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ABSTRACT

Visual place recognition is a challenging task due to the ap-
pearance of a place varying with the change of illumination,
seasonal variations, and diverse viewpoints. Although signif-
icant progress has been made recently, how to dig sufficient
hierarchical information in the real scenario for visual place
recognition remains a problem. To this end, a hierarchical fea-
ture extraction module (HFM), as well as a weighting similar-
ity metric module (WSM), is proposed in this paper. Specif-
ically, the context-aware feature extraction block in HFM is
designed to exploit multi-scale features containing contex-
tual information. The additional complementary features ex-
tracted from the shallow layer are refined by a recalibration
block for reserving detailed information. Furthermore, the
WSM, which consists of a part-based similarity metric layer
and a weighting layer, can make the best of the hierarchical
information to calculate the similarity scores. Experiments
conducted on three typical benchmarks show that our method
achieves state-of-the-art performance on visual place recog-
nition.

Index Terms— Visual Place Recognition, Hierarchical
Feature Extraction, Similarity Metric, Feature Embedding

1. INTRODUCTION

Visual place recognition (VPR), which aims to match a query
place with previously visited places, has received consider-
able attention for its applications in autonomous navigation
[1, 2], mobile robotics [3, 4], and augmented reality [5, 6].
Traditional methods usually rely on hand-crafted descriptors
[7,8] to represent the image and achieve the place recognition
through feature matching [9, 10]. With success in deep learn-
ing [11, 12], recent researchers focus on designing Convolu-
tional Neural Networks (CNNs) to release the difficulty of
extracting high-level features for place recognition. Despite
significant progress, there remains two inherent limitations of
extracting features by standard CNNs to represent the scene
image. First, convolutional filters only integrate the informa-
tion of their receptive fields and fail to capture spatial corre-
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spondence. Second, with deeper networks are designed, the
size of feature maps becomes smaller, resulting in loss of de-
tailed information. As a result, existing CNN-based methods
lack full use of the visual cues in the scenario, thus causing a
bottleneck to further improve the performance of VPR.

Relation to prior work: Gomez-Ojeda et al. [13] trained
a CNN to extract features for representing the image and then
achieved place recognition by comparing the features of dif-
ferent images. To select features of effective regions, Kim
et al. [14] proposed a Contextual Reweighting Network to
generate a weighted mask. Meanwhile, Chen et al. [15] de-
signed a context-flexible attention learning model to generate
attention maps for adaptively selecting relevant features. Fea-
ture pooling operations were performed on different scales
to aggregate regional features [16], which can suppress the
local confusions. Moreover, Liu et al. [17] proposed a two-
branch siamese network to reduce the redundant features and
enhance feature representation capability.

In contrast to the methods mentioned above, we engage
in addressing the challenges in VPR by emphasizing the sig-
nificance of contextual information and detailed information.
The contextual information helps to leverage spatial corre-
spondence, and additional detailed information improves the
integrality of feature embedding. Both two types of informa-
tion can provide powerful visual cues for VPR. Considering
this nature, a hierarchical feature extraction module (HFM),
associated with a weighting similarity metric module (WSM),
is proposed in this paper. Specifically, in HFM, a context-
aware feature extraction block is designed to extract multi-
scale features containing contextual information, and a recali-
bration block is introduced to refine the features from the shal-
low layer, which reserve more detailed information. Mean-
while, to make the best of hierarchical information, WSM is
introduced to measure the similarity score between features in
the same hierarchy and efficiently fuse the similarity scores to
the final similarity decision by learning the fusion weights.

The main contributions of this paper are as follows: (1) A
hierarchical feature extraction module is proposed to extract
both high-level contextual features and refined detailed fea-
tures. (2) A weighting similarity metric module is introduced
to aggregate hierarchical information into a final similarity
decision.
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Fig. 1. (a) Overview of the proposed framework. VGG16 [18] is adopted as the backbone network. The HFM takes outputs of Conv 3 and
Conv 5 as inputs to extract hierarchical features. Then, the WSM calculates the similarity scores of corresponding features and fuses them
into a final similarity decision. PBS denotes the part-based similarity metric. (b) Details of HFM. RB represents the recalibration block.

2. PROPOSED METHOD

In this section, the overall framework is given at first. Then,
the proposed hierarchical feature extraction module (HFM)
and weighting similarity metric module (WSM) are intro-
duced respectively. Finally, the loss function is presented.

2.1. Framework
The overall framework is shown in Fig. 1(a). The input of
our framework is an image tuple 〈Ia, Ip, In〉, where Ia is an
anchor image, Ip represents a positive sample image from the
same place, and In denotes a negative sample image from a
different place. VGG16 [18] is adopted as the backbone net-
work, except that the last max pooling layer is removed. Fol-
lowing the backbone network, a hierarchical feature extrac-
tion module (Sec. 2.2) is introduced to generate hierarchical
feature embedding {Fi|i ∈ [0, 3]}, where Fi means features
in the hierarchy i. In particular, when i = 3, the features
come from the detailed feature extraction process. Otherwise,
they come from the context-aware feature extraction process,
as shown in Fig. 1(b). After that, these features are sent to
the weighting similarity metric module to calculate the simi-
larities between image pairs (Sec. 2.3). The whole network is
optimized by triplet loss in an end-to-end manner (Sec. 2.4).

2.2. Hierarchical Feature Extraction
The hierarchical feature extraction module, which contains
two parts: context-aware feature extraction and detailed fea-
ture extraction, is introduced to generate hierarchical feature
embedding.

Context-aware feature extraction. For the reason that
the operation of the standard single convolutional kernel is
performed on the local receptive field, the spatial correspon-
dence among landmarks in the scenario is neglected. In our
context-aware feature extraction block, dilated convolutional
layers with different kernel sizes are adopted to aggregate the
multi-size regions on the CNN feature maps. Given the out-
put features f of Conv 5 block, the operation to capture the
contextual features Fi,c at scale i is defined as:

Fi,c = F (Wki,d, f) , Fi,c ∈ R
D1×H1×W1 , (1)

where F represents dilated convolutional operation, Wki,d is
the convolutional filters with the kernel size ki and dilation
rate d. In our implementation, three kernel sizes, i.e., 3, 5 and
7, are utilized. The dilation rate is set to 2. Then, the ex-
tracted multi-scale contextual features can be summarized as
{F0,c,F1,c,F2,c}. In this way, spatial correspondence among
landmarks is sufficiently aggregated, which is effective for
encoding the local cues for complex scenes in VPR.

Detailed feature extraction. In contrast to semantic fea-
ture maps captured from high layers, feature maps extracted
from shallow layers remain higher spatial resolution and re-
serve more detailed information, such as edges and corners. It
is argued that detailed information helps to have a better rep-
resentation of scene structure and can increase the integral-
ity of feature embedding. Therefore, features from shallow
layers are added into the final feature embedding. In prac-
tice, features extracted from Conv 3 block are utilized for a
balance between reserving detailed information and encoding
sufficiently. Furthermore, in order to filter out the redundant
and useless information of the shallow layer features, a re-
calibration block is designed. Specifically, a scaling mask is
generated by the recalibration block to refine the detailed in-
formation through a Hadamard product of b and H (b):

F3,l = b�H (b) , F3,l ∈ R
D2×H2×W2 , (2)

where b is the output features of Conv 3, H (·) is the learned
function of the recalibration block. To limit the model com-
plexity, the recalibration block is made up of a 3 × 3 con-
volutional layer and a sigmoid function, which is simple yet
efficient.

By combining high-level contextual features with refined
detailed features, the final hierarchical feature embedding X
generated by HFM is summarized as:

X = {F0,c,F1,c,F2,c} ∪ {F3,l} = {Fi|i ∈ [0, 3]} . (3)

2.3. Weighting Similarity Metric
After extracting hierarchical features, a weighting similarity
metric module, which includes a part-based similarity metric
layer and a weighting layer, is designed to calculate the sim-
ilarities. Specifically, the part-based similarity metric layer
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Fig. 2. Sample images in (a) Nordland dataset (b) St Lucia dataset,
and (c) Gardens Point dataset. Each column corresponds to an image
pair that depicts the same place under different conditions.

measures the similarity scores between paired features in
the same hierarchy. The weighting layer fuses the similarity
scores into a final similarity decision by learning a set of
parameters that evaluate the importance of each score.

Before calculating the similarity, we first partition the fea-
tures Fi into four parts and then aggregate column vectors in
each part into a part-level column vector vm by a global av-
erage pooling operation (·), as shown in Fig. 1(a). By this
way, an enhanced feature representation Fi with partial infor-
mation is obtained:

Fi = {vm|m ∈ [0, 3]} , i ∈ [0, 3]. (4)

Then, the similarity score between F
q
i (from query image fea-

ture embedding Xq) and F
r
i (from reference image feature

embedding Xr) is calculated by:

si = PBS
(
F
q
i ,F

r
i

)
, i ∈ [0, 3], (5)

where PBS(·) is the part-based similarity metric [19]. The
calculation process of PBS(·) is as follows:

1) By calculating the similarity of each pair of part-level
column vector, a 4×4 similarity matrix M is obtained. In de-
tail, the element Mm,n denotes the cosine similarity between
vq
m ∈ F

q
i and vr

n ∈ F
r
i :

Mm,n = cos < vq
m,vr

n >, m, n ∈ [0, 3]. (6)

2) For two images that come from the same place, the
diagonal similarity scores derived from the same part-level
should be higher, while others are lower. Diagonal similarity
scores are then averaged and weighted to the final similarity
score si:

si = G(d2 − d1) · d1,

d1 =
1

4

3∑
m=0

Mm,m, d2 =
1

6

3∑
m=0

∑
n>m

Mm,n,
(7)

where G (·) is a nonlinear function utilized to self-adaptively
reweight d1 to a more discriminative similarity score, ac-
cording to the difference between average diagonal similarity
scores and average off-diagonal similarity scores. In practice,
sigmoid is exploited as the nonlinear function.

At last, similarity scores {si|i ∈ [0, 3]} between Xq and
Xr in different hierarchical correspondence are fused to be

Table 1. Summarization of Testing Datasets.

Datasets
No. of frames Variation

Reference Test Appearance Viewpoint
Nordland 2000 2000 Severe Moderate
St Lucia 900 3600 Moderate Moderate

Gardens Point 200 400 Severe Severe

the final similarity decision Sdec through the weighting layer:

Sdec =

3∑
i=0

wi · si, s.t.

3∑
i=0

wi = 1, (8)

where wi is the weight parameter. Instead of tuning the
weights by grid search or random search, the designed
weighting layer learns these weights automatically through a
standard backpropagation algorithm. In the testing stage, the
weights are fixed to the best-learned values, and Sdec is used
to determine whether the query image and reference image
belongs to the same place.

2.4. Loss Function
In the training stage, given an image triplet 〈Ia, Ip, In〉 and
their feature embedding 〈Xa, Xp, Xn〉, the similarity scores{
s+i |i ∈ [0, 3]

}
between Xa and Xp,

{
s−i |i ∈ [0, 3]

}
be-

tween Xa and Xn are calculated by the PBS(·). The loss
function is based on triplet loss and summarized as:

L =
3∑

i=0

wi ·max
(
s−i − s+i + δ, 0

)
, (9)

where wi is the weight from the weighting layer, δ is a con-
stant parameter giving the margin.

3. EXPERIMENTS AND DISCUSSIONS

This section first describes the details of datasets and evalu-
ation protocols. Then the implementation details are given.
Finally, experimental results and analyses on three datasets
are presented in detail.
3.1. Datasets and Evaluation Protocols
Training dataset. The whole network is trained on the
SPED 900 [20] dataset, which contains 57600 images from
900 locations in the world.

Testing datasets. Three typical benchmarks, Nordland
[21] dataset, St Lucia [22] dataset, and Gardens Point [23]
dataset are used to evaluate the effectiveness of the proposed
method. Nordland dataset was recorded on a train with se-
vere appearance changes (across seasons). Spring set is used
as a reference run, and winter set is served as a revisit. St
Lucia dataset was recorded in suburb at five different times
(8:45, 10:00, 12:10, 14:10, 15:45) in a day, and on differ-
ent days over a time of two weeks with temporal variations.
08:45 sequence is adopted as a reference sequence, and others
are served as test sequences. Gardens Point dataset was cap-
tured on a campus which contained three traverses (day left,
day right, night right) with severe appearance and viewpoint
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(a) (b) (c)

Fig. 3. PR curve comparison. (a) PR curves on Nordland dataset. (b) PR curves on St Lucia dataset. (c) PR curves on Gardens Point dataset.

baseline+HFM+WSM

Fig. 4. AUC comparison on three datasets. CFE represents context-
aware feature extraction, DFE means detailed feature extraction,
HFM is a combination of CFE and DFE.

changes. Day left set is served as a reference run, and oth-
ers are applied as test sequences. The GPS annotations pro-
vided with St Lucia dataset are adopted as ground truth for
coarse correspondence. As for Nordland dataset and Gar-
dens Point dataset, frame-level correspondence is adopted as
ground truth. Details of testing datasets are summarized in
Table 1, and some example images are shown in Fig. 2.

Comparison methods. The performance of our method
is compared with several state-of-the-art methods, including
APANet [16], NetVLAD [24], CFAM [15] and DML [19].

Evaluation metrics. Following the recent visual place
recognition methods, Precision Recall (PR) Curve and Area
under Curve (AUC) are adopted to evaluate the performance.

3.2. Implementation Details
Our backbone network is initialized with the VGG16 [18]
model pre-trained on ImageNet [25]. Parameters of the whole
network are then fine-tuned during training. We resize the in-
put images to 320× 240. [D1, H1,W1], [D2, H2,W2] are the
corresponding output size of Conv 3 and Conv 5 block, i.e.,
[512, 20, 15], [256, 80, 60]. The margin δ in Eq. (9) is set to
0.5. The network is optimized by SGD with fixed momentum
0.9, and the batch size is 48. The learning rate is initially set to
0.01 and then reduced by a factor of 10 every 5000 iterations.

3.3. Experimental Results
Comparison with the state-of-the-art methods. Fig. 3(a)
and Fig. 3(b) show the PR curves on Nordland dataset and St

Lucia dataset, respectively. It is evident that our method out-
performs other methods by a large margin. The results reveal
the superiority of our method in handling seasonal and tem-
poral variations. Fig. 3(c) shows the PR curves on Gardens
Point dataset. Because CFAM [15] did not conduct experi-
ments on this dataset, its experimental result is not shown in
the figure. Although NetVLAD [24] and APANet [16] have
a better performance at the low recall rate on this dataset, our
method gives a higher precision as the recall rate increasing.
Results on these three benchmarks demonstrate that by dig-
ging hierarchical information and exploiting an efficient met-
ric mechanism, our method outperforms other methods.

Ablation study. Fig. 4 shows the experimental results
of ablation study. Baseline denotes our framework with-
out HFM and WSM. Note that when WSM is not used, we
use the cosine similarity metric and average fusion mech-
anism. Either embedding CFE or DFE into the baseline
(baseline+CFE/baseline+DFE), it shows consistent im-
provements over the baseline method on all the three datasets,
indicating the effectiveness of exploiting contextual informa-
tion and refined detailed information in visual place recogni-
tion. More importantly, by cooperating DFE with CFE, base-
line+HFM outperforms baseline+CFE and baseline+DFE,
showing complementary property of DFE and CFE. At last,
combining WSM with HFM (baseline+HFM+WSM) brings
about promising improvement, which verifies that the pro-
posed WSM can make full use of hierarchical information
and fuse them efficiently.

4. CONCLUSION

This paper presents a hierarchical feature extraction module
and a weighting similarity metric module to exploit hierarchi-
cal information for visual place recognition. Compared with
previous methods, our method makes full use of visual cues
in the scenario by extracting multi-scale contextual features
and refined detailed features. What’s more, for efficiently
exploiting the hierarchical information, the weighting sim-
ilarity metric module is designed to measure the similarity
score between features in the same hierarchy and learn the
decision fusion weights automatically. Experimental results
show that our method achieves state-of-the-art performance
on three typical benchmarks. Besides, ablation study vali-
dates the effectiveness of each component of our method.
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