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ABSTRACT

Audio-visual speaker tracking in 3D space is a challenging
problem. Although the classical particle filter based methods
have shown effectiveness in audio-visual speaker tracking, the
performance degrades considerably when the measurements
are disturbed by noise. To this end, a novel two-layer par-
ticle filter is proposed for 3D audio-visual speaker tracking.
Firstly, two groups of particles, which are generated from the
audio and video streams respectively, are propagated inde-
pendently in the audio layer and visual layer. Then, the audio
and visual likelihoods are combined in an adaptive sigmoid
function, which can adjust particle weights according to the
confidence of two modalities. Finally, an optimal particle set
selected from two groups of particles is proposed to deter-
mine the speaker position and reset the particle positions in
the next frame. Experiments on AV16.3 database show that
our method outperforms the trackers using individual modal-
ities and the existing approaches in the 3D space and on the
image plane.

Index Terms— 3D speaker tracking, audio-visual fusion,
particle filter, adaptive likelihood

1. INTRODUCTION

Speaker tracking using audio-visual information has attracted
extensive attentions in the past decades due to its widespread
applications in the fields of intelligent surveillance, human-
robot interaction and smart space [1]. The conventional visual
tracker suffers from occlusions, limited view of cameras and
illumination variation [2–4], and the sound source tracker is
affected by background noise, room reverberations and inter-
mittency of speeches [5–7]. Therefore, a multi-modal fusion
tracking method that can fully exploit the complementarity of
audio and visual information is strongly demanded.

The most popular approach for audio-visual speaker
tracking is particle filter (PF), which is applicable for nonlin-
ear state space models to fuse multi-sensor data [8]. However,
audio and visual measurements that are corrupted by noise
tend to cause non-negligible errors to fusion algorithms [9].
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Therefore, the main task is to effectively combine the differ-
ent sensor streams and appropriately weight each modality
in the complex dynamic environment. The audio, shape and
spatial structure observations are fused in a joint observation
model represented by multiplication of respective likelihood-
s [10]. The direction of arrival (DOA) estimations are project-
ed to the image plane, and the visual tracker is combined with
audio data by relocating the particles around the DOA line
and re-calculating their weights according to their distance
to the DOA line [9]. In [11], the normalized probabilities of
the visual and acoustic observations are added by an adaptive
weighting factor, which is adjusted dynamically according to
an acoustic confidence measure based on a generalized cross
correlation with phase transform (GCC-PHAT) approach.

Furthermore, most methods focus on tracking the speaker
on the image plane [9, 12–14], rather than determining their
positions in the real-world reference frame, because the calcu-
lation of accurate 3D coordinates requires more complex sen-
sor configurations, error-prone parallax calculations and tri-
angulation. The particle swarm optimization (PSO) is utilized
in a stereo vision system, where the 3D projection is obtained
by the calibrated stereo camera system and triangulation [15].
The approximate target position is mapped from the image
plane to 3D word coordinates by assuming the width of shoul-
ders and camera calibration information are known [16, 17].
However, the inaccurate radius estimation is the major limita-
tion of this kind of method.

The main steps of PF include prediction (propagation),
update (measurement) and estimation. Most current formula-
tions for audio-visual tracking fuse data at the measurement
level. In this paper, a novel two-layer PF (2-LPF) is construct-
ed to fuse audio and video information at both measurement
and decision level. In 2-LPF, two PFs are employed for au-
dio and video streams and operated independently in the au-
dio layer and visual layer. Firstly, two groups of particles are
initialized with equal weights and propagated in respective
coordinates. This hierarchical structure ensures the diversity
of the particles. Secondly, audio and visual likelihoods are
combined using an adaptive sigmoid function to update parti-
cle weights. In this way, 2-LPF can adaptively adjust particle
weights according to the confidence of two modalities. Fi-
nally, an optimal particle set is selected to estimate the 3D
position of the speaker and reset the positions of the particles.
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Fig. 1. Overall framework of the proposed 3D audio-visual speaker tracking method based on a two-layer particle filter.

2. PROPOSED 3D AUDIO-VISUAL TRACKER

The dynamic state space model of the proposed method con-
sists of a state transition model P (xt|xt−1) and a multi-modal
measurement model P (at, vt|xt), where xt is the state vari-
able at time t, and (at, vt) indicates the current observation-
s of the audio signal and the video frame respectively. The
expected posterior probability distribution P (xt|at, vt) is ap-
proximated using two groups of particles, xa and xv , corre-
sponding to the audio and visual modalities.

Fig.1 depicts the framework of the proposed method. Au-
dio and visual particles are propagated and weighted in audio
layer and visual layer respectively, and then integrated in the
aggregation layer. 2-LPF is employed to track the speaker
using a three-step process of propagation (Sec.2.1), update
(Sec.2.2), estimation and resetting (Sec.2.3).

2.1. Propagation of audio and visual particles

The proposed 2-LPF is equipped with two groups of parti-
cles with associated weights, which are denoted as {xi

a, ω
i
a},

{xj
v, ω

j
v} with i, j ∈ {1, ..., Ns} respectively, where Ns is the

number of audio and visual particles. The audio particles are
propagated in 3D world coordinates and modeled in spheri-
cal coordinates, while the visual particles are propagated on
the image plane and modeled in rectangular coordinates. The
state vectors of two groups of particles are defined as:

xa(t) = [αt, βt, γt, α̇t, β̇t, γ̇t]
T ,xv(t) = [ht, lt, ḣt, l̇t]

T , (1)

where αt, βt, γt are the azimuth, elevation and radius of the
audio particle at time t, α̇t, β̇t, γ̇t are corresponding veloc-
ities, ht and lt are horizontal and vertical coordinates of the
visual particle, and ḣt, l̇t are corresponding velocities.

In the propagation step, two groups of particles are propa-
gated in the audio layer and the visual layer independently in
respective spaces by the dynamic model:

xa(t) = Gaxa(t−1) +A(t) + qa(t), (2)

xv(t) = Gvxv(t−1) + qv(t), (3)

where G is a linear motion model and qa(t), qv(t) are zero-
mean Gaussian-distributed noises with covariance Qa, Qv .

In particular, the PF in the audio layer can directly guide
audio particles to source direction by current azimuth obser-
vations. In Eq.(2),A(t) = [α̂t−α̃t−1, 0, 0, 0, 0, 0]T , where α̂t

indicates the observed azimuth at time t, α̃t−1 is the azimuth
of estimated speaker position at time t− 1.

2.2. Weight update with audio-visual likelihood

1) Audio likelihood: A two-step sam-sparse-mean (SSM) ap-
proach is employed for multi-source detection and localiza-
tion, since SSM appears to be superior to classical detection
features such as energy or SNR [18].

In general, the elevation and radius estimations of most
microphone array based sound source localization technolo-
gies are inaccurate. Therefore, the comparatively precise az-
imuth estimated value is used to calculate the audio likeli-
hood. Let α̂t represent the current azimuth estimated by SSM
approach, the audio likelihood is calculated as:

La(at|xt) = exp(−λa|α̂t − αt|2), (4)

where λa is a designed parameter, and αt is the azimuth of
the particle located in 3D world coordinates.

2) Visual likelihood: The color histogram matching
method is used to measure the similarity between the rect-
angle around the particle and the reference template defined
at initialization step. The HSV color model is extracted to
calculate Bhattacharyya distance, since HSV is observed to
be more robust to illumination variation [9]. Assuming that
the visual observation noise obeys the Gaussian distribution,
then the visual likelihood is calculated as:

Lv(vt|xt) = exp(−λvD2
HSV ), (5)

where λv is a designed parameter and DHSV is the Bhat-
tacharyya distance. The scale of the rectangle is estimated by
a scale space filter implemented in fDSST [19].

3) Audio-visual likelihood: From the Bayesian perspec-
tive, the tracking problem is to calculate the confidence of
each particle recursively. In order to measure the reliability
of particles more accurately, a particular sigmoid function is
designed to combine audio likelihood La with visual likeli-
hood Lv to update the particle weights:
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Lav(at, vt|xt) = f(La, Lv) =
κ0exp(ηaLa + ηvLv)

1 + κ0exp(ηaLa + ηvLv)
,

(6)
ωa(t) = Lav(xa(t)) = f(La(at|xa(t)), Lv(vt|xa(t))), (7)

ωv(t) = Lav(xv(t)) = f(La(at|xv(t)), Lv(vt|xv(t))), (8)

where κ0 is the initial value of the function, ηa and ηv de-
termine the intercept and slope of the sigmoid function and
indicate the reliability of two modalities. They are adjusted
adaptively according to confidence measures of the tracking
result p̃t−1 at previous frame:

ηa(t) = ςa∗La(p̃t−1)/[
1

2Ns
(

Ns∑
i=1

La(xi
a(t−1))+

Ns∑
j=1

La(xj
v(t−1)))],

(9)

ηv(t) = ςv∗Lv(p̃t−1)/[
1

2Ns
(

Ns∑
i=1

Lv(xi
a(t−1))+

Ns∑
j=1

Lv(xj
v(t−1)))],

(10)
where ςa and ςv are user-defined parameters used to balance
the measurement results.

4) Calculation of likelihood: In order to calculate the B-
hattacharyya distance of the audio particle in Lv(vt|xa(t)),
the particle xa located in 3D world coordinates is projected
to the particle ximg

a located on the image plane using a pin-
hole camera model:

[$ht, $lt, $]T = M [αt, βt, γt, 1]T , (11)

where (ht, lt) is the coordinate in pixels, $ and M is normal-
ization coefficient and projection matrix.

To obtain the azimuth information of the video particles,
the 3D coordinates are reconstructed by the inverse process
of pinhole camera model in Eq.(11) with a prior parameter of
radius γ̆t,

x3D
v = [αt, βt, γ̆t]

T , (12)

where γ̆t is determined by the radius of the nearest audio par-
ticle around the video particle.

In addition, to solve the tracking error caused by the miss-
ing visual observation when the speaker is outside the field of
view, a designed threshold is utilized:

ωj
v(t) =

 Lav(xj
v(t)),max

j
Lv(xj

v(t)) ≥ ξ

0, max
j
Lv(xj

v(t)) < ξ.
(13)

The weights of visual particles are reset to zero when the max-
imum of the visual likelihoods of all video particles at time t
are below a threshold ξ.

2.3. Estimation and resetting using optimal particle set

In the estimation step, the optimal particle set, xopt, is con-
structed by comparing the fusion weights of all the particles.
The Ns particles with the largest weight are selected to form
the optimal particle set:

xopt = {xibest
a ,xjbest

v }, (14)

where xibest
a and xjbest

v are optimal audio and visual particles
in the set of best Ns particles, ibest and jbest are respective
indexes. xopt is then used to estimate the position of the s-
peaker:

p̃t =

Ns∑
k=1

ωk
opt(t)x

k
opt(t), (15)

where p̃t is the final estimated target position and the weights
are normalized to ensure that

∑Ns

k=1 ω
k
opt(t) = 1, and k is the

index of optimal particles.
In the resetting step, the initial states of audio and visual

particles at the next frame are reset as the optimal particle set
and a resampling procedure is utilized to eliminate particles
with relatively small weights and to prevent degeneracy phe-
nomenon. Lastly, two groups of particles are returned to the
prorogation step and continue recursively.

3. EXPERIMENTS AND DISCUSSIONS

3.1. Experiment setting

The proposed tracker is tested on the AV16.3 corpus [20],
which provides the synchronized audio-visual data with con-
tinuous 3D speaker location annotations. The audio data is
recorded by a 10 cm-radius, 8-microphone uniform circular
array at the sampling rate of 16 kHz. The video is captured
by 3 monocular cameras at 25 Hz and each frame is a colour
image of 360 × 288 pixels. The camera calibration informa-
tion provided by the database is used in our pinhole camer-
a model for coordinate transformation. The experiments are
tested on seq08, 11, 12 and we only use the data captured by
one camera and one microphone array. The sequences con-
tain a single speaker with some challenging poses, such as
outside the field of the view, not facing the cameras or fast
motion. The number of audio particles, video particles and
optimal particles is set to 50. Covariance matrix Qa, Qv are
diagonal matrixes with σ2

a = 0.05, σ2
v = 5. The number of

bins used for the Hue histogram is 8. The parameters λa, λv
and κ0 in Eq.(4-6) are chosen as 15, 5 and 0.1. The threshold
ξ in Eq.(13) is set to 0.15. The average mean absolute error
(MAE) in 3D (m) and on the image plane (pixels) for 10 runs
are considered to evaluate the precision of the trackers.

3.2. Results and analysis

The proposed 3D audio-visual tracker (AV) is compared a-
gainst the PF trackers that use individual modalities only,
namely audio-only (AO) and video-only (VO). Fig.2 shows
the 3D tracking results for seq11cam3 of azimuth (rad), el-
evation (rad) and radius (m). With the aid of sound source
localization technology, AO has a high accuracy in azimuth
estimation, but lower precision of elevation and radius es-
timations. VO method shows better performances on the
image plane, but cannot locate accurate 3D coordinates using
a monocular camera. AV method can make up for the above
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Fig. 2. 3D tracking results for AV, AO and VO at azimuth
(rad), elevation (rad) and radius (m) direction on seq11c3 and
3D MAE (m).

Fig. 3. MAE of proposed method in 3D (m) and on the image
plane (pixels) versus number of particles.

deficiencies and significantly improve the tracking perfor-
mances in three directions. The bottom right graph in Fig.2
shows that the 3D error of the proposed method is far less
than AO and VO trackers.

Table 1 shows the MAE of proposed 2-LPF using ad-
ditive likelihood (AL), multiplicative likelihood (ML), pro-
posed sigmoid likelihood with fixed parameters (F-SL) and
proposed sigmoid likelihood with adaptive parameters (A-
SL). In ML, Lav is proportional to the product of the indi-
vidual likelihoods: Lav =La ∗ Lv . In AL, Lav is calculated
by combining audio likelihood with visual likelihood using a
weighting factor: Lav = εLa + (1 − ε)Lv . After extensive
experiments, ηa and ηv of F-SL in Eq.(6) are determined as
2 and 8. ςa and ςv of A-SL in Eq.(9-10) are set to (1, 2) and
(2, 4). A-SL performs better on three sequences, because the
nonlinear sigmoid function has stronger representational ca-
pacity to express particle weights and can better balance the
reliability of the two modalities with adaptive parameters.

To evaluate the convergence of the proposed algorithm,
experiments are performed by changing the number of parti-
cles from 10 to 100 on three sequences. It can be observed
from Fig.3 that the MAE decreases as the number of particles
increases, and remain stable when Ns> 50. A large number
of particles lead to extra computation cost in the implementa-
tion of the PF, while the proposed method performs well with
the limited number of particles, which effectively reduces the
computation time and ensures the real-time performance of
the tracker.

Table 2 depicts the comparison results in 3D (m) and on

Table 1. MAE of proposed 2-LPF using different likelihoods
on three sequences. (AL: additive likelihood, ML: multiplica-
tive likelihood, F-SL: sigmoid likelihood with fixed parame-
ters, A-SL: sigmoid likelihood with adaptive parameters, 3D:
MAE in 3D (m), 2D: MAE on the image plane (pixels).)

Method seq11cam3 seq12cam2 seq08cam1
Likelihood Setup 3D 2D 3D 2D 3D 2D

AL ε=0.5 0.106 5.843 0.172 9.137 0.134 4.274
ML - 0.097 5.204 0.156 7.218 0.128 3.931

F-SL (ηa, ηv)=(2,8) 0.094 5.031 0.135 5.813 0.121 3.835
A-SL (ςa, ςv)=(2,1) 0.082 3.684 0.128 5.047 0.114 3.616
A-SL (ςa, ςv)=(4,2) 0.074 3.859 0.114 5.392 0.103 3.324

Table 2. MAE of audio-visual tracking in 3D (m) and on the
image plane (pixels) on seq08, seq11, and seq12 of AV16.3,
over camera 1, 2, 3.

Sequence 3D MAE(m) 2D MAE(pixels)
seq cam [16] [17] 2-LPF [9] [17] 2-LPF

08
1 0.15 0.12 0.10 10.75 4.31 3.32
2 0.24 0.11 0.08 7.33 4.66 3.06
3 0.20 0.09 0.06 9.85 5.34 3.47

11
1 0.31 0.33 0.26 14.66 8.15 6.15
2 0.29 0.14 0.08 14.01 7.48 5.58
3 0.26 0.12 0.07 13.96 6.64 3.86

12
1 0.41 0.26 0.20 12.49 6.86 4.11
2 0.51 0.17 0.11 10.81 10.67 5.39
3 0.47 0.20 0.12 11.86 9.71 5.65

Average 0.32 0.17 0.12 11.75 7.09 4.51

the image plane (pixels) between the proposed 2-LPF tracker
and the particle filter based audio-visual trackers in [16], [17],
and [9]. The average MAEs of 0.12m and 4.51 pixels are
obtained by the proposed 2-LPF tracker, which outperform
the comparison methods in all the cases. In the framework
of 2-LPF, each layer can be operated as a particle filter, and
more specially, information from two modalities is fused in
the update and resetting step. It is clearly seen that the two-
layer structure leads to an increase in tracking performance.

4. CONCLUSIONS

This paper presents a novel two-layer particle filter for 3D s-
peaker tracking using audio-visual information. The layered
structure increases particle diversity and implement feature
fusion and decision fusion in the update and resetting steps.
The adaptive sigmoid likelihood can better balance the relia-
bility of two modalities with its strong representational capac-
ity. Therefore, 2-LPF with proposed fusion likelihood outper-
forms contrast methods. In particular, an optimal particle set
is constructed to reset particle positions, which ensures the ef-
fectiveness of the particles. The proposed tracker is tested on
the single speaker sequences, including challenging situations
such as outside the field of the view, not facing the cameras
or fast motion. Experimental results show that the proposed
method can track the speaker in 3D space as well as on the
image plane with high accuracy, and outperforms the trackers
using individual modalities and existing approaches.
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