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Abstract—As the most commonly used communication tool,
the mobile phone has become an indispensable part of our daily
life. The surface of the mobile phone as the main window of
human-phone interaction directly affects the user experience.
It is necessary to detect surface defects on the production
line in order to ensure the high quality of the mobile phone.
However, the existing mobile phone surface defect detection
is mainly done manually. Currently, there are few automatic
defect detection methods to replace human eyes. How to quickly
and accurately detect the surface defects of the mobile phone
is an urgent problem to be solved. Hence, an efficient defect
detection network (EDD-Net) is proposed. Firstly, EfficientNet is
used as the backbone network. Then, according to the small-
scale of mobile phone surface defects, a feature pyramid module
named GCSA-BiFPN is proposed to obtain more discriminative
features. Finally, the box/class prediction network is used to
achieve effective defect detection. We also build a mobile phone
surface oil stain defect (MPSOSD) dataset to alleviate the lack
of dataset in this field. The performance on the relevant datasets
shows that the proposed network is effective and has practical
significance for industrial production.

Index Terms—surface defect detection, deep learning, GCSA-
BiFPN, EDD-Net

I. INTRODUCTION

Nowadays, mobile phones affect every aspect of our lives.
People’s dependence on mobile phones is increasing day by
day, which also puts forward higher requirements on the
quality of mobile phones. However, various types of mobile
phone surface defects inevitably exist on the production line,
mainly including scratches, pits, oil stains, etc. Thus, effective
detection of mobile phone surface defects on the production
line is of great significance for quality control. Early detection
of surface defects mainly relied on manual visual inspection,
which had many limitations such as poor accuracy, strong
subjectivity, slow speed, high cost, and so on. To overcome
the limitations of manual visual inspection, machine vision
detection methods appear recently to replace the human eye
for measurement and judgment.

The existing machine vision detection methods are mainly
divided into traditional machine vision detection methods
and deep learning based detection methods. Early traditional
machine vision detection methods were based on traditional
image processing. These methods used manual features and
simple machine learning methods, focusing on how to high-
light defect features through preprocessing [1]–[5]. Generally,
a lot of preprocessing operations were required before defect
detection, such as edge detection to determine the location of

the mobile phone screen area, geometric correction to keep the
target area horizontal, color space conversion, binarization, etc.
However, the size, the shape, and the type of surface defects
of mobile phones vary differently on account of the different
image acquisition environment. It is difficult to adopt a unified
preprocessing method. With the excellent performance of the
two-stage object detectors [6]–[9] and the one-stage object
detectors [10]–[14] in the field of object detection in recent
years, researchers have begun to use deep learning to deal with
defect detection. However, the current deep learning methods
for mobile phone surface defect detection rarely pay attention
to the difference between defect detection and object detection
such as background difference, scale difference, low contrast,
and so on. Directly using the advanced object detection method
to deal with the defect detection task may not be able to
achieve good results. More attention should be paid to the
small-scale challenge and the context information around the
defects.

Thus, to address these issues, a defect dataset and an
efficient mobile phone surface defect detection network named
EDD-Net are proposed. As shown in Fig. 1, the input im-
age first passes through a lightweight backbone network
- EfficientNet [15] to extract features. Then, the GCSA-
BiFPN which consists of the bidirectional feature pyramid
module, global context module, and spatial attention module
is proposed to obtain more discriminative features. Finally,
a box/class prediction network is used to achieve defect
detection. To summarize, the main contributions are three-fold:

• For the small-scale and low contrast of the defects, we
propose an improved feature pyramid module GCSA-
BiFPN, which pays attention to the discriminative context
and spatial information, greatly improving the perfor-
mance.

• Based on the advanced object detector EfficientDet,
our EDD-Net D0-D2 are proposed. The three networks
achieve both high accuracy and better efficiency, which
are of great significance to practical application scenarios
across a wide spectrum of resource constraints.

• We develop a dataset named MPSOSD dataset for mobile
phone surface defect detection, which provides research-
worthy images for this field.

II. RELATED WORK

In this section, we provide a brief overview of existing
traditional machine vision detection methods and the deep
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Fig. 1. The network architecture of EDD-Net. It employs EfficientNet [15] as the backbone network, GCSA-BiFPN as the feature network, and uses box/class
prediction network to obtain the detection results.

learning based detection methods.

A. Traditional Machine Vision Detection Methods

The traditional machine vision detection methods focus on
the image preprocessing to achieve defect detection, mainly
through a series of operations such as morphological process-
ing, edge detection, feature extraction, and so on.

Liu et al. [1] proposed an inline defect detection system.
The system divides pixels of the input image in the image
preprocessing stage, extracts the gray-scale statistical features
of the pixels, and then uses the proposed Support Vector Data
Description (SVDD) classifier to classify the defects. Subse-
quently, QK-SVDD [2] was proposed to significantly improve
the generalization performance of traditional SVDD. Li et
al. [3] constructed an eigen-defect matrix to characterize the
variation between defect images. Liang et al. [4] transferred
the defect detection problem to that if an image can be sparsely
represented under the redundancy dictionary or not and pro-
posed sparsity ratio of the sparse representation coefficients
to determinate whether the image is defective or not. Jian et
al. [5] proposed the contour-based registration method to align
the images. Then the combination of subtraction and projection
was used to identify defects.

For traditional methods, it is necessary to preprocess the
collected images before defect detection. The preprocessing
operations are too cumbersome and inappropriate preprocess-
ing operations in cross-scenarios seriously affect the final
detection result. For the actual application scene with noisy
images, the traditional machine vision detection methods have
poor robustness and are far from reaching the industrial
demand.

B. Deep Learning based Detection Methods

Compared with traditional machine vision detection meth-
ods that tend to only work well under specified conditions,
deep learning based methods have strong robustness to a
certain extent and do not require excessive preprocessing.
In addition, the ability of deep learning for object detection
has proven to exceed traditional machine learning methods
in major international evaluations [16]. Hence, deep learning
based methods have received growing attention now.

Wang et al. [17] used the sliding window to sample on
the original image and designed deep convolutional neural
networks to automatically extract powerful features with less
prior knowledge about the images for defect detection. Yang
et al. [18] used the gray level co-occurrence matrix (GLCM)
to calculate defect features. Then fed them into the neural
network to train the defect classifier. Ma et al. [19] designed
a CNN on the basis of GoogLeNet [20], which can be
combined with the sliding window to detect the defect areas.
Lei et al. [21] proposed an end-to-end mobile phone screen
defect detection framework, which was composed of a scale
insensitive MSDDN and a self-comparison driven SCN. Zhao
et al. [22] proposed to establish a GAN to repair defect areas
in the samples, and then make a comparison between the
input sample and the restored one to indicate the accurate
defect areas. Some researchers directly used object detectors
(i.e., R-CNN methods [6]–[8], Yolo [10], SSD [13], RetinaNet
[14], etc) to detect defects [23], [24] and achieved good
performance.

The deep learning based methods omit the tedious pre-
processing, but can also detect defects well and have strong
robustness. Obviously, the defect detection task and the object
detection task are similar. However, existing deep learning
based methods rarely pay attention to their differences, such
as scale difference, context difference, and contrast difference.

III. OUR METHOD

In this section, we first introduce the overall architecture of
our proposed Efficient Defect Detection Network (EDD-Net).
Then the novel modules designed for defect detection task are
described in detail.

A. Network Architecture

As is known to us all, the defect detection task is based
on actual application scenarios and has high requirements for
scene dependence and real-time performance. In recent years,
many detectors have achieved higher accuracy on the MS
COCO dataset [25], and at the same time have become more
costly. There is also a lot of work aimed at developing more
effective detectors, such as one-stage detectors and anchor-
free detectors. Although these detectors tend to achieve higher
efficiency, they usually sacrifice accuracy. Tan et al. [12]
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TABLE I
CONFIGS FOR EDD-NET D0-D2

Input size Backbone GCSA-BiFPN Box/class
channels layers layers

EDD-Net D0 512× 512 EfficientNet-B0 64 3 3
EDD-Net D1 640× 640 EfficientNet-B1 88 4 3
EDD-Net D2 768× 768 EfficientNet-B2 112 5 3

built a scalable detection architecture EfficientDet D0-D7 with
high accuracy and efficiency within a wide range of resource
constraints, making the practical application of the detector in
different scenarios possible.

Actually, EDD-Net D0-D2 are under the framework of
EfficientDet, which can easily achieve real-time performance
while the accuracy is considerable. The overall network archi-
tecture of EDD-Net is shown in Fig. 1. The EfficientNet [15]
is used as the backbone network and the proposed GCSA-
BiFPN is applied as the feature network. Finally, we employ
the box/class prediction network to obtain the detection re-
sults. Both GCSA-BiFPN and box/class prediction layers are
repeated multiple times and the detailed network architecture
parameters are shown in Table I. More details about the core
modules in EDD-Net are introduced in the following.

B. GCSA-BiFPN

Since its introduction, the top-down structure of FPN [26]
has been widely used for multi-scale feature fusion. In recent
years, some other work is also exploring more effective
cross-scale feature fusion. PANet [27] added an additional
bottom-up pathway aggregation network on the basis of FPN.
M2Det [28] proposed a U-shaped module to fuse multi-scale
features. NAS-FPN [29] used neural architecture search to
automatically design a feature network. Although it has better
performance, it requires thousands of GPUs during the search
process. And the resulting feature network is irregular which
is difficult to explain. EfficientDet [12] proposed BiFPN to
optimize multi-scale feature fusion in a more intuitive way.
However, no matter what kind of pyramid fusion method,
it rarely used the guided context information during fusion
and the spatial information of the feature map is not fully
excavated. Hence, Global Context and Spatial Attention Bidi-
rectional Feature Pyramid Network (GCSA-BiFPN) which
consists of Bidirectional Feature Pyramid (BiFPN) module,
Global Context (GC) module, and Spatial Attention (SA)
module is proposed to obtain more discriminative features.

Global Context (GC) module: Studies [30] have shown
that high-level features with rich semantic information can be
used to weight low-level features to select precise resolution
details in segmentation task. The same idea is applied to the
BiFPN structure. And in BiFPN, the global context informa-
tion can be obtained by the following:

GC(F ) = σ(AvgPool(F )) (1)

where σ represents the sigmoid function and AvgPool()
represents the global average pooling. As shown in Fig. 2,

Fig. 2. Details of the Global Context (GC) module. The GC module use
global average pooling to generate global context information, and generate
weighted vectors after the sigmoid function to guide the feature generation of
the next level.

in the top-down pathway, high-level features perform global
average pooling to generate global context information, which
can guide the generation of low-level feature maps through the
sigmoid function. Correspondingly, in the bottom-up pathway,
the low-level features perform global average pooling to
generate global context information to guide the generation
of high-level feature maps through the sigmoid function. The
two processes complement each other and feature maps can
be generated more efficiently. Notably, only a small amount
of calculation is introduced, but it makes feature pyramid
generation more instructive.

Spatial Attention (SA) module: Most of the traditional
attention modules are applied after the convolutional layer.
However, more attention should be paid to the spatial infor-
mation of the generated feature pyramid in the defect detection
task. Thus, the spatial attention module is connected after each
pyramid layer. The spatial attention can be obtained by the
following equation:

SA(F ) = σ(f7×7([AvgPool(F ),MaxPool(F )])) (2)

where σ denotes the sigmoid function, AvgPool() and
MaxPool() represent global average pooling and global max
pooling respectively. As shown in Fig. 3, the SA module
first combines the spatial information generated by channel-
based global average pooling and channel-based global max
pooling. Then, after convolution with kernel size 7 and sig-
moid function, the weighted map is generated to optimize
the original feature representation. In this way, more spatially
discriminative information of each pyramid layer is obtained
to seek better performance.

Based on the BiFPN module, GC module, and SA module,
the GCSA-BiFPN is built as shown in Fig. 4. A list of multi-
scale features ~P in = (P in

3 , ..., P in
7 ) is obtained after backbone

network, where P in
i represents a feature level with resolution

of 1/2i of the input image. As a specific example, here we
describe the fused features at level 6 for GCSA-BiFPN:

P fi
6 = Conv(

GC(P in
7 )⊗ P in

6 +Resize(P in
7 )

2
) (3)

P si
6 = Conv(

P in
6 +GC(P si

5 )⊗ P fi
6 +Resize(P si

5 )

3
) (4)
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Fig. 3. Details of the Spatial Attention (SA) module. The SA module first
combines the spatial information generated by global average pooling and
global max pooling. Then the spatial attention is generated after convolution
and sigmoid function to optimize the original feature representation.

P out
6 = SA(P si

6 )⊗ P si
6 (5)

where ⊗ denotes element-wise multiplication, the attention
values are broadcasted during multiplication. P in

6 is the input
feature map, P fi

6 is the first intermediate feature map of
level 6 in the top-down pathway, and P si

6 is the second
intermediate feature map of level 6 in the bottom-up pathway.
P out
6 represents the final output feature map of level 6 for a

GCSA-BiFPN module. All the feature maps of other levels
are constructed in a similar manner. In order to further
improve efficiency, we use deep separable convolutions [31]
and add batch normalization and activation functions after each
convolution layer.

IV. EXPERIMENTS

In this section, we first introduce the datasets and experi-
ment setup, then we compare our method with state-of-the-art
methods. Finally, the ablation studies are conducted to verify
the effectiveness of each component in our method.

A. Datasets

MPSOSD Dataset (Mobile Phone Surface Oil Stain Defect
Dataset) is our collected the real mobile phone surface defect
dataset. It contains a total of original 750 defect images with
958 defect targets collected from two different mobile phones.
We flip the original images horizontally and vertically for data
augmentation and finally obtained 3000 defect images. The
size of each image is about 180×570. In order to increase the
difficulty of the defect detection task, the evaluation protocol is
a cross mobile phone evaluation protocol. That is, there are two
kinds of mobile phones in the dataset, A and B. The images
collected from mobile phone A are all used for training, and
the images collected from mobile phone B are all used for
testing. Finally, we divided 1700 images as the training set
and 1300 images as the testing set.

DAGM2007 Dataset [32] is a competition dataset provided
by the German Chapter of the European Neural Network
Society. The dataset consists of 10 classes of the defect in
total, including 2100 defect images. Although the defect data
is artificially generated, it is similar to the problem in the real

Fig. 4. Network structure of our GCSA-BiFPN. Based on the BiFPN, GC, and
SA module, the GCSA-BiFPN is designed with better accuracy and efficiency
trade-offs.

world. Many types of defects are very similar to the common
defect types of mobile phones. The annotations provided in the
original dataset is an ellipse around the defect, and we convert
the ellipse annotations to the bounding box annotations. For
defect images, we divided the training set and the testing set
following the original evaluation protocol. Finally, we used
1046 defect images for training and 1054 defect images for
testing.

B. Implementation Details

The implementation of our proposed method is based on the
deep learning framework PyTorch with two NVIDIA GeForce
GTX 1080 GPUs and 8G RAM. In order to ensure the
experimental results, our experiment uses EfficientDet’s pre-
trained weights on the COCO dataset for fine-tuning. Each
model is trained using Adam optimizer with learning rate 1e-4.
We use swish activation [33], [34] and also employ commonly-
used focal loss [14] with α=0.25 and γ=2.0. The aspect ratio
of the anchors is [1/2, 1, 2]. Notably, we do not use auto-
augmentation for any of our models.

C. Comparison with State-of-the-Arts

In this section, we compare the accuracy and efficiency of
our method with current advanced object detection methods
on the two datasets.

Fig. 5 shows the results of our method for detecting oil
stains on the MPSOSD dataset. It can be intuitively seen
that oil stain defects can be well detected by our EDD-Net.
Excitingly, the low-contrast oil stain (i.e., the upper right one)
which is even difficult for human eye to distinguish can also
be well detected by the EDD-Net.

As shown in Table II, we group models together if they have
similar accuracy on the MPSOSD dataset, and compare the
performance between our EDD-Net and other detectors in each
group. #Params and #FLOPs denote the number of parameters
and the number of multiply-adds. Notably, our EDD-Net
achieves better accuracy and efficiency than previous detectors
on the MPSOSD dataset. The great thing is that our EDD-Net
D0 achieves similar accuracy to RetinaNet-ResNet50 [14] with
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TABLE II
PERFORMANCE ON MPSOSD DATASET

Methods Backbone AP50 AP75 #Params #FLOPs
Yolo v3 [11] Darknet-53 85.14 42.80 61.52M 32.76B

Cascade R-CNN [9] w/FPN [26] ResNet-50 84.93 83.92 69.70M 707.66B
Cascade R-CNN [9] w/FPN [26] ResNet-101 85.83 78.29 88.64M 897.06B

EfficientDet-D0 [12] EfficientNet-B0 90.20 87.70 3.83M 2.29B
RetinaNet [14] ResNet-50 93.30 82.90 36.33M 74.17B

EDD-Net D0(ours) EfficientNet-B0 94.10 85.20 3.83M 2.30B
RetinaNet [14] ResNet-101 94.70 92.30 55.32M 101.75B

EfficientDet-D1 [12] EfficientNet-B1 95.30 94.10 6.56M 5.58B
Faster R-CNN [8] ResNet-50 95.63 55.02 27.99M 155.39B

FPN [26] ResNet-101 95.69 63.56 60.24M 432.37B
FPN [26] ResNet-50 96.24 60.74 41.30M 299.79B

Faster R-CNN [8] ResNet-101 97.36 61.64 46.94M 250.04B
EDD-Net D1(ours) EfficientNet-B1 98.40 94.70 6.56M 5.59B
EfficientDet-D2 [12] EfficientNet-B2 98.40 97.60 8.01M 10.02B
EDD-Net D2(ours) EfficientNet-B2 99.50 91.90 8.01M 10.03B

TABLE III
PERFORMANCE ON DAGM2007 DATASET

Methods Backbone AP50 AP75

Two-stage:
Faster R-CNN [8] ResNet-50 92.71 26.22
Faster R-CNN [8] ResNet-101 92.89 43.08

FPN [26] ResNet-50 96.99 62.85
FPN [26] ResNet-101 96.85 62.03

Cascade R-CNN [9] w/FPN [26] ResNet-50 96.96 71.91
Cascade R-CNN [9] w/FPN [26] ResNet-101 97.44 74.45

One-stage:
Yolo v3 [11] Darknet-53 87.81 25.97

RetinaNet [14] ResNet-50 97.10 61.40
RetinaNet [14] ResNet-101 95.40 64.50

EDD-Net D0(ours) EfficientNet-B0 95.40 56.40
EDD-Net D1(ours) EfficientNet-B1 97.10 71.20
EDD-Net D2(ours) EfficientNet-B2 96.00 66.50

Fig. 5. Detection results for oil stain on MPSOSD dataset.

32× fewer FLOPs. Interestingly, the complex detectors such
as Cascade R-CNN [9] with FPN [26] did not achieve good
performance on the MPSOSD dataset. The reason may be that
our evaluation protocol on the MPSOSD dataset is challeng-
ing, and complex detectors may not be able to pay attention
to the difference between defect detection task and object
detection task. Compared with Faster R-CNN [8] and FPN
[26], our EDD-Net D1 achieves similar accuracy with fewer
parameters and fewer FLOPs. On high-accuracy regime, our
EDD-Net D2 also consistently outperforms EfficientDet-D2
[12] with almost the same amount of parameters and FLOPs,
as it combines context information and spatial information,
which are helpful for detecting defects.

Table III compares the performance of our EDD-Net with
existing one-stage and two-stage detectors on the DAGM2007

TABLE IV
THE EFFECTIVENESS OF OUR PROPOSED MODULES

Module Backbone
EfficientNet-B0 EfficientNet-B1 EfficientNet-B2

WFF∗ 3 7 7 3 7 7 3 7 7
GC 3 3 3 3 3 3
SA 3 3 3

AP50 90.2 92.6 94.1 95.3 97.3 98.4 98.4 98.8 99.5
∗Weighted Feature Fusion.

dataset. For the two-stage detectors, FPN [26] introduces fea-
ture pyramid to improve accuracy compared to Faster RCNN
[8]. Cascade R-CNN [9] with FPN [26] cascades FPN to
further improve the performance and both AP50 and AP75 are
the best in the two-stage detectors. For the one-stage detectors,
our EDD-Net performs much better than Yolo v3 [11]. EDD-
Net D0 achieves the same AP50 with RetinaNet-ResNet101
[14]. And our EDD-Net D1 achieves the best performance
in AP50 and AP75 compared with other one-stage detectors.
Interestingly, EDD-Net D2 does not perform as well as EDD-
Net D1, which probably because the structure of the EDD-Net
D1 is more suitable for the DAGM2007 dataset. In general, our
detectors EDD-Net D0-D2 always perform well in one-stage
detectors.

D. Ablation Studies

In Section III-B, we propose the GCSA-BiFPN which
consists of BiFPN module, GC module, and SA module to
improve the accuracy of defect detection. Hence, ablation
studies are provided to comprehensively evaluate the modules
in this section.

As can be seen from Table IV, EfficientDet with Efficient-
Net B0-B2 uses weighted feature fusion while our final model
cancels weighted feature fusion and introduces GC and SA
modules. It can be seen intuitively that our GC module and SA
module have brought AP50 improvements for three different
backbones. It is worth noting that with the introduction of a
small amount of additional computation, our final complete
network is improved by 3.9%, 3.1%, and 1.1% compared to
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Fig. 6. Visual explanation of key information learned after different modules:
(a)original images; (b)Feature map of P in

4 after EfficientNet; (c)Feature map
of P si

4 after GC module; (d)Feature map of P out
4 after SA module.

the baseline network using weighted feature fusion. It proves
that our EDD-Net is more suitable for the defect detection
task.

What’s more, in order to have a more intuitive explanation
about the contribution of each module in EDD-Net, Fig.
6 shows the feature maps after different modules on the
DAGM2007 dataset. As shown in Fig. 6, it is clear that our
modules can better focus on the information of the defects.
This also validates that our GCSA-BiFPN not only incorporate
multi-scale features but also pay attention to the important
contextual and spatial information.

V. CONCLUSION

In this paper, an efficient defect detection network EDD-
Net is proposed and a defect dataset is built. Focusing on
the difference between defect detection task and the object
detection task, EDD-Net has three novel aspects to adapt to
defect detection compared with ordinary detectors. Firstly,
EDD-Net is under the framework of advanced object detector
EfficientDet which guarantees the detection results. Secondly,
a novel feature pyramid module GCSA-BiFPN is proposed
to fully use the context information and spatial information.
Thirdly, our EDD-Net D0-D2 can easily achieve real-time
performance while the accuracy is considerable, which has
practical significance in different scenarios on the production
line. In the future, we will focus on proposing a more
lightweight network to further improve efficiency while main-
taining accuracy for the defect detection task.
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