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ABSTRACT

Temporal information is a significant cue for recognizing
human actions from videos. Different from 2D CNN which
can only capture spatial information in an efficient way, 3D
CNN is good at capturing both spatial and temporal informa-
tion at the expense of high computational cost. Beyond both
methods, this paper presents a Grouped Temporal Enhance-
ment (GTE) module which even outperforms 3D CNN, mean-
while only needs similar low computational cost as 2D CNN.
The GTE module firstly decomposes an input video into spa-
tial and temporal groups along channel dimension, and then
uses a learnable temporal shift (LTS) operation for efficient
temporal modeling. Finally, a 2D convolution filter is used
to enhance the ability of LTS for spatial modeling. Extensive
experiments on three benchmark datasets validate the effect
of our method.

Index Terms— Action Recognition, Spatial-Temporal
Modeling, Video Classification

1. INTRODUCTION

Human action recognition can be used in a wide range of
applications such as intelligent surveillance system, virtual
reality, human behavior analysis [1]. Different from tradi-
tional image processing task, recognizing similar human ac-
tions from videos usually heavily depends on the usage of
temporal information among video frames. Currently, effi-
cient modeling of temporal information is still an open prob-
lem.

Existing methods about temporal modeling for video ac-
tion recognition can be summarized into three categories. The
first type is 3D CNN based methods like [2, 3, 4], due to
temporal information can be mixed together with spatial fea-
tures, exceeding results had been gained recently. However,
it is hard to train and time consuming for its huge amounts
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of parameters. The second type is RNN/LSTM based meth-
ods like [5, 6], which is suitable for simple sequence data
such as skeleton. When taking RGB frames or video as in-
put, the performance will be limited because too much useful
spatial information within backgroud is abandoned. Finally,
two-stream based methods, the third kind strategy, [7, 8] gen-
erally consist of an RGB stream and a flow stream, and tem-
poral information is captured by flow stream but costs over
90% of the run time because of the extraction of optical flow.
Hence how to balance the performance and computation cost
when taking both spatial and temporal relations into account
still needs to be studied.

Relation to prior work: 3D CNN is the nature choice
when recognition tasks transited from image to video for ac-
tions. C3D [3] firstly utilized 3D CNNss for learning spatiote-
moral features but with huge quantity of parameters and hard
to train shown in Fig. 1(b). P3D [9] explored sevral de-
composition strategies to reduce parameters by dividing 3D
filters. Recently, Slowfast [10] designed a two-pathway net-
work with two input frame rates to capture spatial and motion
cues inspired by retinal ganglion in primates, which still re-
quiring heavy computation resources. To handle those nuts.
TSM [11] shift a fixed proportion of input feature along time
dimension with surprising results while with no extra param-
eters introduced shown in Fig. 1(a). What’s more, GST [12]
divided input feature into spatial and temporal groups along
channels, but the 3D conv kernels used in temporal branch is
still not an optimal choice for its huge number of parameters.

To this end, we propose the efficient Gouped Temporal
Enhanced (GTE) module, which not only strengthen the tem-
poral modeling ability with fewer parameters, but also main-
tain a good spatial modeling ability in an efficient way. The
main contributions of our GTE can be summarized as fol-
lows: (i) An effective sub-module LTS is proposed to enhance
the ability of temporal modeling with little extra computation
cost; (ii) By grouping input feature and adding a 2D CNN af-
ter LTS, we design the proposed GTE which can be utilized
in 2D CNN framework in an effective yet parameters sav-
ing way; (iii) Extensive experiments demonstrate that we gain
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Fig. 1. Residual part comparision of C3D decomposition approaches and the proposed GTE. (a) TSM. (b) C3D-Equivalent methods like
C3D. (¢) Grouped Spatial-Temporal Aggregation. (d) The framework of our Grouped Temporal Enhancement (GTE) module. In GTE, input
feature map is divided into two groups for spatial and spatial-temporal modeling respectively. The parameter ¢ used in those schematics is to

specify the proportion of spatial and temporal branches.

competitive performances on three public benchmark datasets
with less parameters and FLOPs compared to related state-of-
the-art methods.

2. PROPOSED METHOD
2.1. Overall Framework

Most methods [3, 13] reduce the complexity by decouping
3D convolution kernels as shown in Fig. 1(b). Unlike those
approaches, the proposed Grouped Temporal Enhancement
(GTE) module shown in Fig. 1(d) firstly splits input along
channels into two branches similar to GST [12]. One branch
is for spatial modeling using standard 2D convolution and
then another branch is used for temporal modeling via our
sub-module Learnable Tempral Shift (LTS) operation in-
spired by TSM [11] shown in Fig. 1(a). Compared with
original 3D CNN used in GST shown in Fig. 1(c), LTS can
reduce parameters more efficiently and a standard 2D con-
volution filter followed after LTS also strengthen the whole
spatial modeling ability.

2.2. Learnable Temporal Shift Module

To make full use of the given video data and strengthen the
ability of bakebones, we replace the original 3D CNN in GST
with the proposed simple yet efficient sub-module named
learnable temporal shift (LTS). After LTS, a standard 2D con-
volution filter is added, as a supplement for spatial branch to
strengthing the spatial modeling ability.

Precisely, the input activation in video classification prob-
lem can be represented as X in shape of (N,C,T,H, W)
where N, C, T are batch size, channel number, temporal di-
mension respectively, I is the height and W is the width.
Unlike original TSM [11], for a certain frame, which just uti-
lized shift operation before convolution layers along temporal
dimension with different fixed portion of channels towards its

previous and next frames just like Fig. 2(a). LTS transforms
shift operation into learnable shift module, which makes shift
portion and ratio more suitable for specific actions in a flex-
ibly learnable way shown in Fig. 2(b), while only with very
few extra parameters increase compared with original TSM.

It’s obvious that temporal shift operation in TSM can be
replaced with two specific forward/backward shift kernels
Wy = (al,a2,a3) € R3, W), = (b1,b2,b3) € R>, and more
specificly in TSM W = (0,0, 1), W, = (1,0, 0) in temporal
dimension. However, the kernels are fixed, so a certain frame
could only get features from its neighbor frames in forward
and backward direction. Inspired by the task of video inpaint-
ing [14, 15], which need more information across temporal
dimension in a wide range. In GTE, we replace original
hard-coded shift operation with soft learnable weight, mak-
ing the shifting kernels also learnable instread of the fixed
Wy =(0,0,1), W, = (1,0,0).

Mathematically, learnable temporal shift can be expressed
in a simple convolutional way as:

Featureipput = (Input)/\ (1)
Featureouipur = Wi * Feature,put 2)
Output = (Featureoutpm)v 3)

Here the operator (.)\ and (.)V are used to keep the Output
and Input share the same dimension in (N, C,T, H, W) for

consistency, the dimensions of F'eature;npy,: and Featureutput

are adjusted to fit the learnable parameteres W), and the op-
erator * indicates the lenrable temporal shift operation.
According to the proposed learnable temporal shift mod-
ule, the model could get useful features from more further
neighbor frames along temporal dimension. Compared to
the hard-coded time-shift operations in naive TSM with only
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Fig. 2. Clarification of the learnable temporal shift (LTS). Each row
in the same color means a certain frame and a row with different
color indicates a temporal dimension mixed frame. (a) Naive tem-
poral shift module which shifts a fixed portion channels towards both
forward and backward along the temporal dimension. (b) The pro-
posed learnable shift (LTS) operation which replace the naive shift
with forward/backward shifting kernels on temporal-channel map.

two shift kernels for backward and forward, the shift portion
and number of our learnble kernels now also become learn-
able. And especially for video action recognition, this mod-
ule enhances the model’s capability greatly, which almostly
achieves the equal performance to 3D CNN while with fewer
parameters compared with 2D CNN based methods.

After learnable temporal shift module, we add an extra
2D filter to strenghten the spatial modeling ability within the
temporal modeling branch. Compared with the 3D convolu-
tion kernel used in temporal branch of GST, our method can
sharply reduce parameters in temporal branch.

2.3. Efficient Spatial-Temporal Decomposition

Group convolution is not an unusual strategy to reduce pa-
rameters in image recognition tasks. However, conventional
group convolution used in video tasks would result in sym-
metric groups which can’t fully utilize the information behind
spatial scenes and temporal cues, like [16]. So for a more
optimal and purpose, we firstly divide the input feature into
two groups along channels, then apply different operations

Table 1. Comparision of the number of parameters for each spatial-
temporal block for listed methods.

Method #Params
C2D kykwC;C,
C3D krkgkwC;C,
GST (1 —t+thkr)kgkw C;C,/2
GTE(ours) (kpkw + thkr)C;C,/2

for each branch instead of the same operation on all channels.

Similar to GST [12], to control the complexity of GTE,
the parameter ¢ is introduced to specify the proportion of spa-
tial and temporal branches. So for output channels C,, we
have C',; = tC, channels for the temporal modeling branch,
while the rest for spatial modeling branch. C; means the input
channels. Parameters of spatial P; and temporal path P; are:

Py =(1—-t)kgkwC; C, “

P, = Prrs + Pagenn = tkr + kukw)Ci,Co  (5)

where kp and ks indicate the spatial kernel size and kp
indicates temporal kernel size, Prrg and Pegonn mean the
parameters in learnable shift module (LTS) and the followed
standard 2D convolution filter respectively. Especially, in
GTE, we utilize 3D CNN with kernel size (3,1, 1) to make
temporal shift module learnable, also divide input features
into two groups along channels. So C;, = C;, = C;/2
and the final GTE Paramarg can be calculated with the
following equations:

Paramgrg = Ps + P, = (k’Hk’W + tkT)CiCO/Q 6)

To summarize, we also list the number of parameters for
different methods in Table 1.

3. EXPERIMENTS
3.1. Datasets & Implementation Detail

Datasets: We train and evaluate GTE on three temporal
related standard action recognition benchmarks. Something-
Something [17] v1 and v2 are two large video datasets which
consist of a large collection of densly-labeled video clips
showing human pre-defined basic actions with daily objects
in 174 classes. The number of videos in something-v2 is
greatly increased from 108, 499 to 220, 847, and most actions
within these two dataset cannot be recognized without the
temporal relationship. Diving48 [18] is also a new released
long-term temporal information relied dataset which contains
more than 18K video clips for 48 classes. Ablation study is
mainly conducted in Something-v1 datasets.

Implementation Detail: For a fair comparision with
other related methods, we choose ResNet-50 pretrained on
ImageNet as backbone. And for LTS, the learnable parame-
ters are intialized with Wy = (0,0,1), W = (1,0,0), this
can be seen as a TSM [11]-like intialization. For temporal
branch, the same strategy was adopted as TSN [8].
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Fig. 3. Ablation Study of GTE on Something-v1. For all exper-
iments, frames are set to 8 for each video clips and backbone is
ResNet-50 [19]. (a) GTE with different temporal modeling strate-
gies and ¢ is 1/4. (b) The relation between performance and param-
eter ¢ which means the proportion of input for temporal modeling.

Table 2. Comparision with the state-of-the-art results on
Something-v1 datasets. Within these methods, S3D take BN-
Inception as backbone while others utlize ResNet-50.

Method #Frames | GFLOPs | Topl(%) | Top5(%)
TSM [11] 16 33 47.2 77.1
S3D [20] 64 66.8 473 78.1
GST [12] 8 29.5 47.0 76.1
GST [12] 16 59 48.6 77.9
GTE(ours) 8 25.3 48.1 77.4
GTE(ours) 16 50.6 49.4 78.9

We train GTE with 4 GTX 1080TI GPUS and batch-size
is set to 48. Similary to GST [12], SGD is adopted to optimize
our model with an initial learning rate of 0.01 for about 40
epochs. The learning rate is decaied by a factor of 10 every
10 epochs. Total training epochs are 60 and droupout ratio
is set to 0.3. For inference, middle frame in each segment is
sampled and center crop is also used for those middle frame.

3.2. Experimental Results

Ablation Study: In this part, we report the ablation analy-
sis conducted on Something-v1 dataset. The results of gen-
eral 3D CNN and GTE with different strategies for temporal
modeling in temporal branch are shown in Fig. 3(a). GST
can be seen as a special parameter configuration case of our
GTE where the temporal branch is 3D CNN, and Fig. 3(b)
shows the relation between performance and ¢. It can be eas-
ily found that GTE improves the accuracy with a large in-
creasement compared with 3D CNN, and parameters are also
sharply reduced. What’s more, with the decrease of channels

Table 3. Comparision with the state-of-the-art results on
Something-v2 datasets with validate set.

Method #Frames | Top1(%) | Top5(%)
TSM [11](our impl.) 16 60.3 85.4
GST [12] 8 61.6 87.2
GST [12] 16 62.6 87.9
GTE(ours) 8 62.3 87.8
GTE(ours) 16 63.2 88.3

Table 4. Results on Diving48 datasets. For C3D and GST,
the results are conducted by [12].

Method Pre-training | Accuracy(%)
TSM [11](our impl.) | ImageNet 36.3
C3D [3, 12] ImageNet 34.5
GST [12] ImageNet 38.8
GTE(ours) ImageNet 39.7

for temporal branch, performance will decrease, and param-
eters will increase from 18.0M to 19.3M, we conclude this
is because our GTE is more efficient for its LTS compared
with original 3D filter utilized in GST. And when add a 2D
convolution after LTS module shown within line of dashes in
Fig. 1(d), the temporal branch will also become spatially re-
lated. So accompanied with the original spatial branch, GTE
not only performs temporal modeling in a more efficient man-
ner, but also strengthens the spatial modeling ability without
extra cost.

Comparison with state-of-the-arts. Table 2 shows the
results of GTE and several related state-of-the-art methods
on Something-vl dataset. Our model with 8 frames could
outperforms TSM which using 16 frames, and there is also an
obvious improvement about 1% for GTE compared with GST
[12]. It can be concluded that GTE achieves a comparable
result in temporal related dataset such as Something-v1 with
lower GFLOPs in a more efficient way.

What’s more, we also train and test GTE on validation
set of Something-v2 and dataset Diving48, GTE again outper-
forms other methods shown in Table3 and Tab4. For Diving48
[18], to make the results of the GTE comparable, 16 frames
from each video clip are sampled for testing our model.

4. CONCLUSION

In this work, Grouped Temporal Enhancement (GTE) is pro-
posed which sharply reduce the parameters in human action
recognition problem. Within GTE, we design the learnable
temporal shift (LTS) module which flexibly improve tempo-
ral modeling ability with few extra cost through more further
neighbor frames. And a 2D convolution filter after LTS can
make still further progress, which can be seen as a supple-
ment of spatial modeling branch. As a consequence, at least
competitive results have been achieved via our GTE on three
standard datasets. Our further work will focus on how to di-
vide the channels flexible in a data driven way instead of hard-
coded two groups.
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