
TWO-LEVEL MULTI-TASK METRIC LEARNINGWITH APPLICATION TO
MULTI-CLASSIFICATION

Hong Liu, Xuewu Zhang, Pingping Wu

Key Laboratory of Machine Perception (Ministry of Education)
Engineering Lab on Intelligent Perception for Internet of Things (ELIP)

Shenzhen Graduate School, Peking University, China
{hongliu,xuewuzhang,pingpingwu}@pku.edu.cn

ABSTRACT

Many metric learning approaches neglect that the real world
multi-class problems share strong visual similarities, which
can be exploited by learning discriminative models. In this
paper, a Two-level Multi-task Metric Learning (TMTL)
method is presented to learn a distance measure from e-
quivalence constraints. Multiple features are adopted to rep-
resent the image information and learn the distance matrices
in the first level. Then the task-specific learning paradigm
and multi-task voting mechanism make full use of pairwise e-
quivalence labels, which induces knowledge from anonymous
pairs to multi-classification. Experiments are conducted on
two challenging benchmarks PubFig and OuluVS for face
identification and lipreading respectively. The results demon-
strate that our method outperforms the recent multi-task
learning approaches and multi-class support vector machine.

Index Terms— Metric Learning, Multi-task Learning,
Face Identification, Lipreading

1. INTRODUCTION

Metric learning is an emerging field aiming at a more pow-
erful and discriminative distance from labeled examples. Re-
cently there has been considerable interest for distance met-
ric learning (DML) with various applications. Particularly,
it can significantly improve the performance for face recog-
nition [1, 2], person re-identification [3], image retrieval [4]
or tracking [5]. Also, a comprehensive survey can be found
in [6].
Most current works on metric learning focus on the Ma-

halanobis distance learning [1, 2, 7, 8]. Specifically, the KISS
Metric Learning (KISSME) [9] is designed to deal with gen-
eral pairwise constraints, which does not rely on a tedious
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iterative optimization and performs efficiently. Although re-
markable successes have been achieved on many small scale
problems, they cannot be directly transplanted to large scale
visual applications with the following disadvantages.
Firstly, many existing metric learning methods learn Ma-

halanobis distance metric from a single feature for each im-
age. However, how to learn a similarity measure with multi-
ple features has rarely been discussed in DML, since it cannot
deal with multiple feature representations directly. Specifi-
cally, the KISSME and other Mahalanobis distance learning
methods usually learn one metric without considering how
to jointly learn multiple matrices. Besides, the simple fea-
ture concatenation is in a risk of over-fitting and computation
complexity growth, which is not appropriate.
Secondly, it usually involves hundreds of classes for re-

al world applications. However, for most multi-classification
problems, we find that images from the same class subset
usually share some common properties [10], while images
from different subsets intend to be very easy to be classi-
fied. As with this problem, several metric learning approaches
have been proposed. Parameswaran et al. [11] extended the
well performed LMNN [2] to multi-task metric learning, and
Grauman et al. [12] proposed to learn a tree of metrics to in-
corporate the object hierarchy. In contrast, multi-task learning
(MTL) [13] approaches a cluster of similar tasks in parallel in
order to improve the performance on all tasks.
Accordingly, we mainly concern about the two aspects

mentioned above. Inspired by Multiple Kernel Learning [14],
we propose to learn the Mahalanobis matrices from multi-
ple features and define a unified distance metric. Basically,
it is desirable to learn distance matrices from these multiple
features so that more discriminative information can be ex-
ploited, which we call the first level. Further, some prob-
lems such as face recognition or lipreading share strong visu-
al similarities and person-specific dissimilarities, which can
be exploited from learning discriminative models. Therefore,
we extend the efficient KISSME algorithm to the multi-task
paradigm, which induces knowledge from anonymous pairs
to multi classification.
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2. ALGORITHM DESCRIPTION

Our Two-level Multi-task Metric Learning (TMTL) method
takes both the multiple features and specific task into con-
sideration. As a result, it can handle large scale data and
multi-class problems. To introduce our approach, we give an
overview of our framework. Then, we introduce our TMTL
approach and the multi-task voting scheme, which allows to a
multi-class decision by using multiple metrics.

2.1. Framework Overview

To demonstrate our two-level multi-task metric learning ex-
plicitly, face identification, which can be regarded as a multi-
classification problem, is taken as an example to illustrate. As
Fig. 1 shows, to identify a face, a specific metric is learned
for each person by using multiple features, which is regarded
as a subtask in the first level. Then a joint metric is learned
from all subtasks. To derive a metric, pairwise examples are
employed. Particularly, a similar pair indicates two face im-
ages from the same person defined as positive samples, while
a dissimilar pair is from the specific person and the rest.
After the training procedure, both the specific metric and

the joint metric are obtained. For a test image, the distances
are computed between the image and all positive images us-
ing the learned metrics. Then, a Multi-Task voting scheme is
adopted and decide which specific class(subtask) it belongs
to, which will be detailed described as follows.
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Fig. 1. Illustration of the proposed approach for face identification.

2.2. Two-level Multi-Task Metric Learning

The Mahalanobis distance between xi and xj is

d2
M
(xi, xj) = (xi − xj)TM(xi − xj) (1)

which measures the squared distance between two data points
xi, xj ∈ R

d. The learning task is to induce a valid (pseu-
do) metric and make sure M is a symmetric positive semi-
define matrix. The KISSME [9] learns a Mahalanobis met-
ric motivated by a statistical inference perspective based on a
likelihood-ratio test, where the Mahalanobis distance matrix
M is obtained by

M = Σ−1
S − Σ−1

D (2)

Algorithm 1: Two-level Multi-Task Metric Learning
Input: Training pairs

{
xki , xkj

}
∈ R

dk , k = 1, 2, ..., K ,
K is the number of feature types. Parallel task
t ∈ {1, 2, ..., T }.

Output: Projection matrices M̂k
t ∈ R(dk×dk)t .

1 Define a task-specific subset of similar pairs St and
dissimilar Dt.

2 Compute weight of task specific balance factor μ.
3 for k ← 1 toK do
4 for t← 1 to T do
5 Extract kth feature for St andDt.
6 Calculate task-specific matrix of kth feature as

shown in Eq. (4).
7 Compute shared metric in Eq. (5).
8 Obtain M̂k

t in Eq. (6).
9 end
10 end
11 return M̂k

t ∈ R(dk×dk)t .

Based on KISSME, we extend it to Two-level Multi-Task
Learning (TMTL) paradigm. In the first level, multiple fea-
tures are considered, while in the second level, we model
the information sharing mechanism among different learning
tasks. Finally, the overall distance can be calculated by the
learned multiple matrices.
Formally, denoting that k ∈ {1, 2, ..., K} is the feature

type in the first level, for each feature we model the individual
metric for each task t ∈ {1, 2, ..., T } as a combination of a
shared metric Mk

0 and a task-specific metric Mk
t . Given a

pair of training samples, we define the distance as:

d2t (xi, xj) =
K∑

k=1

(xi − xj)T(Mk
0 +M

k
t )(xi − xj) (3)

Each task defines a task-specific subset of similar and dis-
similar samples pairs: St = {(i, j) ∈ ψt|yi = yj} and Dt =
{(i, j) ∈ ψt|yi �= yj}. According to Eq. (2), the task-specific
matrix of kth feature can be calculated by

M
k
t = M

−1
St
−M

−1
Dt

=

⎛
⎝ 1

|St|

∑
(i,j)∈St

Cij

⎞
⎠

−1

−

⎛
⎝ 1

|Dt|

∑
(i,j)∈Dt

Cij

⎞
⎠

−1
(4)

whereCij = (xi − xj)T(xi − xj). Thus, the common metric
can be estimated by averaging all individual tasks, which can
be formulated as:

M
k
0 =

(
1

T

T∑
t=1

MSt

)−1

−

(
1

T

T∑
t=1

MDt

)−1

(5)
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Then, the final individual Mahalanobis distance metric is giv-
en by

M̂
k
t = M

k
0 + μMk

t (6)

Correspondingly,Mk
0 models commonalities across all tasks

for each feature. In contrast, Mk
t focuses on task-specific

characteristics, which has a balancing factor μ between the
task specific metricMk

t and the shared metricMk
0 . Hereby,

μ is the proportion of subtask samples in total.
To make our learning procedures clear, the procedures are

listed in Algorithm 1. Due to the efficiency and convenience
of original KISS metric learning, our framework works with-
out much optimization and other time cost operations. Be-
sides, the multi-task mechanism can also handle multi-class
problems thank to the task-specific characteristic.

2.3. Multi-Task Voting

To make full use of our two-level multi-task metric learning
method, all task-specific metrics are combined into a multi-
class decision. Similar to the majority voting scheme, the s-
trategy [15] is adopted which is to assign the class that wins
most pairwise comparisons.
Assume that the positive samples for task t are coinci-

dence with class label xi : yi = t. Given a test sample
xi, the voting scheme is adopted to decide which task label
the sample belongs to. In order to improve the robustness of
comparison, not only the individual distancemetric of task t is
compared, but also the complementary distance metric of task
u ∈ {u �= t|u = 1, ...T}. Then the final decision is made for
class that gets most pairwise comparisons. Details are shown
in Algorithm 2.

3. EXPERIMENTS AND DISCUSSIONS

To show the applicability of our method we conduct experi-
ments on two different standard benchmarks with rather di-
verse characteristics. The goals of our experiments are two
folds. First, we want to show that the TMTL can be applied
for face identification with anonymous pairwise labels. Ac-
cordingly, we compare our results to standard metric learning
and related multi-task learning approaches. Second, we wan-
t to show that our method can handle lipreading which is a
typical multi-class problem [16–18]. Due to the task-specific
characteristic, our methods induces knowledge from anony-
mous pairs to multi-classification. Therefore, we evaluate the
performance compared to the multi-class SVMs.

3.1. Face Identification

Face recognition is a general topic that includes both face
identification (who is it) and face verification (deciding if two
faces match). Generally speaking, it is easy to have the e-
quivalence labels, but face identification need class labels for
individual identity. Additionally, for face identification it is
not obvious how to make use of this anonymous information.

Algorithm 2:Multi-Task Voting Scheme

Input: Distance matrices M̂k
t ∈ R(dk×dk)t . Index set

ψt of each specific task. Test sample xi.
Output: Class label c ∈ {1, 2, ..., T }.

1 Initialize:
It ← 0, Label(t)← 0, c← 0, A← 0, B ← 0.

2 for t← 1 to T do
3 while u �= t, and u ∈ {1, 2, ..., T } do
4 Calculate A← min

j∈ψt∧yj=t
d2t (xi,xj).

5 if A ≤ min
k∈ψu∧yk=u

d2t (xi,xk) then

6 It ← It + 1.
7 end
8 Calculate B ← min

j∈ψt∧yj=t
d2u(xi,xj).

9 if B ≤ min
k∈ψu∧yk=u

d2u(xi,xk) then

10 It ← It + 1.
11 end
12 end
13 Label(t)← It.
14 end
15 c← argmax

t

= Label(t).

16 return Class label c.

Here, we want to show that the TMTL can take advantage of
class labels for identification problem.
In the following, we demonstrate the performance of our

method on the Public Figures Face Database (PubFig) [19].
The number of images of per individual ranges from 63 to
1536. Some illustrative examples are given in Figure 2.
Similar to the existing verification protocol in 10 folds for

Fig. 2. Examples of evaluation set in PubFig database [19].

cross-validation, we split the images in 10 non-overlapping
folds for cross-validation in the evaluation set which contains
42461 images of 140 individuals.
To extract image features, three descriptors including

LBPs [20], SIFT [1] and the “high-level” description of visu-
al face traits [19] are used. Then we demonstrate the perfor-
mance by comparing it to recent MTL methods [11] and also
benchmark to multi-class support vector machines [21]. Sim-
ilar to [22], we rank the classifier scores and compare with
different thresholds. Thus, we obtain the recall-precision
curve where the recall means the percentage of samples hav-
ing higher score than the current threshold while the precision
means the ratio of correctly classified samples.
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In Figure 3 (a), we compare TMTL to the single-task
KISSME and multi-task KISSME as described in [22]. The
TMTL method outperforms both two methods. With TMTL
we reach the accuracy of 71.20% at full recall. Moreover, the
multi-task is proved better than the single-task.
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Fig. 3. Comparison of TMTL to (a) single-task learning and MT-
KISSME in [22], (b) other MTL and MT-SVM.

Next, we benchmark to recent MTL methods MT-LMNN
[11] and MT-SVM [21]. In order to keep the consistency
of comparison, all the methods are implemented using the
same features as TMTL does. As shown Figure 3 (b), the
standard multi-class one-vs-all SVM reaches with 61.80%
while MT-LMNN reaches with 59.6% at full recall. Howev-
er, the TMTL beats both by 9.4% and 10.6%. Admittedly,
the TMTL gains information from pairwise labels and the
task-specific learning is favorable.
3.2. LipReading
The OuluVS dataset [16] consists of 20 subjects uttering 10
phrase five times at resolution of 720 × 576. The specific
task is to learn a distance metric for each phrase with pair-
wise equivalence labels. However, there is no predefined set
or procedure to obtain dissimilar pairs. Hence, we generate
dissimilar pairs by randomly combining utterance of different
phrases, while the similar pairs are from the same phrase.
To compare our method to other approaches, we did

the same preprocessing and experimental setting described
in [17]. Specifically, for the Subject Independent (SID) ex-
periment, the leave-one-subject-out is explored in the uttering
database. In particular, each phrase corresponds a sub-task
and there are 19 × 5 utterances with total C2

95 similar pairs,
which are all from the same phrase. While the dissimilar
pairs are composed by combining each current phrase ut-
terance and the rest different phrase utterances which are
randomly selected. For the Subject Dependent (SD) exper-
iment, the leave-one-utterance-out is performed. That is,
training sets are the first 4 utterances of each phrase from all
speakers. There are 20 × 4 utterances which has total C2

80

similar pairs. Similarly, the dissimilar pairs are generated by
randomly selecting the rest different phrase utterances.
To represent the utterance, three descriptors LBPs [16],

HOG [23] and MIP described in [24] are adopted. Then all
the feature vectors are projected into a low dimensional sub-
space by PCA and the training is performed in all phrase-
specific task parallelly. Further, the multi-task voting scheme
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Fig. 4. Accuracy improvement on per phrase

is adopted to decide which phrase the test utterance belongs
to. After the same procedure is repeated on each speaker
(SID) and each utterance (SD) respectively, the overall re-
sult is obtained. To compare with multi-SVMs, experiments
are conducted with the same feature in [16, 23]. In Fig. 4,
we compare the relative performance change for per phrase
with single-task learning, multi-SVMs and TMTL with sin-
gle feature. Accordingly, most phrases can be improved by
TMTL. Finally, the results of Lipreading are listed in Table
I. Our method outperforms the one-vs-all SVMs in [16, 17].
Further, multiple features in TMTL produce an improvement
to less features. Also, TMTL can match the state-of-the-arts
RFMA [23]. Essentially, it is attributed to both learning the
more discriminativemodels frommultiple features and induc-
ing anonymous information in a multi-task way. Besides, the
sharing mechanism among different learning tasks also con-
tribute to getting information from pairwise labels.

Table I. Lipreading results of SID and SD experiments on OuluVS.

Methods Classifier Accuracy (%)
SID SD

LBP-TOP [16] SVM 58.85 64.20
Curve Match [17] SVM 81.30 85.10
RFMAHOG+LBP Distance Matching 86.40 93.60in [23]
RFMAfusion [23] Distance Matching 89.70 97.30
TMTLLBP−TOP Multi-Task Voting 85.45 86.57
TMTLHOG+LBP Multi-Task Voting 87.25 92.76
TMTLmulti−feature Multi-Task Voting 88.94 95.82

4. CONCLUSIONS

We propose a Two-level Multi-task Metric Learning (TMTL)
method to learn a distance metric from equivalence con-
straints in a multi-level view. Our method jointly learns mul-
tiple matrices frommultiple features in a multi-task paradigm.
It exploits the shared similarities as well as task-specific in-
formation among different learning tasks, which is scalable
to large datasets and capable to multi-class problems. Essen-
tially, our model allows knowledge transfer from anonymous
pairs which combines the information both effective image
understanding and multi-task learning. Moreover, experi-
ment results also shows that our method has a wide range of
applications, which can be exploited in the future.
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