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ABSTRACT

Visual speech recognition also known as lipreading can im-
prove robustness of automatic acoustic speech recognition e-
specially under noisy environments. However, it remains a
challenging topic considering the variety of speaking char-
acteristics and confusion between visual speech features. In
this paper, we propose an automatic lipreading method by
using a new lip tracking method and multiple visual infor-
mation fusion to tackle the problem. First, a method of face
landmark estimation based on regression is employed for lip
detection, based on which a geometric-based shape invariant
feature (SIF) is put forward. Moreover, it can also be applied
to the removal of the non-speaking utterance. Then the mo-
tion interchange patterns and spatial-temporal descriptors are
also adopted to describe the lip information, where the Bayes
combination strategy is applied. The proposed method is ex-
plored on three benchmark data sets: Avletters2, OuluVS and
PKUVS. Experimental results demonstrate promising results
and show effectiveness of the proposed approach.

Index Terms— Visual Speech Recognition, Shape Invari-
ant Features, Motion Interchange Patterns, Bayes Combina-
tion

1. INTRODUCTION

Human speech perception is a multimodal process which in-
volves information not only from what we hear but also from
what we see. Therefore, audio visual speech recognition
(AVSR) [1–3] have drawn much attention in recent years, in
which the visual signals are regarded as a supplement to im-
prove the performance of speech recognition especially when
audio is corrupted or even inaccessible. Distinguished from
acoustic signals, visual signals are not affected by acoustic
noise and can benefit human speech perception, in cases such
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as human robot interaction (HRI) with no media or audio
transmission.
However, visual speech recognition (VSR), also called

lipreading, is still a challenging problem due to the confusion
between visemes [4]. Specifically, the variations of lip shapes,
style related to speaking speeds and intensities, skin texture
and different accents could significantly affect spatiotemporal
appearances of a speaking mouth. For lipreading, a com-
prehensive survey of previous studies can be found in [5].
Specifically, there have been various models for lipreading,
such as PCA [6], DCT [1], AAM [7] and HMM [8] etc. From
a different perspective, Zhao et al. [9] employed the local
binary pattern from three orthogonal planes to extract fea-
tures and Zhou et al. [10] combined these features with graph
embedding techniques for lipreading. However, most of them
do not pay much attention to the accurate lip detection and
multi-feature representation.
We distinguish two challenges for lipreading, which are

lip detection and feature extraction. The first aims at finding
and tracking a specific facial part (mouth, lip contours etc),
which is of crucial importance for the feature extraction. The
main methods are AAM [11], ASM [12] and Haar Cascaded
AdaBoost [13], which are not accurate enough for lip de-
tection as reported in [10]. The second challenge comprises
the extraction and representation of visual information. De-
spite of the many years of research, we have not seen any
visual feature set universally accepted for representing visu-
al speech, in contrast to the well-established features (e.g.
MFCC [14]) for acoustic speech. Hence, we make improve-
ments in both aspects.
Accordingly, contributions of this paper are: 1) Usage of

regression based accurate landmark estimation for lip detec-
tion; 2) Proposal of shape invariant features and combination
with other two motion based and spatial-temporal based de-
scriptors for multi-feature fusion; 3) Establishment of a new
mandarin visual speech dataset named PKUVS, which is
designed to benchmark lipreading algorithms in mandarin,
including similar utterances. The dataset1 is available online.

1http://robotics.szpku.edu.cn/datasets/pkuvs.html
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Fig. 1. Flowchart of lip detection. Left: input utterance video, then perform the coarse face detection. Middle: fast shape regression in a
coarse to fine manner. Right: face alignment and lip localization.

2. LIP DETECTION BY SHAPE REGRESSION

Recently, there has been much focus on face alignment or fa-
cial feature localization [15–17]. Inspired by these works, a
face shape or semantic facial landmarks are adopted for lip
detection. To introduce our lip detection framework, we first-
ly introduce the shape regression model. Then the lip region
can be cropped by our landmark detection procedure.

2.1. Shape Regression Model

A face shape S = [x1, y1, ..., xN , yN ]T consists of N facial
landmarks. Given a facial image I , the goal of face landmark
detection is to estimate a shape S that is as close as possible
to the true shape Ŝ, i.e., minimizing

∥∥∥S − Ŝ
∥∥∥. Then the

boosted regression [18] is used to combine T weak regressor
(R1, ..., Rt, ..., RT ) in an additive fashion.
Given an initial face shape S0, each regressor computes

a shape increment δS from image features and then updates
the face shape. Accordingly, given N training examples{
(Ii, Ŝi)

}N

i=1
, the regressors are sequentially learnt until the

training error no longer decreases:

Rt = argmin
R

N∑
i=1

∥∥∥Ŝi − (St−1
i +R(Ii, S

t−1
i ))

∥∥∥ (1)

where St−1
i is the estimated shape in previous stage.

2.2. Lip Detection

Inspired by the shape regression model, Cao et al. [16] pro-
posed a Explicit Shape Regression (ESR) method for face
alignment. Later Burgos et al. [17] proposed the Robust Cas-
caded Pose Regression (RCPR) method which focused on ro-
bustness to occlusion and large shape variations. Compared
with [16], a smart restarts approach [17] was added for pre-
dicting failure cases early on.
However, considering that most faces in the databases for

lipreading are frontal, we do not apply the occlusion mech-
anism and interpolated shape-indexed features [17] because
of the special characteristic of databases and the need for
fast computation. Similar to [16, 17], a two-level cascaded
regression and correlation-based feature selection are adopt-
ed. Thus, the lip detection procedures are as follows: First,
a rough face box is detected, then the landmark is estimated
in a coarse-to-fine way. Next the geometric center of eyes

and month can be calculated. As a result, the mouth region is
cropped depending on the mouth center after normalizing the
face using pre-defined ratio parameters. The flowchart of our
lip detection is shown in Fig. 1.

3. MULTI-FEATURES AND FUSIONMETHOD

Based on the accurate lip detection, we proposed a geometric-
based Shape Invariant Feature (SIF), which describes the
shape change information during uttering. However, fea-
tures designed to describe the motion information are equal-
ly important. Therefore, The Motion Interchange Patterns
(MIP) [19] is firstly adopted to describe the lip motion in-
formation. Further, the local spatial-temporal descriptor [10]
is also applied. Finally, the Bayes combination strategy is
employed to make full use of the multi-feature information to
improve performance.

3.1. Shape Invariant Feature

Feature Extraction. As the efficiency of our shape regres-
sion model, lip shape can be accurately estimated. The prob-
lem is how to precisely represent the shape or geometric in-
formation, such as lip width, height, contour and area. With
this goal in mind, the shape invariant feature is proposed to
maximally use these information.
Given the lip shape Slip = [xi, yi, ..., xM , yM ]T ,M is the

number of lip landmarks including the mouth center, then the
Euclidean distance between two points is calculated. Denot-
ing Dr

t is the distance matrix of the tth frame and rth type.
Apparently, Dr

t is a symmetric matrix, only the upper trian-
gular value is focused. Moreover,Dr

t is the uniform represen-
tation with different type r for the shape as shown in Fig. 2.
Considering the variation from individual mouth appearance,
the difference matrix ΔDr

t is defined between two adjacent
frames as Eq. (2) shows.

(a) (b)

Fig. 2. MatrixDr

t represents different shapes or geometric informa-
tion with different point sizeM . (a) illustrates the lip outer contour
with the distance between landmark and mouth center. (b) shows the
inner lip contour.

ΔDr
t = |Dr

t+1 −Dr
t |, t ∈ {1, 2, ..., T } (2)
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where r is the kind of shape type and T is the total frames
of an utterance. Then, the final representation of shape in-
variant features (SIF) can be obtained by transforming ΔDr

t

into a vector by concatenating its elements of upper triangular
matrixes column by column. Here, both the outer and inner
contour shape types with mouth center are adopted, since they
contain the main shape change when one is uttering.
Removal Approach. Since the shape invariant features

are extremely facile to compute, they can also be used to re-
move the non-speaking mouth. Given a video for normal-
ization, the non-speaking mouth frames have to be firstly re-
moved to maximize performance. In this work, the removal
is done by using the shape invariant features, which is differ-
ent from training an SVM classifier in [10]. The first non-
speaking frame is regarded as the reference frame, and the
shape invariant features for each frame are extracted. Then
the kth frame’s difference of intensity is defined as:

Ik = ||Dk −Dref ||2 (3)

where Dk and Dref are the feature matrix of kth frame and
the reference frame respectively. As a result, the threshold for
different subjects to get utterance frames is adaptively chosen
as shown in Fig. 3.
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Fig. 3. Removal approach corresponding to a non-speaking mouth

3.2. Bayes Combination Fusion

Several classifiers can be trained with different descriptors
and parameters. Thus, we combine the multiple classifier-
s based on Bayes rule. Many approaches [20] such as the
voting methods that combine the results of individual classi-
fiers are only based on the label output by each classifier. It
is equally treated as one vote without considering the error
of each classifier itself. Therefore, we take the error of each
classifier itself into consideration. Consequently, the Bayes
combination is adopted
Bayes Combination. Assume that the classifiers are mu-

tually independent. Given L individual classifiers Di, i =
1, ..., L, the error of each classifierDi is described by its con-
fusion matrix [20] that is given by:

CMi =

⎛
⎜⎜⎜⎝

ni
11 ni

12 · · · ni
1c

ni
21 ni

22 · · · ni
2c

...
...

. . .
...

ni
c1 ni

c2 · · · ni
cc

⎞
⎟⎟⎟⎠ (4)

where c is the total classes. The (k, s)th entry of this matrix,
cmi

k,s is the number of elements of the data set whose true
class label is ωk, and is assigned byDi to class ωs.
Denote by s = [s1, ..., sL]

T the vector with the label out-
put of the ensemble, where si ∈ Ω is the label suggested for
x by classifier Di. The conditional independence allows for
the following representation:

P (s|ωk) = P (s1, s2, ..., sL|ωk) =

L∏
i=1

P (si|ωk) (5)

where ωk is the true class label with k = 1, ..., c. Then the
posterior probability needed to label x is:

P (ωk|s) =
P (ωk)P (s|ωk)

P (s)
=

P (ωk)
∏L

i=1 P (si|ωk)

P (s)
(6)

The denominator does not depend on ωk and can be ig-
nored, so the support for class ωk is calculated as:

μk(x) ∝
1

NL−1
k

L∏
i=1

cmi
k,si

(7)

where cmi
k,si

/Nk is an estimate of the probability P (si|ωk)
and Nk is the number of elements of total data N from class
ωk. Finally, the predicted label ω̂k that a test sample x be-
longs to can be obtained according to the following equation.

ω̂k = argmax
k

μk(x) (8)

4. EXPERIMENTS AND ANALYSIS

4.1. Preprocessing

The lip regression model is trained on the Helen [15] dataset.
Then three datasets Avletters2 [21], OuluVS [9] and PKU-
VS are all preprocessed by our lip regression model, where
PKUVS is a phrase dataset in Chinese including 30 subject-
s uttering 10 phrases five times each with high resolution of
1920×1072. We recorded this new dataset to explore the per-
formance in a different language. Further, a 100× 80 mouth
region is cropped off from each of video frames. Due to the
different utterance speed of different subjects, the same path
graph based video normalization scheme in [10] is employed
and all the utterances are normalized to be 30-frame long.

4.2. Experiment A: Evaluation of landmark

Experiments are conducted in the subject independent (SID)
and subject dependent (SD) respectively. In the SID exper-
iments, the training and test data are from different subjects
and the leave-one-subject-out is explored. In the SD experi-
ments, the training and the test data are from the same subject
and the leave-one-utterance-out is performed.
To evaluate the performance of our landmark detection,

we report the average error and speed which is measured in
frames per second (fps). Errors are measured as the average
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Fig. 4. (a) Fast convergence and accurate estimation with no oc-
clusion mechanism and interpolated shape-index feature compares
with [17], but has smart restarts compared with [16]. (b) Average
error of selected six landmarks in mouth region and speed .

landmark distance to ground-truth, normalized as percentages
with respect to interocular distance [17]. Here, only the six
landmarks are selected to measure the mean error. As Fig.
4 shows, our method has a rapid convergence speed without
significantly reducing the accuracy, which is much better for
the following lipreading. Next, to demonstrate our accurate
landmark performance for lipreading, experiment on OuluVS
is conducted with two kinds of preprocessed video. One is
processed by our lip detection method, the other is detected
with Haar-Cascade in Opencv as described in [9]. Then we
compare with [10] under the same feature and normalization
as shown in Table. I.

Table I. Result of lip detection with landmark and Haar-cascade in
the SD experiment on OuluVS.

Method Using Landmark Haar-Cascade
LBPu2(8,3) 87.8% 81.5%
LBPu2(16,4) 89.6% 83.3%

LBPu2(8,3) + LBP
u2
(16,4) 91.2% 85.1%

As expected, the accurate lip detection boots the perfor-
mance for lipreading. In particular, the result shows that the
power lies in the accurate landmark estimation. From anoth-
er perspective, the accurate lip detection can distinguish the
noise from clean data, where the noise means the lip detec-
tion error while the clean data means real lip motion.

4.3. Experiment B: Evaluation of Feature Fusion

To compare our results directly to others, the same phrase in-
dexes in [9] are adopted. As shown in Fig. 5, we demon-
strate the relative accuracy improvement on per phrase using
accuracy of our feature fusion subtracted by single SIF (in
blue), MIP (in green) and LBP-TOP [9] (in red) described
in [19] on OuluVS. Accordingly, almost every phrase has an
improvement when comparing the feature fusion to the single
feature only. Further, it can be found that the improvements
on bothMIP and LBP-TOP are small while on SIF is great. In
brief, the contribution should be attributed to the MIP’s mo-
tion encodingmechanism and spatial-temporal representation
of LBP-TOP. As a result, our fusion method make full use of
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Fig. 5. The relative improvement on per phrase

these information with different patterns and outperforms the
single descriptors.
4.4. Experiment C: Comparison with previous work

We benchmark our method to recent works on three datasets,
then the overall results are calculated both in SID and SD ex-
periments in Table II. In particular, experiments on PKUVS
is conducted with specific descriptors and feature fusion. As
can be seen , our fusion method boosts the performance and
the recognition rate of SD is much higher than that of SID
experiments. This is reasonable because the uttering charac-
teristics from the same subject are quite similar. Nevertheless,
the results shows that our method can match or slightly out-
perform recent works on lipreading, which we attribute it to
our accurate landmark and fusion method.

Table II. Lipreading performances of SID and SD experiments on
three uttering databases.

Data sets Methods Accuracy (%)
SID SD

Avletters2 Cox et al. [21] - 62.56
Feature Fusion 64.38 81.54

OuluVS

Zhao et al. [9] 58.85 64.20
Zhou et al. [10] 84.70 85.10
Pei et al. [22] 89.70 97.30
Feature Fusion 86.38 93.52

PKUVS

Shape Invariant Feature 40.06 52.65
MIP2×2,α=0,3 61.76 69.23
LBPu2(16,4) 71.76 72.23
Feature Fusion 81.54 89.25

5. CONCLUSIONS

We have presented a novel lipreadingmethod by using regres-
sion based lip detection and multi-feature fusion. Specifical-
ly, a geometric-based feature is proposed and combined with
motion interchange patterns and spatial-temporal descriptors
to describe the lip information. Our framework takes advan-
tage of an accurate landmark estimation and multi-feature fu-
sion, which makes full use of the uttering information. Exper-
iments results show that our approach achieve better perfor-
mance on three benchmarks with frontal faces. In the future,
we will focus on the large variation of lip and employ the
more robust representation for multi-features.
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