Moreover, we set up the

bases maintenance and normalization methods to stabilize

its training procedure. We conduct extensive experiments on

popular semantic segmentation benchmarks including PAS-

CAL VOC, PASCAL Context and COCO Stuff, on which we

set new records1.

1. Introduction

Semantic segmentation is a fundamental and challeng-

ing problem of computer vision, whose goal is to assign a

semantic category to each pixel of the image. It is critical

for various tasks such as autonomous driving, image editing

and robot sensing. In order to accomplish the semantic seg-

mentation task effectively, we need to distinguish some con-

fusing categories and take the appearance of different ob-

jects into account. For example, ‘grass’ and ‘ground’ have

similar color in some cases and ‘person’ may have various

scales, figures and clothes in different locations of the im-

age. Meanwhile, the label space of the output is quite com-

1Project address: https://xialipku.github.io/EMANet
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Figure 1: Pipeline of the proposed expectation-

maximization attention method.

pact and the amount of the categories for a specific dataset

is limited. Therefore, this task can be treated as projecting

data points in a high-dimensional noisy space into a com-

pact sub-space. The essence lies in de-noising these varia-

tion and capturing the most important semantic concepts.

Recently, many state-of-the-art methods based on fully

convolutional networks (FCNs) [22] have been proposed to

address the above issues. Due to the fixed geometric struc-

tures, they are inherently limited by local receptive fields

and short-range contextual information. To capture long-

range dependencies, several works employ the multi-scale

context fusion [17], such as astrous convolution [4], spa-

tial pyramid [37], large kernel convolution [25] and so on.

Moreover, to keep more detailed information, the encoder-

decoder structures [34, 5] are proposed to fuse mid-level

and high-level semantic features. To aggregate information

from all spatial locations, attention mechanism [29, 38, 31]

is used, which enables the feature of a single pixel to fuse

information from all other positions. However, the original

attention-based methods need to generate a large attention

map, which has high computation complexity and occupies

a huge number of GPU memory. The bottleneck lies in that

both the generation of attention map and its usage are com-

puted w.r.t all positions.

Towards the above issues, in this paper, we rethink the

attention mechanism from the view of expectation-

maximization (EM) algorithm [7] and propose a

novel attention-based method, namely Expectation-

Maximization Attention (EMA). Instead of treating all

pixels themselves as the reconstruction bases [38, 31], we
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use the EM algorithm to find a more compact basis set,

which can largely reduce the computational complexity.

In detail, we regard the bases for construction as the

parameters to learn in the EM algorithm and attention maps

as latent variables. In this setting, the EM algorithm aims to

find a maximum likelihood estimate of parameters (bases).

Given the current parameters, the expectation (E) step

works as estimating the expectation of attention map and

maximization (M) step functions as updating the parame-

ters (bases) by maximizing the complete data likelihood.

The E step and the M step execute alternately. After

convergence, the output can be computed as the weighted

sum of bases, where the weights are the normalized final

attention maps. The pipeline of EMA is shown in Fig. 1.

We further embed the proposed EMA method into a

module for neural network, which is named EMA Unit.

EMA Unit can be simply implemented by common oper-

ators. It is also light-weighted and can be easily embedded

into existing neural networks. Moreover, to make full use

of its capacity, we also propose two more methods to stabi-

lize the training process of EMA Unit. We also evaluate its

performance on three challenging datasets.

The main contributions of this paper are listed as follows:

• We reformulate the self-attention mechanism into an

expectation-maximization iteration manner, which can

learn a more compact basis set and largely reduce the

computational complexity. To the best of our knowl-

edge, this paper is the first to introduce EM iterations

into attention mechanism.

• We build the proposed expectation-maximization at-

tention as a light-weighted module for neural network

and set up specific manners for bases’ maintenance and

normalization.

• Extensive experiments on three challenging semantic

segmentation datasets, including PASCAL VOC, PAS-

CAL Context and COCO Stuff, demonstrate the su-

periority of our approach over other state-of-the-art

methods.

2. Related Works

Semantic segmentation. Fully convolutional network

(FCN) [22] based methods have made great progress in im-

age semantic segmentation by leveraging the powerful con-

volutional features of classification networks [14, 15, 33]

pre-trained on large-scale data [28]. Several model variants

are proposed to enhance the multi-scale contextual aggre-

gation. For example, DeeplabV2 [4] makes use of the as-

trous spatial pyramid pooling (ASPP) to embed contextual

information, which consists of parallel dilated convolutions

with different dilated rates. DeeplabV3 [4] extends ASPP

with image-level feature to further capture global contexts.

Meanwhile, PSPNet [37] proposes a pyramid pooling mod-

ule to collect contextual information of different scales.

GCN [25] adopts decoupling of large kernel convolution to

gain a large receptive field for the feature map and capture

long-range information.

For the other type of variants, they mainly focus on pre-

dicting more detailed output. These methods are based on

U-Net [27], which combines the advantages of high-level

features with mid-level features. RefineNet [21] makes use

of the Laplacian image pyramid to explicitly capture the in-

formation available along the down-sampling process and

output predictions from coarse to fine. DeeplabV3+ [5]

adds a decoder upon DeeplabV3 to refine the segmentation

results especially along object boundaries. Exfuse [36] pro-

poses a new framework to bridge the gap between low-level

and high-level features and thus improves the segmentation

quality.

Attention model. Attention is widely used for various tasks

such as machine translation, visual question answering and

video classification. The self-attention methods [2, 29] cal-

culate the context coding at one position by a weighted sum-

mation of embeddings at all positions in sentences. Non-

local [31] first adopts self-attention mechanism as a mod-

ule for computer vision tasks, such as video classification,

object detection and instance segmentation. PSANet [38]

learns to aggregate contextual information for each posi-

tion via a predicted attention map. A2Net [6] proposes the

double attention block to distribute and gather informative

global features from the entire spatio-temporal space of the

images. DANet [11] applies both spatial and channel atten-

tion to gather information around the feature maps, which

costs even more computation and memory than the Non-

local method.

Our approach is motivated by the success of attention in

the above works. We rethink the attention mechanism from

the view of the EM algorithm and compute the attention

map in an iterative manner as the EM algorithm.

3. Preliminaries

Before introducing our proposed method, we first review

three highly correlated methods, that is the EM algorithm,

the Gaussian mixture model and the Non-local module.

3.1. Expectation­Maximization Algorithm

The expectation-maximization (EM) [7] algorithm aims

to find the maximum likelihood solution for latent vari-

ables models. Denote X = {x1,x2, · · · ,xN} as the data

set which consists of N observed samples and each data

point xi has its corresponding latent variable zi. We call

{X,Z} the complete data and its likelihood function takes

the form ln p (X,Z|θ), where θ is the set of all parameters

of the model. In practice, the only knowledge of latent vari-

ables in Z is given by the posterior distribution p (Z|X,θ).
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The EM algorithm is designed to maximize the likelihood

ln p (X,Z|θ) by two steps, i.e., the E step and the M step.

In the E step, we use the current parameters θold to find

the posterior distribution of Z given by p (X,Z|θ). Then

we use the posterior distribution to find the expectation of

the complete data likelihoodQ
(

θ,θold
)

, which is given by:

Q
(

θ,θold
)

=
∑

z

p
(

Z|X,θold
)

ln p (X,Z|θ) . (1)

Then in the M step, the revised parameter θnew is deter-

mined by maximizing the function:

θnew = argmax
θ

Q
(

θ,θold
)

. (2)

The EM algorithm executes the E step and the M step alter-

nately until the convergence criterion is satisfied.

3.2. Gaussian Mixture Model

Gaussian mixture model (GMM) [26] is a special case of

the EM algorithm. It takes the distribution of data xn as a

linear superposition of Gaussians:

p (xn) =

K
∑

k=1

znkN (xn|µk,Σk) , (3)

where the mean µk and the covariance Σk are parameters

for the k-th Gaussian basis. Here we leave out the prior πk.

The likelihood of the complete data is formulated as:

ln p (X,Z|µ,Σ) =

N
∑

n=1

ln

[

K
∑

k=1

znkN (xn|µk,Σk)

]

,

(4)

where
∑

k znk = 1. znk can be viewed as the responsibility

that the k-th basis takes for the observation xn. For GMM,

in the E step, the expected value of znk is given by:

znewnk =
N (xn|µ

new
k ,Σk)

∑K
j=1N

(

xn|µnew
j ,Σj

)
. (5)

In the M step, the parameters are re-estimated as follows:

µnew
k =

1

Nk

N
∑

n=1

znewnk xn,

Σnew
k =

1

Nk

N
∑

n=1

znewnk

(

xn − µold
k

) (

xn − µold
k

)⊤

,

(6)

where

Nk =
N
∑

n=1

znewnk . (7)

After the convergence of the GMM parameters, the re-

estimated xnew
n can be formulated as:

xnew
n =

K
∑

k=1

znewnk µnew
k . (8)

In real applications, we can simply replace Σk as the

identity matrix I and leave out the Σk in the above equa-

tions.

3.3. Non­local

The Non-local module [31] functions the same as the

self-attention mechanism. It can be formulated as:

yi =
1

C (xi)

∑

j

f (xi,xj) g (xj) , (9)

where f (·, ·) represents a general kernel function, C (x) is

a normalization factor and xi denotes the feature vector for

the location i. As this module is applied upon the feature

map of convolutional neural networks (CNN).

Considering that N (xn|µk,Σk) in Eq. (5) is a specific

kernel function between xn and µk, Eq. (8) is just a specific

design of Eq. (9). Then, from the viewpoint of GMM, the

Non-local module is just a re-estimation of X, without E

steps and M steps. Specifically, µ is just selected as the X

in Non-local.

In GMM, the number of Gaussian bases is selected man-

ually and usually satisfies K ≪ N . But in the Non-local

module, the bases are selected as the data themselves, so it

has K = N . There are two obvious disadvantages of the

Non-local module. First, the data are lying in a low dimen-

sional manifold, so the bases are over-complete. Second,

the computation overhead is heavy and the memory cost is

also large.

4. Expectation-Maximization Attention

In view of the high computational complexity of the at-

tention mechanism and limitations of the Non-local mod-

ule, we first propose the expectation-maximization atten-

tion (EMA) method, which is an augmented version of self-

attention. Unlike the Non-local module that selects all data

points as bases, we use the EM iterations to find a compact

basis set.

For simplicity, we consider an input feature map X of

size C×H×W from a single sample. X is the intermediate

activations of a CNN. To simplify the symbols, we reshape

X into N × C, where N = H ×W , and xi ∈ R
C indexes

the C dimensional feature vector at pixel i. Our proposed

EMA consists of three operations, including responsibility

estimation (AE), likelihood maximization (AM) and data

re-estimation (AR). Briefly, given the input X ∈ R
N×C

and the initial bases µ ∈ R
K×C , AE estimates the latent

variables (or the ‘responsibility’) Z ∈ R
N×K , so it func-

tions as the E step in the EM algorithm. AM uses the esti-

mation to update the bases µ, which works as the M step.

The AE and AM steps execute alternately for a pre-specified

number of iterations. Then, with the converged µ and Z,

AR reconstructs the original X as Y and outputs it.
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Figure 2: Overall structure of the proposed EMAU. The key component is the EMA operator, in which AE and AM execute

alternately. In addition to the EMA operator, we add two 1 × 1 convolutions at the beginning and the end of EMA and sum

the output with original input, to form a residual-like block. Best viewed on screen.

It has been proved that, with the iteration of EM

steps, the complete data likelihood ln p (X,Z) will increase

monotonically. As ln p (X) can be estimated by marginal-

izing ln p (X,Z) with Z, maximizing ln p (X,Z) is a proxy

of maximizing ln p (X). Therefore, with the iterations of

AE and AM, the updated Z and µ have better ability to

reconstruct the original data X. The reconstructed X̃ can

capture important semantics from X as much as possible.

Moreover, compared with the Non-local module, EMA

finds a compact set of bases for pixels of an input image.

The compactness is non-trivial. Since K ≪ N , X̃ lies in

a subspace of X. This mechanism removes much unneces-

sary noise and makes the final classification of each pixel

more tractable. Moreover, this operation reduces the com-

plexity (both in space and time) from O
(

N2
)

to O (NKT ),
where T is the number of iterations for AE and AM. The

convergence of EM algorithm is also guaranteed. Notably,

EMA takes only three iterations to get promising results in

our experiments. So T can be treated as a small constant,

which means that the complexity is only O (NK).

4.1. Responsibility Estimation

Responsibility estimation (AE) functions as the E step in

the EM algorithm. This step computes the expected value

of znk, which corresponds to the responsibility of the k-

th basis µ to xn, where 1 ≤ k ≤ K and 1 ≤ n ≤ N .

We formulate the posterior probability of xn given µk as

follows:

p (xn|µk) = K (xn,µk) , (10)

where K represents the general kernel function. And now,

Eq. (5) can be reformulated into a more general form:

znk =
K (xn,µk)

∑K
j=1K (xn,µj)

. (11)

There are several choices for K (a,b), such as inner dot

a⊤b, exponential inner dot exp
(

a⊤b
)

, Euclidean distance

‖a− b‖22, RBF kernel exp
(

−‖a− b‖22 /σ
2
)

and so on.

As compared in the Non-local module, the choice of these

functions makes trivial differences in the final results. So

we simply take the exponential inner dot exp
(

a⊤b
)

in our

paper. In experiments, Eq. (11) can be implemented as a

matrix multiplication plus one softmax layer. In conclusion,

the operation of AE in the t-th iteration is formulated as:

Z(t) = softmax

(

λX
(

µ(t−1)
)⊤

)

, (12)

where λ is a hyper-parameter to control the distribution of

Z.

4.2. Likelihood Maximization

Likelihood maximization (AM) works as the EM algo-

rithm’s M step. With the estimated Z, AM updates µ by

maximizing the complete data likelihood. To keep the bases

lying in the same embedding space as X, we update the

bases µ using the weighted summation of X. So µk is up-

dated as

µ
(t)
k =

z
(t)
nkxn

∑N
m=1 z

(t)
mk

(13)

in the t-th iteration of AM.

It is noteworthy that if we set λ → ∞ in Eq. (12), then

{zn1, zn2, · · · , znK} will become a one-hot embedding. In

this situation, each pixel is assigned to only one basis. And

the basis is updated by the average of those pixels assigned

to it. This is what the K-means clustering algorithm [10]

does. So the iterations of AE and AM can also be viewed as

a soft version of K-means clustering.
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4.3. Data Re­estimation

EMA runs AE and AM alternately for T times. After

that, the final µ(T ) and Z(T ) are used to re-estimate the X.

We adopt Eq. (8) to construct the new X, namely X̃, which

is formulated as:

X̃ = Z(T )µ(T ). (14)

As X̃ is constructed from a compact basis set, it has the

low-rank property compared with the input X. We depict

an example of X̃ in Fig. 2. It’s obvious that X̃ outputed

from AR is very compact in the feature space and the feature

variance inside the object is smaller than that of the input.

5. EMA Unit

In order to better incorporate the proposed EMA with

deep neural networks, we further propose the Expectation-

maximization Attention Unit (EMAU) and apply it to se-

mantic segmentation task. In this section, we will describe

EMAU in detail. We first introduce the overall structure of

EMAU and then discuss bases’ maintenance and normaliza-

tion mechanisms.

5.1. Structure of EMA Unit

The overall structure of EMAU is shown in Fig. 2.

EMAU looks like the bottleneck of ResNet at the first

glance, except it replaces the heavy 3× 3 convolution with

the EMA operations. The first convolution without the

ReLU activation is prepended to transform the value range

of input from (0,+∞) to (−∞,+∞). This transforma-

tion is very important, or the estimated µ(T ) will also lie

in [0,+∞), which halves the capacity compared with gen-

eral convolution parameters. The last 1 × 1 convolution is

inserted to transform the re-estimated X̃ into the residual

space of X.

For each of AE, AM and AR steps, the computation com-

plexity is O (NKC). As we set K ≪ C, several iterations

of AE and AM plus one AR is just the same magnitude as

a 1× 1 convolution with input and output channel numbers

all being C. Adding the extra computation from two 1 × 1
convolutions, the whole FLOPs of EMAU is around 1/3 of

a module running 3 × 3 convolutions with the same num-

ber of input and output channels. Moreover, the parameters

maintained by EMA just counts to KC.

5.2. Bases Maintenance

Another issue for the EM algorithm is the initialization

of the bases. The EM algorithm is guaranteed to converge,

because the likelihood of complete data is limited, and at

each iteration both E and M steps lift its current lower

bound. However, converging to global maximum is not

guaranteed. Thus, the initial values of bases before itera-

tions are of great importance.

We only describe how EMA is used to process one image

above. However, for a computer vision task, there are thou-

sand of images in a dataset. As each image X has different

pixel feature distributions from others, it is not suitable to

use the µ computed upon an image to reconstruct feature

maps of other images. So we run EMA on each image.

For the first mini-batch, we initialize µ(0) using Kaim-

ing’s initialization [13], where we treat matrix multiplica-

tion as a 1× 1 convolution. For the following mini-batches,

one simple choice is to update µ(0) using standard back

propagation. However, as iterations of AE and AM can be

unrolled as a recurrent neural network (RNN), the gradi-

ents propagating though them will encounter the vanishing

or explosion problem. Therefore, the updating of µ(0) is

unstable, and the training procedure of EMA Unit may col-

lapse.

In this paper, we use the moving averaging to update

µ(0) in the training process. After iterating over an image,

the generated µ(T ) can be regarded as a biased update of

µ(0), where the bias comes from the image sampling pro-

cess. To make it less biased, we first average µ(T ) over a

mini-batch and get the µ̄(T ). Then we update µ(0) as:

µ(0) ← αµ(0) + (1− α) µ̄(T ), (15)

where α ∈ [0, 1] is the momentum. For inference, the

µ(0) keeps fixed. This moving averaging mechanism is also

adopted in batch normalization (BN) [16].

5.3. Bases Normalization

In the above subsection, we accomplish the maintenance

of µ(0) for each mini-batch. However, the stable update of

µ(t) inside AE and AM iterations is still not guaranteed,

due to the defect of RNN. The moving averaging mech-

anism described above requires µ̄(T ) not to differ signifi-

cantly from µ(0), otherwise it will also collapse like back-

propagation. This requirement also constrains the value

range of µ(t), 1 ≤ t ≤ T .

To this end, we need to apply normalization upon µ(t).

At the first glance, BN or layer normalization (LN) [1]

sound to be good choices. However, these aforementioned

normalization methods will change the direction of each

basis µ
(t)
k , which changes their properties and semantic

meanings. To keep the direction of each basis untouched,

we choose Euclidean normalization (L2Norm), which di-

vides each µ
(t)
k by its length. By applying it, µ(t) then lies

in a K-dimensional united hyper-sphere, and sequence of
{

µ
(0)
k ,µ

(1)
k , · · · ,µ

(T )
k

}

forms a trajectory on it.

5.4. Compare with the Double Attention Block

A2 Net [6] proposes the double attention block (A2

block), in which the output Y is computed as:

Y=
[

φ(X,Wφ) sfm(θ (X,Wθ))
⊤
]

sfm(ρ (X,Wρ)), (16)
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Figure 3: Ablation study on strategy of bases maintenance

(left) and normalization (right) of EMAU. Experiments are

carried out upon ResNet-50 with batch size 12 and training

output stride 16 on the PASCAL VOC dataset. The iteration

number T for training is set as 3. Best viewed on screen.

where sfm represents the softmax function. φ, θ and ρ rep-

resent three 1×1 convolutions with convolution kernels Wφ,

Wθ and Wρ, respectively.

If we share parameters between θ and ρ, then we

can mark both Wθ and Wρ as µ. We can see that

sfm (θ (X,Wθ)) just computes Z the same as Eq. (5) and

those variables lying inside [·] update µ. The whole process

of A2 block equals to EMA with only one iteration. The Wθ

in A2 block is updated by the back-propagation, while our

EMAU is updated by moving averaging. Above all, double

attention block can be treated as a special form of EMAU.

6. Experiments

To evaluate the proposed EMAU, we conduct extensive

experiments on the PASCAL VOC dataset [9], the PASCAL

Context dataset [24], and the COCO Stuff dataset [3]. In

this section, we first introduce implementation details. Then

we perform ablation study to verify the superiority of pro-

posed method on the PASCAL VOC dataset. Finally, we

report our results on the PASCAL Context dataset and the

COCO Stuff dataset.

6.1. Implementation Details

We use ResNet [14] (pretrained on ImageNet [28]) as

our backbone. Following prior works [37, 4, 5], we em-

ploy a poly learning rate policy where the initial learning

rate is multiplied by (1− iter/total iter)
0.9

after each it-

eration. The initial learning rate is set to be 0.009 for all

datasets. Momentum and weight decay coefficients are set

to 0.9 and 0.0001, respectively. For data augmentation, we

apply the common scale (0.5 to 2.0), cropping and flipping

of the image to augment the training data. Input size for all

datasets is set to 513 × 513. The synchronized batch nor-

malization is adopted in all experiments, together with the

multi-grid [4]. For evaluation, we adopt the commonly used

Mean IoU metric.

The output stride of the backbone is set to 16 for training

on PASCAL VOC and PASCAL Context, and 8 for training

on COCO Stuff and evaluating on all datasets. To speed up

the training procedure, we carry out all ablation studies on

ResNet-50 [14], with batch size 12. For all models to be

1 2 3 4 5 6 7 8

1 77.34 77.52 77.60 77.59 77.59 77.59 77.59 77.59

2 77.75 78.04 78.15 78.15 78.12 78.12 78.17

3 78.52 78.80 78.86 78.88 78.89 78.88

4 78.14 78.25 78.27 78.28 78.27

5 77.70 77.76 77.82 77.86

6 77.85 77.91 77.92

7 77.11 77.14

8 77.24

Evaluation Iterations (mIoU %)

T
ra
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g
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Figure 4: Ablation study on the iteration number T . Exper-

iments are conducted upon ResNet-50 with training output

stride 16 and batch size 12 on the PASCAL VOC dataset.

compared with state-of-the-art, we train them on ResNet-

101, with batch size 16. We train 30K iterations on PAS-

CAL VOC and COCO Stuff, and 15K on PASCAL Context.

We use a 3 × 3 convolution to reduce the channel number

from 2, 048 to 512, and then stack EMAU upon it. We call

the whole network as EMANet. We set the basis number

K = 64, λ = 1 and the number of iterations T = 3 for

training as default.

6.2. Results on the PASCAL VOC Dataset

6.2.1 Bases Maintenance and Normalization

In this part, we first compare different strategies of main-

taining µ(0). We set T = 3 in training, and 1 ≤ T ≤ 8
in evaluation. As shown in the left part of Fig. 3, perfor-

mance of all strategies increases with more iterations of AE

and AM. When T ≥ 4, the gain from more iterations be-

comes marginal. Moving average performs the best among

them. It achieves the highest performances in all iterations

and surpasses others by at least 0.9 in mIoU. Surprisingly,

updating by the back propagation shows no merit compared

with no updating and even performs worse when T ≥ 3.

We then compare the performances with no normaliza-

tion, LN and L2Norm as described above. From the right

part of Fig. 3, it is clear to see that LN is even worse than

no normalization. Since it can partially relieve the gradient

chores of RNN-like structure. The performance of LN and

no normalization has little correlation with the number of

iteration T . By contrast, L2Norm’s performance increases

as the iterations become larger and it outperforms LN and

no normalization when T ≥ 3.

6.2.2 Ablation Study for Iteration Number

From Fig. 3, it is obvious that the performance of EMAU

gain from more iterations during evaluation, and the gain

becomes marginal when T > 4. In this subsection, we also

study the influence of T in training. We plot the perfor-

mance matrix upon Ttrain and Teval as Fig. 4.
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Table 1: Detailed comparisons on PASCAL VOC with

DeeplabV3/V3+ and PSANet in mIoU (%). All results are

achieved with the backbone ResNet-101 and output stride

8. The FLOPs and memory are computed with the input

size 513 × 513. SS: Single scale input during test. MS:

Multi-scale input. Flip: Adding left-right flipped input.

EMANet (256) and EMANet (512) represent EMANet with

the number of input channels as 256 and 512, respectively.

Method SS MS+Flip FLOPs Memory Params

ResNet-101 - - 190.6G 2.603G 42.6M

DeeplabV3 [4] 78.51 79.77 +63.4G +66.0M +15.5M

DeeplabV3+ [5] 79.35 80.57 +84.1G +99.3M +16.3M

PSANet [38] 78.51 79.77 +56.3G +59.4M +18.5M

EMANet (256) 79.73 80.94 +21.1G +12.3M +4.87M

EMANet (512) 80.05 81.32 +43.1G +22.1M +10.0M

Table 2: Comparisons on the PASCAL VOC test set.

Method Backbone mIoU (%)

Wide ResNet [32] WideResNet-38 84.9

PSPNet [37] ResNet-101 85.4

DeeplabV3 [4] ResNet-101 85.7

PSANet [38] ResNet-101 85.7

EncNet [35] ResNet-101 85.9

DFN [34] ResNet-101 86.2

Exfuse [36] ResNet-101 86.2

IDW-CNN [30] ResNet-101 86.3

SDN [12] DenseNet-161 86.6

DIS [23] ResNet-101 86.8

EMANet ResNet-101 87.7

GCN [25] ResNet-152 83.6

RefineNet [21] ResNet-152 84.2

DeeplabV3+ [5] Xception-71 87.8

Exfuse [36] ResNeXt-131 87.9

MSCI [20] ResNet-152 88.0

EMANet ResNet-152 88.2

From Fig. 4, it is clear that mIoU increases monoton-

ically with more iterations in evaluation, no matter what

Ttrain is. They finally converge to a fixed value. How-

ever, this rule does not work in training. The mIoUs peak

when Ttrain = 3 and decrease with more iterations. This

phenomenon may be caused by the RNN-like behavior of

EMAU. Though Moving Average and L2Norm can relieve

to a certain degree, the problem persists.

We also carry out experiments on A2 block [6], which

can be regarded as a special form of EMAU as mentioned

in Sec. 5.4. Similarly, the non-local module can also be

viewed as a special form of EMAU without AM step, which

includes more bases and Ttrain = 1. With the same back-

bone and training scheduler, A2 block achieves 77.41% and

the non-local module achieves 77.78% in mIoU, respec-

tively. As a comparison, EMANet achieves 77.34% when

Table 3: Comparisons with state-of-the-art on the PASCAL

Context test set. ‘+’ means pretrained on COCO Stuff.

Method Backbone mIoU (%)

PSPNet [37] ResNet-101 47.8

DANet [11] ResNet-50 50.1

MSCI [20] ResNet-152 50.3

EMANet ResNet-50 50.5

SGR [18] ResNet-101 50.8

CCL [8] ResNet-101 51.6

EncNet [35] ResNet-101 51.7

SGR+ [18] ResNet-101 52.5

DANet [11] ResNet-101 52.6

EMANet ResNet-101 53.1

Table 4: Comparisons on the COCO Stuff test set.

Method Backbone mIoU (%)

RefineNet [21] ResNet-101 33.6

CCL [8] ResNet-101 35.7

DANet [11] ResNet-50 37.2

DSSPN [19] ResNet-101 37.3

EMANet ResNet-50 37.6

SGR [18] ResNet-101 39.1

DANet [11] ResNet-101 39.7

EMANet ResNet-101 39.9

Ttrain = 1 and Teval = 1. These three results have small

differences, which is coincident with our analysis.

6.2.3 Comparisons with State-of-the-arts

We first thoroughly compare EMANet with three baselines,

namely DeeplabV3, DeeplabV3+ and PSANet on the vali-

dation set. We report mIoU, FLOPs, memory cost and pa-

rameter numbers in Tab. 1. We can see that EMANet out-

performs these three baselines by a large margin. Moreover,

EMANet is much lighter in computation and memory.

We further compare our method with existing methods

on the PASCAL VOC test set. Following previous meth-

ods [4, 5], we train EMANet successively over COCO, the

VOC trainaug and the VOC trainval set. We set the base

learning rate as 0.009, 0.001 and 0.0001, respectively. We

train 150K iterations on COCO, and 30K for the last two

rounds. When inferring over the test set, we make use of

multi-scale testing and left-right flipping.

As shown in Tab. 2, our EMANet sets the new record on

PASCAL VOC, and improves DeeplabV3 [4] with the same

backbone by 2.0% in mIoU. Our EMANet achieves the best

performance among networks with backbone ResNet-101,

and outperforms the previous best one by 0.9%, which is

significant due to the fact that this benchmark is very com-

petitive. Moreover, it achieves the performance that is com-

parable with methods based on some larger backbones.
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Figure 5: Visualization of responsibilities Z at the last iteration. The first two rows illustrate two examples from the PASCAL

VOC validation set. The last two rows illustrate two examples from the PASCAL Context validation set. z·i represents

the responsibilities of the i-th basis to all pixels in the last iteration, i, j, k and l are four randomly selected indexes, where

1 ≤ i, j, k, l ≤ K. Best viewed on screen.

6.3. Results on the PASCAL Context Dataset

To verify the generalization of our proposed EMANet,

we conduct experiments on the PASCAL Context dataset.

Quantitative results of PASCAL Context are shown in

Tab. 3. To the best of our knowledge, EMANet based

on ResNet-101 achieves the highest performance on the

PASCAL Context dataset. Even pretrained on additional

data (COCO Stuff), SGR+ is still inferior to EMANet.

6.4. Results on the COCO Stuff Dataset

To further evaluate the effectiveness of our method, we

also carry out experiments on the COCO Stuff dataset.

Comparisons with previous state-of-the-art methods are

shown in Tab. 4. Remarkably, EMANet achieves 39.9% in

mIoU and outperforms previous methods by a large margin.

6.5. Visualization of Bases Responsibilities

To get a deeper understanding of our proposed EMAU,

we visualize the iterated responsibility map Z in Fig. 5. For

each image, we randomly select four bases (i, j, k and l)
and show their corresponding responsibilities of all pixels

in the last iteration. Obviously, each basis corresponds to

an abstract concept of the image. With the progress of it-

erations AE and AM, the abstract concept becomes more

compact and clear. As we can see, these bases converge to

some specific semantics and do not just focus on foreground

and background. Concretely, the bases of the first two rows

focus on specific semantics such as human, wine glass, cut-

lery and profile. The bases of the last two rows focus on

sailboat, mountain, airplane and lane.

7. Conclusion

In this paper, we propose a new type of attention

mechanism, namely the expectation-maximization atten-

tion (EMA), which computes a more compact basis set

by iteratively executing as the EM algorithm. The recon-

structed output of EMA is low-rank and robust to the vari-

ance of input. We well formulate the proposed method as

a light-weighted module that can be easily inserted to ex-

isting CNNs with little overhead. Extensive experiments on

a number of benchmark datasets demonstrate the effective-

ness and efficiency of the proposed EMAU.
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