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ABSTRACT

Data augmentation is known to be of crucial importance for
the generalization of RNN-based methods of skeleton-based
human action recognition. Traditional data augmentation meth-
ods artificially adopt various transformations merely in spatial
domain, which lack effective temporal representation. This
paper extends traditional Long Short-Term Memory (LSTM)
and presents a novel LSTM autoencoder network (LSTM-AE)
for spatial-temporal data augmentation. In the LSTM-AE, the
LSTM network preserves the temporal information of skeleton
sequences, and the autoencoder architecture can automatically
eliminate irrelevant and redundant information. Meanwhile, a
regularized cross-entropy loss is defined to guide the LSTM-
AE to learn more suitable representations of skeleton data.
Experimental results on the currently largest NTU RGB+D
dataset and public SmartHome dataset verify that the proposed
model outperforms the state-of-the-art methods, and can be
integrated with most of the RNN-based action recognition
models easily.

Index Terms— 3D Action Recognition, Long Short-Term
Memory, Data Augmentation, Autoencoder

1. INTRODUCTION

Human action recognition has been used in a wide range of
applications, such as video surveillance [1], human-machine
interaction [2], and video analysis [3]. With the wide spread of
depth sensors such as Microsoft Kinect, action recognition us-
ing 3D skeleton sequences has attracted a lot of research atten-
tion. Lots of advanced approaches have been proposed [4–6],
especially deep learning methods like Recurrent Neural Net-
work (RNN) and Long Short-Term Memory (LSTM). Despite
significant progress, the generalization ability of RNN models
is still a research focus.
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Relation to prior work:As neural networks often require
a lot of data to improve generalization and reduce the risk of
over-fitting, data augmentation is an explicit form of regular-
ization that is widely used during the training of deep neural
networks [7–10]. It aims at enlarging the training dataset
from existing data using various translations. Wang et al. [7]
proposed rotation, scaling and shear transformation as data
augmentation techniques based on 3D transformation to make
better use of limited supply of training data. Ke et al. [8] em-
ployed cropping technique to increase the number of samples.
Yang et al. [9] exploited horizontal flip as data augmentation
method without losing any information. Li et al. [10] designed
different data augmentation strategies, such as 3D coordinate
random rotation, Gaussian noise and video crop to augment
the scale of original dataset.

However, the aforementioned data augmentation methods
only leverage various transformations in spatial domain, which
ignore the effective representation in temporal domain. For
instance, the method horizontal flip confuses the temporal
information of skeleton sequences. Different from previous
works, our proposed LSTM autoencoder network (LSTM-AE)
can retain temporal representation of skeleton sequences. In
essence, the above methods add interference information un-
related to classification to expand the dataset. And then deep
neural networks are utilized to learn suitable features related
to classification. In contrast, with the characteristic of autoen-
coder, our LSTM-AE can eliminate irrelevant information such
as noise. In consequence, based on samples generated from
LSTM-AE, deep neural networks can directly learn discrimina-
tive features related to classification. Moreover, the proposed
regularized cross-entropy loss enables original samples to be
consistent with generated samples at semantic level.

Our main contributions are as following: (1) A novel
spatial-temporal data augmentation network (LSTM-AE) is
designed to generate samples which reserve both spatial and
temporal representation of skeleton sequences, and can be in-
tegrated with various RNN-based models. (2) A regularized
cross-entropy loss is defined to guide LSTM-AE to learn more
suitable representations of skeleton sequences.
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Fig. 1. (a) Overall framework of the end-to-end RNN-based method, which consists of the LSTM autoencoder network and RNN-based
Models. (b) The contrastive network with LSTM-AE. (c) The baseline LSTM network (RNN-based method without LSTM-AE).

2. THE PROPOSED METHOD

In this section, overall framework of the end-to-end RNN-
based method for skeleton-based human action recognition
is illustrated in Fig.1(a). It consists of LSTM autoencoder
network (LSTM-AE) and RNN-based models. Fig.1(b) and
(c) are listed for comparison with our proposed method. The
remainder of this section is organized as follows: we first de-
scribe the LSTM-AE, then introduce three RNN-based models
that we adopt in our experimental section. Finally, a regular-
ized cross-entropy loss function of LSTM-AE is introduced.

2.1. LSTM Autoencoder Network
RNN is a powerful model for sequential data modeling and
feature extraction [11], which is designed to preserve temporal
information. Due to the vanishing gradient and error blow-
ing up problems [12, 13], the standard RNN can barely store
information for long periods of time. The advanced RNN
architecture LSTM [13] mitigates this problem. An LSTM
neuron contains a memory cell ct which has a self-connected
recurrent edge of weight 1. At each time step t, the neuron can
choose to write, reset or read the memory cell governed by the
input gate it, forget gate ft, and output gate ot:

it, ft, ot = σ(Wxxt +Whht−1 + b)

gt = tanh(Wxgxt +Whght−1 + bg)

ct = ft ∗ ct−1 + it ∗ gt
ht = ot ∗ tanh(ct)

(1)

We employ LSTM neuron to build the proposed LSTM-
AE. The network is capable of retaining the effective temporal
information of skeleton sequences, which is different from the
traditional data transformations in spatial domain. As shown
in Fig.1(a), for a skeleton sequence as the input, the input
data X and the reconstruction data X through the autoencoder
architecture are input to RNN-based models in parallel. In
this way, they share the weight parameters of RNN-based
models in the process of network training. D(X) and D(X) are
the output of RNN-based models respectively, and the final
output of RNN-based models of LSTM-AE is represented as
D(X) + D(X). Fig.1(b) shows the contrastive network with
LSTM-AE, it does not have original data X as additional input
to RNN-based models. The contrastive network is utilized to
demonstrate the validity of LSTM-AE architecture.

For the autoencoder architecture of LSTM-AE, it com-
prises encoder and decoder. The encoder and decoder share

similar structure, i.e., stacking several LSTM layers. The num-
ber of LSTM layers to construct the autoencoder architecture
is flexible. Suppose both encoder and decoder contain two
layers of LSTM respectively as shown in Fig.1(a), the neurons
of the second LSTM layer in encoder is equal to that of the
first LSTM layer in decoder, which is corresponding to the
compression dimensions K. Especially, different compres-
sion dimensions affect the data reconstruction capability. To
be more specific, for the encoder step, the input data X are
mapped to a compressed data representation f(x) in a low-
dimensional subspace. For the decoder step, the compressed
data representation f(x) is mapped to a vector X in the original
data space.

2.2. RNN-based Models
Since the LSTM network is capable of modeling long-term
temporal dynamics and automatically learning feature repre-
sentations, many recent works widely leverage LSTM neurons
as basic units to build deep architectures to recognize human
actions from raw skeleton inputs. The compared LSTM archi-
tectures are introduced as follows:

Deep LSTM network (baseline): According to [14, 15],
as shown in Fig.1(c), we build the baseline LSTM network
by stacking three LSTM layers called deep LSTM network,
followed by one full-connected layer.

Deep Bidirectional LSTM (BLSTM) network: The idea
of BLSTM is derived from bidirectional RNN [16], which
processes sequence data in both forward and backward direc-
tions with two separate hidden layers. We use BLSTM instead
of LSTM to implement the baseline, which generates a new
BLSTM network.

Deep LSTM-zoneout (LSTMZ) network: Zoneout [17] is
a new method for regularizing RNNs. Instead of discarding
(setting to zero) the output of each hidden neuron with a prob-
ability during the training like dropout, zoneout stochastically
forces some hidden units to maintain their previous values
at each timestep. Hence, the computation of ct and ht are
changed as follows:

ct = dct ∗ ct−1 + (1− dct) ∗ (ft ∗ ct−1 + it ∗ gt) (2)
ht = dht ∗ht−1+(1−dht )∗(ot ∗tanh(ft ∗ct−1+ it ∗gt) (3)

where dct and dht are the zoneout masks. Based on zoneout,
we build deep LSTM-zonout network. The architecture of
deep LSTM-zoneout networks is similar to that of deep LSTM
network, including three LSTM-zoneout layers and one fully-
connected layer.
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2.3. Regularized Loss Function

To guide the proposed LSTM-AE to learn more discriminative
and suitable representations of skeleton sequences, we formu-
late a regularized loss function with cross-entropy loss for a
sequence as:

Loss = loss(ŷc, y) + loss(ŷr, y) + λ ·
∥∥X − X

∥∥
2

(4)

where y = (y1, y2, ..., yC)
T denotes the groundtruth label for

each skeleton sequence. and C represents the total number
of classes. If a skeleton sequence belongs to the ith class,
yi equals one; otherwise, yi equals zero. loss(ŷc, y) denotes
classification loss and loss(ŷr, y) denotes the reconstruction
loss. The cross-entropy loss is utilized to formulate the two
losses as:

loss(ŷc, y) = −
C∑

i=1

yilogŷic, loss(ŷr, y) = −
C∑

i=1

yilogŷir (5)

Specifically, as shown in Fig. 1(a), for X as the input to the
RNN-based models, ŷic in the first item indicates the probabili-
ty that the sequence is predicted as the ith class. For X as input
to the RNN-based models, ŷir in the second item indicates the
probability that the sequence is predicted as the ith class. The
scalar λ balances the significance between the reconstruction
loss and the classification loss. The regularization is to min-
imize the difference between X and X under control with l2
norm. The regularized loss function is designed to ensure the
consistency at the semantic level between X and X.

3. EXPERIMENTS

Experiments are conducted on two challenging 3D action
datasets which have limited training data. We introduce NTU
RGB+D dataset [18] and SmartHome dataset [19], and then
present and analyze the experimental results.

3.1. Datasets and Protocols

NTU RGB+D dataset [18] contains 60 actions performed by
40 subjects from various views, generating 56880 skeleton
sequences. This dataset contains noisy skeleton joints (see Fig.
2(c)), which bring extra challenge for recognition. Following
the cross-subject protocol in [18], we split the dataset into
40,320 training samples and 16,560 test samples. Following
the cross-view protocol in [18], the training and test sets have
37,920 and 18,960 samples respectively. There is a great dif-
ference between the training set and test set for the same kind
of action (see Fig. 2(a)(b)). We use this dataset to show that
our spatial temporal data augmentation method can alleviate
this type of difference.
SmartHome dataset [19] contains 6 types of actions per-
formed 6 times by 9 subjects in 5 situations from single view,
resulting in 1620 sequences. Due to occlusions and the un-
constrained poses of action performers, skeleton joints contain
much noises. The noisy skeleton snaps of action “wave” are
illustrated in Fig. 3. Following the cross-subject protocol
in [19], we use subjects #1, 3, 5, 7, 9 for training and subjects
#2, 4, 6, 8 for testing.

(a) Drink water (Training set)

(b) Drink water (Test set) (c) Noisy data

Fig. 2. Snaps from NTU RGB+D dataset [18].

sit stand  with a pillow  with a laptop  with a person  

Fig. 3. Skeletons of action “wave” from SmartHome dataset [19].

Fig. 4. Visualization of recognition accuracies among different K on
NTU RGB+D (cross-view protocol).

3.2. Implementation Details
The implementation is derived from Pytorch toolbox based on
one NVIDIA GeForce GTX 1080 GPU and our codes are open
source1. For the LSTM-AE, the layers of LSTM in encoder
and decoder are set as two. For the RNN-based models, each
LSTM layer is composed of 100 LSTM neurons, and the
number of neurons of the FC layer is equal to the number of
action classes. Dropout [20] with a probability of 0.5 is used
to alleviate overfitting. Adam [21] is adapted to train all the
networks, and the initial learning rate is set as 0.001. For deep
LSTM-zoneout network, the value of zoneout is set as 0.1.
The batch sizes for the SmartHome dataset and NTU RGB+D
dataset are 32 and 256 respectively.

3.3. Experimental Results
Evaluation of LSTM-AE network. Fig. 4 shows the visual-
ization of recognition accuracies of RNN-based methods with
LSTM-AE at different compression dimensions K on NTU
RGB+D (cross-view protocol). Owing to the dimension of
each frame is 150 for NTU RGB+D dataset, we change the
value of K from 25 to 125. As shown in Fig. 4, our LSTM-
AE(D(X) + D(X)) performs better than the baseline (deep
LSTM network), especially improves the accuracy by 4.32%
when K equals 100. When K is small, the reconstruction data
lacks sufficient information of original data for classification.

1https://github.com/Damilytutu/LSTMAE
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Fig. 5. Visualization of sequence among different λ for action making
a phone call on NTU RGB+D dataset.

Table 1. Comparison of recognition accuracies among different RNN-
based models on NTU RGB+D dataset. Legend: w/o L is short for
”without LSTM-AE”.

Models NTU RGB+D (CS) NTU RGB+D (CV)
w/o L LSTM-AE w/o L LSTM-AE

Deep LSTM 70.81% 73.31% 79.60% 83.92%
Deep BLSTM 72.03% 74.66% 80.91% 84.78%
Deep LSTMZ 78.14% 80.63% 85.73% 88.56%

When K is large, the reconstruction data still involves irrele-
vant information. Therefore, the value of K affects the quality
of reconstruction data. In addition, LSTM-AE(D(X)) and
LSTM-AE(D(X)) gains 1.57% and 2.01% respectively than
the baseline at K = 100, which validates the effectiveness of
spatial-temporal data augmentation. Especially, the accuracy
of contrastive network (77.64%) is worse than the baseline,
which further indicates the effectiveness of the LSTM-AE
architecture.

Evaluation of regularized loss function. Fig. 5 shows
the visualization of action making a phone call among differ-
ent λ. The first row represents the original skeleton sequence.
When λ = 0, generated data and original data are merely simi-
lar at the feature level. When λ = 10, we can see generated
data are very similar to original data, which still reserve irrele-
vant information consequently. While when λ = 1, compared
with original data, the generated data enlarge the movement
of the hand joints and meanwhile weaken the foot movement.
Since the movement of action making a phone call focus on the
hands, the generated data are more beneficial for classification
than original data.

Evaluation of different RNN-based models. Table 1
shows the recognition accuracies of applying LSTM-AE on
NTU RGB+D dataset with different RNN-based models. For
cross-view protocol, our method outperforms deep LSTM
network (baseline), deep BLSTM network and deep LSTMZ
network by 4.32%, 3.87% and 2.83%, respectively. These
results indicate that models trained with LSTM-AE have sig-
nificant improvement, validating our method is applicable to
various LSTM architectures.

- Comparing with data augmentation methods. Fig.6
shows the performance among Scale, Rotation and our LSTM-
AE on the NTU(cross-subject), NTU(cross-view) and S-
martHome dataset respectively. Our LSTM-AE outperforms
the other two methods. Especially in comparison with the
baseline without any augmentation, our LSTM-AE brings up

Fig. 6. Performance evaluation among different data augmentation
methods on NTU RGB+D and SmartHome datasets in accuracy(%).
Table 2. Comparison of our method with the state-of-the-art methods
on NTU RGB+D dataset (cross-subject and cross-view protocols).

Methods CS CV
HBRNN-L [22] 59.07% 63.97%

Part-aware LSTM [18] 62.93% 70.27%
ST-LSTM+Trust Gate [23] 69.20% 75.70%

Geomeric Features [24] 70.26% 82.39%
GCA-LSTM [25] 74.40% 82.80%

Skeleton Visualization [3] 77.69% 83.67%
Clips+CNN+MTLN [8] 79.57% 84.83%

Deep LSTMZ 78.14% 85.73%
Deep LSTMZ + LSTM-AE(Ours) 80.63% 88.56%

Table 3. Comparison of our method with the state-of-the-art methods
on SmartHome dataset (cross-subject protocol).

Methods CS
ConvNets [26] 67.22%

JTM [27] 71.11%
SM+MM [19] 77.92%

Skeleton Visualization [3] 78.61%
Deep LSTMZ 75.74%

Deep LSTMZ + LSTM-AE(Ours) 78.82%

to 4.32% accuracy improvement for cross-view protocol on
NTU RGB+D. We can see the performance of the method
”Scale” and ”Rotation” is affected by the datasets. Since the
main problem of NTU RGB+D is multi-view, the method
”Rotation” performs better than ”Scale”. Using cross-subject
protocol on SmartHome, the method Scale gains 4.01% than
Rotation. Our method works well on both datasets, since
the viewpoint changes and scale variations are automatically
handled by our spatial temporal data augmentation method.

Comparison with the state-of-the-art methods. In Ta-
ble 2 and 3, we compare our method with the state-of-the-art
methods on NTU RGB+D and SmartHome. Our method out-
performs the state of the art. Specifically, based on deep LST-
MZ, our method achieves the highest accuracy of 80.63% and
88.56% using cross-subject and cross-view protocol respec-
tively on NTU RGB+D, and obtain 78.82% using cross-subject
protocol on SmartHome.

4. CONLUSIONS
This paper presents a novel spatial-temporal data augmenta-
tion network (LSTM-AE), generating samples which reserve
the spatial and temporal information of skeleton sequences.
Meanwhile, the architecture of autoencoder can eliminate the
irrelevant information. Besides, a regularized cross-entropy
loss is designed to guide the LSTM-AE to learn more underly-
ing and discriminative representations. Experiments conducted
on public SmartHome and NTU RGB+D datasets demonstrate
that our method outperforms the state-of-the-art methods, and
can be integrated with most of the RNN-based models.
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