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ABSTRACT

Discriminative target representation is vital for data association in
multi-tracking. In order to increase the discriminative power, pervi-
ous works always combine bunch of features for target representa-
tion. However, this is prone to error accumulation and unnecessary
computational cost, which may increase identity switches in data as-
sociation on the contrary. To address this problem, we propose a
hierarchical data association scheme which gradually combines fea-
tures to the minimum requirements of discriminating ambiguous tar-
gets. In addition, indoor multi-tracking is more challenging due to
frequent occlusion, view-truncation, large scale and pose variation,
which may bring considerable unreliability for target representation.
To handle this a novel depth-invariant part-based appearance mod-
el using RGB-D data is proposed . The depth-invariant appearance
have stable length metric proportional to the absolute length metric
in the world coordinates, which increase its robustness to scale vari-
ation. The part-based nature makes it robust to partial occlusion and
view-truncation. Our algorithm is validated on various challenging
indoor environments and it demonstrates high processing speed up
to 50 fps and competitive accuracy.

Index Terms— Multiple Objects Tracking, Data Association,
Appearance Model, RGB-D

1. INTRODUCTION

Multi-tracking aims to locate moving objects, maintain their identi-
ties and retrieve their trajectories [ 1], in other words, to perform data
association based on detection responses through a video sequence.
However, this is highly challenging in crowd environments with fre-
quent occlusion, targets having similar appearances and complicat-
ed interaction. Most previous methods can be organized into two
main categories: One category takes information from future frames
[2, 3,4, 5, 6] to get better association via global analysis, like global
trajectory optimization[2], network flows [4], hierarchical tracklets
association [7], etc. However, it is not suitable for time-critical ap-
plications and is relatively computation-consuming. The other cat-
egory only considers past and current frames to make association
decisions [9, 10, 11, 12]. They usually relied on Kalman [13] or par-
ticle filter [ 14] to handle data association. Because of their recursive
nature, this category is suitable for time-critical application, but it
may easily lead to irrecoverable wrong data association in crowded
scene with similar appearance and complicated interactions. In order
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Fig. 1: Tough problems in indoor multi-tracking. The first row
shows scenes with various illuminations. The bottom two rows are
detection responses obtained from our dataset with large scale varia-
tion, frequent view-truncation, partial occlusion, and wider range of
poses than outdoor pedestrians [&].

to increase the system’s discriminative power, many pervious work-
s [11[7] [15] combine a bunch of features to calculate affinities of
detection responses in consecutive frames. But they are with unsat-
isfactory performance on handling relatively challenging indoor en-
vironments for two reasons. First, due to large appearance variation
in indoor environments, detection responses of a same target may
have large true variation. Examples of tough problems in practical
indoor environments tracking is given in Fig.1. Second, cluttered
environments inherently bring more observation errors for feature
representation. Therefore combining a bunch of features to calculate
affinities of detection responses is prone to severe error accumula-
tion, and also bring unnecessary computational cost.

In order to address above problems and to achieve a time-critical
indoor multi-tracking system, our work focus on efficiently comb-
ing features to discriminate ambiguous targets, and handling severe
appearance variations in indoor environments. Our main contribu-
tion lies in two aspects: (1) A novel hierarchical scheme based on a
self-constructed hierarchical feature space is proposed for data as-
sociation. Features are gradually fused according to the need of
discriminating ambiguous detection responses, this avoids unneces-
sary computation cost and reduce error accumulation compared to
simultaneously fusing bunch of features; (2) A novel depth-invariant
part-based appearance model is proposed to hand large scale vari-
ation and frequent view-truncation and partial occlusion in indoor
environments. We validate our approach on a challenging dataset
capturing various indoor scenes.

2. ASSOCIATION AND APPEARANCE MODEL

Motion Detection: Similar to many previous related works, data
association is conducted on detection responses obtained by a detec-
tion method. In our framework, a simple but effective indoor mov-



ing objects detection method using RGB-D is adopted with real-time
performance. But due to detection is not the focus of this article, it
will not be elaborated here.

Preliminaries: Through out the paper, R' := {r;}, denotes n
detection responses’s set at frame ¢ and r; denotes one detection
response. 7 := {7;}m denotes m existing tracklets and 7; de-
notes one tracklet. In classic association frameworks [1][7][16], link
probability between r; and 7; is a kind of distance metric which
is defined as the product of affinities based on several features, like
position, size, appearance, etc., formulated as:

Piink (T'i, 7;) = Apos (Ti, 7;)1452 (Tia E)Aap(riy T]) e (1)
However, as mentioned in Section 1, multiplying affinities based on
many features will not always increase discriminative power, on the
contrary, it is prone to error accumulation and bring unnecessary
computational cost. To address this problem, a novel hierarchical
data association scheme is proposed:

2.1. Hierarchical Data Association on Hierarchical Feature S-
pace

Hierarchical Feature Space: First a feature space F is constructed
which contains various features { fi} for describing detection re-
sponses. Based on the feature space F, a generative form of the link

probability considering observation errors e;;,e ffc and true varia-
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Then F is reconstructed into K hierarchies obeying two rules:

1) Lower hierarchies should be constructed with features which
demonstrate higher reliability on target representation in a tracking
system. In other words, feature fi should have smaller observation
error ey, , and smaller true variation vy, .

2) The kth hierarchy of the feature space 7, contains all features in
FH,_, and one more feature than Fg, _,: higher hierarchies grad-
ually have more features.

Association on Hierarchical Feature Space: For kth hierarchy Hy,
suppose there are M, tracklets and N}, detection responses to be
associated. Let Tr,, := {7}, }u, be My tracklets’ setand Ry, :=
{7, }n, be N responses’s set.

First, an affinity matrix Mg, between Ty, and Ry, is calcu-
lated. Let .A}_]Ik denote the element in the ith row and jth column
of Mm,. AZ}C is the affinity between 7; and 7; considering all
features { f1 } in Fp, (calculated via Eq.(2)).

Then, based on the affinity matrix Mg, , a hierarchical data as-
sociation algorithm is conducted to handle data association on the
kth hierarchy. The algorithm is given in the following pseudo-code
table. Its function is to find reliable links Rpg, , conflicting links
C'H,,, miss detections My, and noise detections Np, in each hier-
archy Hy.

After that, reliable links in Ry, are associated. For any noise
detection in set N, , a new tracklet is informally initialized first and
will be formally initialized if enough responses are associated to it
in subsequent frames. Thus new entry will be handled properly. For
each tracklet 7; in miss detection set My, , causes about miss are
analyzed. If miss detection is due to exit, 7; is removed from 7.
If due to occlusion, an occlusion handling strategy proposed in our
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Fig. 2: A brief illustration of hierarchical data association on hi-
erarchical feature space. Noise detection, miss detection, reliable
links and conflicting links are unified and properly handled in this
hierarchical framework.

previous work [17] is adopted. It can effectively find reappearing
response and use it to update the tracklet 7;. Conflicting links in
set Cg,, are transferred to the higher hierarchy Hy1 to be further
distinguished by combining more features in feature space Fm, , , -
This iterative process is terminated until the last hierarchy Hx
is processed or all conflicting links are distinguished. For exam-
ple in Fig.2, all conflicting links become reliable links in hierarchy
Hs. The final remain conflicting links, if any, are associated using
Nearest-Neighbour strategy for simplicity.
Feature Space Construction: In this framework, the feature space
contains four features to describe detection responses. They are po-
sition p, motion state m, color ¢ and appearance model a. For
each tracklet 77, its latest response '~ * can be denoted as t'~* =
(p§ H mzfl, ¢;, a;). Position p;-fl is represented as Euclidean lo-
cation (X7, Z7) in camera coordinates in order to avoid perspective
effect in 2D image plane, formulated as:
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where d; is depth of t;_l and « is scale factor, f,, and uo is RGB
camera’s intrinsic parameters and u; is RGB image’s width coordi-
nate. Position affinity between 7; and a new detection response ;
is calculated by:

Ap(ri| T;) = G(llpi — P57 [;0,p) )

Motion m; of t;fl in a tracklet 7; is formulated using First-order

Markov Model as: m; = pz ! p§-72, Motion affinity between 7;
and r; is:
Am(ri| T) = G([pi — P — my[;0, Em) ®)

Color feature c; is represented by the mean of 2D H-S histogram
vectors of randomly selected responses belongs to 7; in HSV color



Algorithm 1 Hierarchical Data Association Algorithm.

Input: MHk s THk- s RHk
Output: conflicting links set C' Hy reliable links set R Hy miss detection
set MHk ; noisy detection set NHk ;
initial dual-threshold 0}1 and 9%1 ;
o k k
initial Cy, , My, , Rg, , Ng, to &;
for i = 1to N do

im} i im? i im}
Ay F=max{My } Ay F=max{Mj —{Ay "}}

Np, = Np, +{rjy, }:

1:

2:

3:

4

.1

50 if Ak <0 then
6

7. endif

8

L1 L1 L2
if Apph >0} and Ak — AjPR < 6% then
i ml 'Iﬂ%
9: CHk = CHk =+ {T‘}_Ik} + {TH: s THkk };
10: end if
11: end for

12: for j = 1to My, do
. nii -j nij j niyy.
13: A :max{MHk},.AHk :max{Mka{AHk h

. o AT 1
14: if AHk < GH,C then

15: My, = My, +{T}, };

16: end if1 ‘ . 5

17: if AZ’ZJ > G}Jk and .AT}LI’jCJ - .A;LI‘;J < H%k then
1 2 .

18: Ch, = CHu, +{7’Z’Z,1‘Z’Z}+{Tglk};

19: end if

20: end for

21: Ry, ={7Tu, +Ru, — Mg, — Nu, — Cu, };

space for simplicity. Color affinity between 7; and 7; is:

1
corr(e;, c;)

Ao(ri|T5) = G( 10, %) (©)

where corr(v;, v;) calculates correlation of vector v; and v;.

2.2. Depth-Invariant Part-Based Appearance Model

Depth Invariant Transform: In order to handle appearance varia-
tion due to partial occlusion and scale change caused by perspective
effect, a novel depth-invariant part-based appearance model is pro-
posed. Given any response t; or r;, let I; = {(us, v;)} denotes its
RGB image patch inside the bounding box. Depth Invariant Trans-
form (DIT) of I; is formulated as:

i 1
Up; =o' - (Woff +di(ui — uo)*)

Ju

| ) ()
vpr = & (Hops + di(vi — 'UO)]T)
where (uo, vo, fu, fv) is RGB camera’s intrinsic parameters and o’
is scale factor. Then, I; is transformed to a depth invariant patch
I, = {(ub;,vh;)}. Here, w,;; is set to make sure the minimum
value of u%,; is 1 and H, is set to make sure the top of all depth in-
variant patches correspond to a same height in the world coordinates.
For example, DIT procedure of two patches of detection responses
of a same target are shown in Fig.3. The length metric in DIT patch-
es is proportional to the absolute length metric in the world, and top
of two patches (right) both correspond to 1.8m in the real world.
Part-based Model: The part-based model of ¢; or r; is further for-
mulated as a concatenated vector a; = (@1, @s2,: -, Qpn), and
each ay, is the 2D H-S histogram vector of a part block and bn
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Fig. 3: Scale of the red target’s detection responses changes in 2D
image plane when target moves near and far, but it maintains rela-
tively stable scale after Depth Invariant Transform (DIT). The right
part shows patches of the blue target’s detection responses before
and after DIT during the tracking process.

is number of part blocks. Different from pervious part-based ap-
proaches, as shown in right part of Fig.3, the block size of each part
has a depth-invariant size (w7, &#7), which correspond to fixed values
in the world coordinates. This makes the appearance model tolera-
ble to large scale changes. Moreover, in order to avoid interference
of view-truncations, such as bottom-half body is often truncated by
filed-of-view, or pose variations which is often caused by articulated
arms and legs, only the top-half of a target is modeled. Appearance
affinity between 7; and 7; is:

1
corr(a;, a;)

Aa(ri| T3) = G( ;o,za) ®)

In this framework, features’ affinities are all defined by Gaussian dis-
tributions and variances {Xp, Xm, X, Za } are given by experience
according to the system’s condition.

3. EXPERIMENTS AND ANALYSES

Dataset: Our method is verified on a dataset of RGB-D video
sequences capturing indoors multiple people walking from three
scenes with room area from 16m? to 36m>. This challenging
dataset presents frequent interactions, significant occlusions, vari-
ous illumination conditions and cluttered backgrounds (Fig.1 and
Fig.4). The dataset is recorded by a Kinect sensor. Height of the
sensor is set to 1.8m with a horizontal perspective. All experiments
are conducted on an Intel 75 — 2320 3.0 GHZ PC with 4.0 Gb RAM.
Implementation Details: For our approach, o and o is set to 10
in Eq.(3) and Eq.(7). Hoyy is set to 100 in Eq.(7). 2D H-S his-
togram in color and appearance model are all set to 15 bins and 16
bins. For part-based appearance model, parts number bn is set to 9
and block size { Hj , W} } (shown in Fig.3) is set to {30, 20}, due to
depth-invariant nature, these parameters correspond to absolute val-
ues in the world coordinates, they are relatively universal in the hu-
man tracking system. We empirically set {(95,05)} in Algorithm 1
to {(0.8,0.05), (0.6,0.04), (0.45,0.04), (0.3,0.04) } and set Gaus-
sian distributions’ variances {Xp, Xm, X, Xa } to {50, 25,0.2,0.2}
according to system conditions.

Evaluation Metrics: The standard metric MOTA (multiple objects
tracking accuracy) [18] is widely used to evaluate performance of
multi-tracking algorithm which measures number of miss detections
(MD), false positives (FP), and identity switches (IDS). In order to
penalize more on identity switches, in our experiments we adopted a



revised version of MOTA following [19]. Taking into consideration
of real-time capability of algorithm, we also compute the FPS.
Comparative evaluation: Three sets of comparison experiments are
elaborated and analyses are given as follows:

First we evaluate advantages of our hierarchical feature space
algorithm (HFSA) to the non-hierarchical all features algorithm
(AFA). HFSA gradually fuses features layer-by-layer, while AFA
fuses all features in one time. In the experiments, features used in
AFA also have several combinations: one is position (P), motion
(M), color (C), appearance model (A), used in our feature-space-
construction, denoted as PMCA. Others are several combinations of
position, size (S), motion, color, appearance widely used in previous
related works. MOTA (%) and FPS of algorithms with several fea-
tures combination (PMCA, PSMC, PSA) conducted on three scenes
are given in Table 1. It shows AFA has relatively lower MOTA and
lower processing speed. This is because combining all features for
each association brings unnecessary computational cost and error
accumulation. In addition, results in the 4—6 rows shows features’
combination also affects MOTA. This is because target represen-
tation based on a feature may have large true variations, such as
size which is quite unreliable in indoor environments for large scale
variation and view-truncation. Results in row 7 shows our system
performs poorly with a different features order ACMP, for it violates
the first rule of feature space construction: more reliable features
should be fused first.

Table 1: Performance of hierarchical and non-hierarchical data as-
sociation based on different combinations of features.

MOTA (%) / FPS | Scene 1 Scene 2 Scene 3
HFSA + PMCA 88.5/49.2 92.0/46.4 89.5/45.0
AFA + PMCA 87.5/10.2 90.5/11.6 83.2/10.3
HFSA + PSMC 62.5 /- 65.4/— 57.2/-
AFA + PSMC 54.5 /- 56.4/— 50.5 /-
HFSA + PSA 64.5 /- 60.2/— 53.5/-
AFA + PSA 63.2 /- 59.0/— 52.3 /-
HFSA + ACPM 62.5/16.1 60.0/153 57.5/17.5

Second, we evaluate robustness of our depth-invariant part-
based appearance model (DIPAM) in our dataset. Besides, compar-
ative experiments are also conducted with classic average-division
part-based appearance model (ADPAM) which divided responses
bounding box into blocks averagely which is used in [16], and a
state-of-the-art classifier-based discriminative appearance model
(CDAM) proposed in [ 1] which combines color histograms, covari-
ance matrixes, and histogram of gradients (HOG) for appearance
modeling. DIPAM, ADPAM and CDAM are all fused in our hi-
erarchical framework for data association. Experimental results
are also given in form of MOTA (%) and FPS, shown in Table 2.
ADPAM has low MOTA for it is vulnerable to large size variation
compared with the absolute-length block size in DIPAM. The C-
DAM performs well in MOTA for its classifier-based nature but is
more computation-consuming in appearance modeling.

Finally, due to the recursive nature of our method, we evaluate
the whole performance of our algorithm with two other classic re-
cursive frameworks based on Kalman filter (KF) and partical filter
(PF) in a 2030 frames sequence in our dataset, numbers of MD, FP
and IDS is counted. We exactly implement two classic frameworks
inspired by pervious works [13] and [14]. Quantitative results are
given in Table 3. Compared with our method, KF represents high-
er identity switch rates for it cannot handle crowd multi-targets well

Table 2: Performance of our depth-invariant part-based appearance
model and comparative appearance models.

MOTA (%) / FPS \ Scene 1 Scene 2 Scene 3
DIPAM 88.5/49.2 92.0/46.4 89.5/45.0
ADPAM [16] 76.5/50.2 80.5/49.5 71.2/42.0
CDAM [1] 87.5/10.2 90.5/11.6 83.2/12.3

and PF runs much slower for its nature of simultaneously explor-
ing multiple hypotheses during tracking. Sampled tracking results
in three scenes and tracking trails are given in Fig.4.

Table 3: Performance of our recursive framework and two other
classic recursive frameworks.

Algorithms | MOTA (%) | MD FP  IDS FPS

Ours 88.5 63 52 16 46.2
KF [13] 54.2 245 150 98 152
PF [14] 69.5 105 98 45 32

Fig. 4: Qualitative results of the proposed algorithm tested on our
dataset. Bottom part shows three tracking trails of the three rows
repectively.

4. CONCLUSIONS

In this work, we focus on efficiently combing features to discrimi-
nate ambiguous targets for better data association, and handling se-
vere appearance variations in indoor environments. Compared with
previous work, the proposed hierarchical data association scheme
based on hierarchical feature space gradually fuses more features
according to requirements of distinguishing conflicting responses,
leading to less error accumulation and lest computational cost. The
novel depth-invariant part-based appearance model effectively han-
dles large scale variation and frequent view-truncation and partial
occlusion in indoor environments. As a result, our system demon-
strates good performance in various challenging indoor scenes run-
ning in real-time. Future work will focus on learning more discrim-
inative appearance models combining RGB-D data and apply it to
mobile robot platforms.
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