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ABSTRACT

Person search, which is vital for intelligent surveillance, aims
at detecting and re-identifying pedestrians from whole mon-
itoring images. However, due to the inaccurate pedestrian
detections and extremely few instances per training identity,
it remains challenging to learn discriminative representations
only by labeled identities for person search. To this end, this
paper proposes a novel loss function called instance enhancing
loss (IEL) to learn deep identity-sensitive features by introduc-
ing unlabeled identity information. Specifically, the proposed
IEL can selectively annotate unlabeled identities with similar
appearances to labeled identities, and utilize these unlabeled
identities in conjunction with labeled identities to train the per-
son search network. The amount of unlabeled identities used
as labeled instances can be quantitatively adjusted. Moreover,
the proposed IEL is trainable and easy to optimize by back
propagation algorithms. Extensive experiments on two bench-
mark datasets, namely CUHK-SYSU and PRW, show that our
method outperforms state-of-the-arts for person search.

Index Terms— Person Search, Feature Embedding, Loss
Function

1. INTRODUCTION
Person re-identification [1,2,3,4], a task of matching the query
person across multiple non-overlapping camera views, is still
challenging for real applications due to the heavy dependence
on manually cropped bounding boxes. In fact, both automatic
pedestrian detection and accurate person re-identification are
necessary for real-world scenarios. For this reason, person
search [5, 6, 7, 8, 9], which addresses pedestrian detection [10]
and person re-identification simultaneously, has been a novel
hot topic in intelligent surveillance and analysis [11, 12, 13].

Over the past few years, various methods for person search
have been developed, which can be divided into two categories:
indirect method and end-to-end method. Indirect methods [9]
treat pedestrian detection and re-identification as two isolated
parts, and sequentially combine them. However, inaccurate
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detections seriously affect the searching performance. To solve
this problem, great attentions have been paid to end-to-end
methods that treat pedestrian detection and re-identification
as a joint optimization problem. Xu et al. [7] simultaneous-
ly utilized a Gaussian Mixture Model [14] to capture person
commonness for detection, and applied Fisher vectors [15] to
encode person uniqueness for identification. Xiao et al. [5] de-
signed a unified Convolutional Neural Network (CNN) based
model to learn both pedestrian detection and identification
feature embedding. Zheng et al. [8] regarded person search
as a fine-grained object detection [16] issue, and proposed a
R-CNN [17] based model to address person search.

Although aforementioned end-to-end methods can reduce
the influence of inaccurate detections, it is still very difficult
to learn discriminative features for each identity. On one hand,
there are many unlabeled identities in datasets, since manually
annotating raw data will waste lots of labour. On the other
hand, unlabeled identities cannot be directly used to learn
feature embedding in a supervised training manner. To further
enlarge the distances between labeled identities and unlabeled
identities, Xiao et al. [5] proposed online instance matching
(OIM) loss, which treats unlabeled identities as negatives for
labeled identities in identification phase. Though the features
learned by OIM loss have large inter-class variations, they lack
of identity-sensitive property.

In this work, we observe that unlabeled identities with sig-
nificant texture information can be used to enhance the labeled
identities, so a novel instance enhancing loss is proposed to en-
hance identity-sensitive property of learned features. Firstly, to
make full use of unlabeled identity information, all unlabeled
identities are represented in the feature space learned by only
labeled identities. Then, the distances between the deep fea-
ture of each unlabeled identity and feature centers of labeled
identities are calculated for selectively annotating unlabeled
identities. Finally, the annotated unlabeled identities as labeled
instances are utilized in conjunction with labeled identities for
discriminative feature learning. All of above processes are in-
tegrated into the proposed IEL to learn deep identity-sensitive
features in an end-to-end manner. Furthermore, our IEL is
easy to optimize, and can improve the robustness of learned
features to inaccurate pedestrian detections.
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Fig. 1. The architecture of end-to-end person search network
with proposed instance enhancing loss. The orange circles
with blue padding represent the features of unlabeled identities
that are annotated as labeled instances (Best viewed in color).

2. END-TO-END PERSON SEARCH NETWORK

The overall architecture of the end-to-end person search net-
work is depicted in Fig. 1. The raw monitoring images cap-
tured from cameras contain not only pedestrians but complicat-
ed background as well. The person search network takes these
images as training set to learn a joint model for both pedestrian
detection and identification. Let Gk denote the k-th gallery
image in training set and Psk stand for the s-th pedestrian in Gk.
Similar to the work [5], the person search network mainly con-
sists of a backbone network, a region proposal network [18]
and an identification network. The backbone network is uti-
lized to learn common features for both pedestrian detection
and identification. The obtained feature maps FkG are fed into
the region proposal network to predict the locations of pedes-
trian candidates. According to the predicted locations, the
feature maps of pedestrian candidates are cropped from FkG,
and then resized by RoI pooling layer [19]. The resized feature
maps are sent to the identification network, generating learned
feature embedding as follows:

X =

[
x1

‖x1‖
,

x2
‖x2‖

, · · ·, xi
‖xi‖

, · · ·, xI
‖xI‖

]
, (1)

where xi denotes the feature of the i-th pedestrian candidate in
a batch, and i ∈ [1, I]. Divided by the L2-norm ‖xi‖, the fea-
ture xi is normalized to D-dimensional x̂i to restrict different
identities to the same feature space. The normalized features
are learned by the proposed instance enhancing loss. The
implementation details of the network are shown in Section 4.

3. INSTANCE ENHANCING LOSS

For only dozens of instances per identity, it is difficult to train
a fine-grained classification model with traditional loss func-
tions, such as softmax loss [6]. This work presents a new loss
function to integrate unlabeled identity information into person
search. As shown in Fig. 1, the proposed instance enhancing
loss (IEL) is connected with the person search network to learn
deep identity-sensitive features in an end-to-end manner.
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Fig. 2. Three groups of pedestrian instances from PRW dataset.
For each group, “Ref” and “Pos” are two instances of the same
labeled identity, and “Neg” is the unlabeled identity with high
similarity to “Ref” (Best viewed in color).

3.1. Formulating the Instance Enhancing Loss
The online instance matching loss [5] is built on the softmax
loss that contains a fully connected (FC) layer, a softmax layer
and a cross-entropy loss layer. The OIM loss, which replaces
the FC layer with a lookup table (LUT) V ∈ RD×C and a
circular queue (CQ) U ∈ RD×Z , can be written as:

LOIM = −
M1∑
i=1

log

(
evTt(i)x̂i/τ∑C

j=1e
vTj x̂i/τ+

∑Z
k=1e

uT
k x̂i/τ

)
, (2)

where M1 is the number of labeled instances in current batch,
and C is the number of all labeled identities. The term vTt(i)x̂i,
in which vt(i) is the t(i)-th column of V, denotes the score
of x̂i being classified as the t(i)-th labeled identity, and uTk x̂i
represents the similarity between x̂i and the k-th unlabeled
identity. The item uk is the k-th column of U (k ∈ [1,Z], and
Z is the queue size). The lower temperature parameter leads to
the harder probability distribution over different classes [20].

From Formula 2, we can see that the unlabeled identities
have not been utilized to train the person search model, and
all unlabeled identities are just treated as a negative class.
However, as shown in Fig. 2, some unlabeled identities have
very similar appearances to labeled identities, and they can be
used to enhance the feature representations of labeled identities.
To this end, we propose the instance enhancing loss as:

LIEL =−
M∑
i=1

λilog

(
evT|t(i)|x̂i/τ∑C

j=1e
vTj x̂i/τ+ α

∑Z
k=1e

uT
k x̂i/τ

)
, (3)

where M is the number of all labeled and unlabeled samples
in current batch, α is an adjustable parameter that is used to
control whether the CQ is used or not. The training weight λi
of the i-th training sample for loss calculation is defined as:

λi =
1 + sign(t(i))

2
+

1− sign(t(i))

2
· η

1 + e−γ(di−β))
, (4)

with the maximal cosine distance
di = max

j∈{1,...,C}
(x̂i · vj), (5)

where η is the maximal training weight for unlabeled identities,
and γ is the decay factor. The term di denotes the maximal
cosine distance between the normalized feature x̂i of the un-
labeled identity and the features of all labeled identities in
LUT. Specifically, to distinguish from labeled identities, each
unlabeled identity is annotated by the additive inverse of the
label of the labeled identity that has maximal cosine distance
di with the unlabeled identity. The parameter β(−1 6 β 6 1)
is the threshold that controls the number of unlabeled identities
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treated as enhanced instances. The sign function sign(t(i)) =
1 if 0 < t(i) 6 C, otherwise sign(t(i)) = -1.

As shown in Formula 3, the proposed IEL can selective-
ly utilize these annotated unlabeled identities to enhance the
corresponding labeled instances by the adjustable parameter
β. Specially, when α and β are set to 1, the weights of all
unlabeled identities in IEL will tend to zero. In this case, only
labeled identities are treated as training samples, and the For-
mula 3 is exactly the OIM loss. Therefore, the proposed IEL is
a generalized version of the OIM loss. When α and β are set
to 0 and 1 respectively, the IEL only employs labeled identities
to learn a base model, which is used to represent all unlabeled
identities. To make the feature learning procedures with IEL
clear, the detailed training steps are listed in Algorithm 1.

3.2. Optimization
The instance enhancing loss can be optimized by the back
propagation (BP) algorithm, and it can pass on the losses by
the chain rule. The gradients of IEL with respect to x̂i is:

∂LIEL

∂x̂i
=
λi
τ

 C∑
j=1

pjvj + α

Z∑
k=1

qkuk − v|t(i)|

 , (6)

with

pj =
evTj x̂i/τ∑C

j=1 e
vTj x̂i/τ + α

∑Z
k=1 e

uT
k x̂i/τ

, (7)

qk =
euT

k x̂i/τ∑C
j=1 e

vTj x̂i/τ + α
∑Z
k=1 e

uT
k x̂i/τ

, (8)

where pj is the probability of x̂i being recognized as the j-th
labeled identity, and qk is the probability of x̂i being recog-
nized as the k-th unlabeled identity. The proposed IEL uses
non-parametric LUT and CQ to store features. In the (l+1)-th
iteration, the |t(i)|-th column of LUT is updated by:

v(l+1)
|t(i)| = δv(l)|t(i)| + (1− δ)x̂i, (9)

where δ is updating rate. Although unlabeled identities can be
utilized as enhanced labeled instances, they cannot be used to
update LUT with larger δ, since they are not labeled identities
after all. If the current training sample is an unlabeled identity
with di > β, then it is used to update LUT with δ ∈ [0.5, 1].
The updating rate δ is set to 0.5 for labeled identities. The CQ
of fixed queue size Z is updated by constantly pushing new
features of unlabeled identities and popping old ones.

4. EXPERIMENTS AND ANALYSIS
The proposed method is evaluated on two benchmark datasets:
CUHK-SYSU1 [6] and PRW2 [8]. CUHK-SYSU dataset con-
tains 11,206 images of 5,532 identities in training set, while
PRW dataset contains 5,704 images of 483 identities for train-
ing. CUHK-SYSU dataset contains 2,900 query persons and a
gallery of 6,978 images in testing set, and PRW dataset con-
tains 2,057 query persons and a gallery of 6,112 images for

1http://www.ee.cuhk.edu.hk/˜xgwang/PS/dataset.html
2http://www.liangzheng.com.cn/Project/project_prw.html

Algorithm 1 Identity-sensitive features learning algorithm
with proposed instance enhancing loss
Input: Training data {Gk}, initialized parameters W← W0

of the network, initialized (LUT) V and (CQ) U, parame-
ters γ, η, δ, iteration number l← 0 and learning rate.

Output: The parameters W.
1: α← 0, β ← 1.
2: while not converge do
3: l← l + 1.
4: Compute the IEL LIEL by Formula 3.
5: Compute the gradients ∂LIEL

∂x̂i by Formula 6.
6: Update the parameters W by BP algorithm.
7: Update V by Formula 9.
8: W← W0, α← 1, l← 0, β ← β∗ (β∗ ∈ [0.5, 1])
9: Annotate the unlabeled identities according to Formula 5.

10: Compute the weights of all identities by Formula 4.
11: while not converge do
12: l← l + 1.
13: Compute the IEL LIEL by Formula 3.
14: Compute the gradients ∂LIEL

∂x̂i by Formula 6.
15: Update the parameters W by BP algorithm.
16: Update V by Formula 9 and update U.
17: return W

testing. The identities are non-overlapping between training
and testing set for both two datasets. Following [6], the gallery
size is set to 100 if not specified for CUHK-SYSU, and the
gallery size is set to 6,112 for PRW.

Implementation details: In the person search network, the
backbone work is composed of a 64×7×7 convolutional layer
and the first 10 residual units in ResNet-50 [21]. The region
proposal network [18] has the same setups as the work [5],
which is utilized to predict the locations of pedestrian candi-
dates. The identification network contains the last 6 residual
units and an average pooling layer in ResNet50. Moreover,
a 256-dimensional FC layer is used to represent the training
samples. A two-dimensional FC layer with softmax loss, and
an eight-dimensional FC layer with smoothed-L1 loss [19] are
utilized to refine the results of pedestrian candidates.

Experimental settings: This work is implemented by
Caffe [22] with a NVIDIA GeForce GTX 1080 GPU, and the
network is initialized by the ImageNet pre-trained ResNet-50
model. Following [5], the queue size Z is set to 5000 for
CUHK-SYSU, and the temperature τ is set to 0.1. Since there
are only 483 training identities in PRW dataset, Z is set to
450 for balance. The parameters β and δ are evaluated in
Fig. 2, and γ = 20, η = 0.1 are set for two datasets. In
back propagation process, we train the network with Nesterov
accelerated gradient decent [23], and the initial learning rate
is set to 0.001. The mean Average Precision (mAP) and the
top-1 matching rate are adopted as evaluation metrics.

Evaluation of parameters: Fig. 3 shows the sensitiveness
of the proposed method with respect to the parameters, i.e. δ
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Fig. 3. Evaluation of the parameter δ and β on two datasets
with one parameter changing and the other in default values.

and β. If δ and β are less than 0.5, the unlabeled identities with
low di will introduce many distractions to LUT update and
identity-sensitive features learning, so both δ and β are evalu-
ated from 0.5 to 1. In Fig. 3 (a), the mAP is the highest when
δ = 0.9 for CUHK-SYSU, and δ = 1.0 for PRW. The results
imply that the unlabeled identities cannot be utilized to update
the LUT with big weights. In Fig. 3 (b), the performance is
the best for two datasets when β is set to 0.7. If β is too small,
more unlabeled identities with dissimilar appearances are used
to train the model, which introduces many distractions. If β
is too large, the unlabeled identities cannot play great role in
enhancing the feature representations of labeled identities.

Evaluation of proposed loss: The effectiveness of the pro-
posed IEL is evaluated as shown in Table 1. Similar to the
baseline, IEL is also evaluated by training the end-to-end per-
son search network (JDI) [5]. When α = 0 and β = 1 are
set for IEL, the JDI is learned only by training labeled identi-
ties. It can be seen that our method outperforms the other two
approaches, because lots of unlabeled data are introduced as
training samples to enhance the representations of labeled iden-
tities. Note that our method performs better than the baseline
while using the ground truth (GT) boxes as a perfect detector.
Moreover, comparing with the baseline, the improvement of
our method under pedestrian detector is slightly higher than
that under GT, since the identity-sensitive features learned by
our method are robust to the inaccurate detections.
Table 1. Evaluation of our method on benchmark datasets.

Method CUHK-SYSU PRW
mAP(%) top-1(%) mAP(%) top-1(%)

JDI + OIM (Baseline) [5] 75.50 78.70 21.52 66.55
JDI + IEL (α = 0, β = 1) 77.39 77.69 22.79 69.03
JDI + IEL (Ours) 79.43 79.66 24.26 69.47
GT (Baseline) 77.90 80.50 25.22 71.12
GT (Ours) 81.61 81.48 27.66 73.21

Influence of various factors: Fig. 4 shows the perfor-
mances of the proposed method and other methods on CUHK-
SYSU dataset under different gallery sizes (Fig. 4 (a)) and
extra factors (Fig. 4 (b)), i.e. occlusion and low-resolution.
It can be seen that our method surpasses other methods by a
notable margin under different gallery sizes. Person search
mainly relies on the appearance information of persons, so
its performance is heavily influenced by the occlusion and
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Fig. 4. Comparisons between the proposed method and other
methods under different gallery sizes (a) and extra factors (b).

Table 2. Comparisons between our method and state-of-arts.

Method CUHK-SYSU PRW
mAP(%) top-1(%) mAP(%) top-1(%)

ACF + LOMO XQDA [5] 55.50 63.10 10.50 31.50
SSD + DLDP [9] 57.76 64.59 11.80 37.80
E2E PS [6] 69.69 72.97 - -
GT + DLDP [9] 74.00 76.70 - -
DPM + DLDP [9] - - 15.59 45.40
DPM Alex + IDEdet [8] - - 20.20 48.20
JDI + OIM [5] 75.50 78.70 21.52 66.55
JDI + IEL (Ours) 79.43 79.66 24.26 69.47

low-resolution. However, our method still outperforms other
methods on occlusion and low-resolution subsets, which im-
plies our method is more robust to these extra factors, and can
learn identity-sensitive features under inaccurate detections.

Comparisons with state-of-arts: Table 2 compares the
proposed method with state-of-arts on CUHK-SYSU and PRW
datasets. Our method performs better than some combination-
s of pedestrian detectors and person re-identification algo-
rithms, such as ACF+LOMO XQDA [5], SSD+DLDP [9],
GT+DLDP [9], and DPM+DLDP [9]. Moreover, our method
also outperforms some end-to-end methods, such as E2E PS
[6], DPM Alex+IDEdet [8] and JDI+OIM, since the proposed
enhanced loss can integrate lots of unlabeled identity informa-
tion to enhance the feature representations of labeled identities.
Improvements of 3.93% mAP on CUHK-SYSU dataset and
2.74% mAP on PRW dataset are achieved over JDI+OIM,
which can further verify the superiority of the proposed IEL.

5. CONCLUSIONS

In this work, we present a novel loss function called instance
enhancing loss (IEL) to learn deep discriminative identity-
sensitive feature embedding for person search. Specifically,
the proposed IEL integrates the unlabeled identity information
into feature learning process by selectively utilizing unlabeled
identities as enhanced instances. Moreover, the proposed IEL
is a generalized version of OIM loss, and easy to optimize
by typical back propagation algorithms. Experimental results
on benchmark CUHK-SYSU and PRW datasets show that
our method achieves better mAP and top-1 than state-of-arts.
Ablation studies on various factors verify the robustness of IEL
against different gallery sizes, occlusion and low-resolution.
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