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Abstract—The fusion of audio and visual modalities is an
important stage of audio-visual speech recognition (AVSR), which
is generally approached through feature fusion or decision fusion.
Feature fusion can exploit the covariations between features from
different modalities effectively, whereas decision fusion shows
the robustness of capturing an optimal combination of multi-
modality. In this work, to take full advantage of the complemen-
tarity of the two fusion strategies and address the challenge of
inherent ambiguity in noisy environments, we propose a novel
hybrid fusion based AVSR method with residual networks and
Bidirectional Gated Recurrent Unit (BGRU), which is able to
distinguish homophones in both clean and noisy conditions.
Specifically, a simple yet effective audio-visual encoder is used
to map audio and visual features into a shared latent space
to capture more discriminative multi-modal feature and find
the internal correlation between spatial-temporal information
for different modalities. Furthermore, a decision fusion module
is designed to get final predictions in order to robustly utilize
the reliability measures of audio-visual information. Finally, we
introduce a combined loss, which shows its noise-robustness
in learning the joint representation across various modalities.
Experimental results on the largest publicly available dataset
(LRW) demonstrate the robustness of the proposed method under
various noisy conditions.

Index Terms—Audio-Visual Fusion, Robust Speech Recogni-
tion, Multi-modality, Hybrid Fusion

I. INTRODUCTION

Automatic speech recognition (ASR) has been applied to
a wide range of human-robot interaction systems such as
service robots, mobile phones, etc. Since audio-based speech
recognition can be easily affected by acoustic noise, audio-
visual speech recognition (AVSR) introduces visual speech
information to improve the robustness of speech recognition,
which has aroused wide research attention in the past decades
[1]–[3]. Despite the encouraging results of AVSR, it remains
a challenging problem to fuse the two modalities more effec-
tively and robustly due to the intrinsically ambiguous nature
of homophones, especially in noisy environments [4].

Traditional AVSR methods first extract the audio and visual
features and then put them into a classifier with feature
fusion or decision fusion [5]–[7]. A parallel two-step keyword
spotting strategy based on decision fusion was proposed to
combine the audio information and visual information to
enhance the audio-visual keyword spotting system based on
Hidden Markov Model [8]. Recently, deep learning approaches
have been widely used to solve the AVSR problem [9],

[10]. The recurrent temporal multi-modal restricted Boltzmann
machine (RTMRBM) was introduced to model multi-modal
sequences in the task of AVSR [11]. Several end-to-end works
have been presented and extended to audio-visual models.
Chung et al. used an end-to-end model with an attention
mechanism to recognize phrases and sentences [12]. Petridis
et al. proposed an end-to-end audio-visual model with feature
fusion which learns to extract features directly from both the
pixels and spectrograms [13].

Although the promising results have been made by recent
works [14]–[16], we observe that most of the existing works
only focus on either feature fusion or decision fusion, while
ignoring the complementarity between these two fusion strate-
gies [17]. Specifically, feature fusion can effectively exploit
the covariations between features from different modalities
to learn more discriminative representation, while utilizing
decision fusion shows the robustness of capturing an optimal
combination of two modalities, especially in different noisy
conditions [18]. These observations motivate us to develop
a method that can effectively embed both fusion strategies
into a hybrid fusion architecture, and leverage it for AVSR to
resolve the challenging issue of inherent ambiguity in noisy
environments.

In this paper, a novel audio-visual speech recognition
method based on hybrid fusion is proposed. Similar to the
work of [19], features of each modality are extracted from the
input audio waveforms and mouth regions using ResNet-based
audio and visual encoders, followed by a 2-layer Bidirectional
Gated Recurrent Unit (BGRU) to model the temporal dynam-
ics, respectively. Then an audio-visual encoder is applied to
perform feature fusion for both streams and fed to another
2-layer BGRU. Finally, the losses of audio, visual, and audio-
visual streams are combined to train the network end-to-
end, and the final predictions are made through a decision
fusion module. Note that different from the end-to-end model
proposed in [19], our work has three improvements as follows:

• A simple yet effective audio-visual encoder is used to fuse
the audio and visual features into a discriminative multi-
modal feature rather than concatenate them directly;

• A combined loss is introduced to learn the joint repre-
sentation across audio-visual modalities robustly instead
of using one audio-visual loss;

• A hybrid fusion architecture is adopted to combine the
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Fig. 1: Overview of the proposed end-to-end audio-visual speech recognition method based on hybrid fusion.

information of both modalities effectively and robustly,
which is capable of adapting to various noisy conditions.

Experimental results on the LRW dataset [20] demonstrate
that the proposed method outperforms the state-of-the-art
methods in different noisy environments with a margin of
2.88% under noise level of -5 dB and 6.88% at -10 dB of
babble noise.

II. METHODOLOGY

The overview of the proposed audio-visual model is shown
in Fig. 1, which is composed of three components: audio
network, visual network, and audio-visual hybrid fusion net-
work. Audio waveforms and mouth region of interest (ROI)
sequences are put into the audio and visual networks to extract
features respectively and then integrated with an audio-visual
encoder layer. A hybrid fusion architecture is introduced to
combine audio and visual information in both feature and
decision levels for the audio-visual fusion network.

A. Audio Network

The audio network contains an audio encoder and an audio
BGRU as shown in the lower part of Fig. 1. The audio encoder
includes an 18-layer ResNet with 1D kernels as the audio
waveforms are 1D signals, followed by two BGRU layers
(audio BGRU). The audio waveforms are put into the first
convolutional layer with a temporal kernel of 5ms and a stride
of 0.25ms to reduce the dimensionality of time-frequency and
then fed to the following ResNet with the kernel size of 3 ×
1. Next, the output of the ResNet with 29 frames is fed to a 2-
layer BGRU with 1024 cells to model the long-term and short-
term dependency patterns and learn the temporal information
for audio modality. Finally, a softmax output layer is used
to get the audio likelihood P (cai |xa), where x represents the
given sequences and ci is the i-th isolated words.

B. Visual Network

Following the similar architecture with the audio network,
the visual network is composed of a visual encoder and a

visual BGRU as shown in the upper part of Fig. 1. The
visual encoder includes a spatial-temporal convolutional layer
followed by a 34-layer ResNet. The spatial-temporal convo-
lutional layer is capable of capturing the short-term dynamic
nature of the mouth regions and is confirmed to perform better
than aggregating spatial-only features [21]. 3D CNN is utilized
to learn the spatial and temporal features of the mouth ROI
sequences through the 3D convolutional operation. Firstly,
the mouth ROI sequences are put into a spatial-temporal
convolutional layer with 64 3D kernels of 5 × 7 × 7 size
to capture the short-term dependency patterns and then fed to
a 34-layer ResNet. Furthermore, the visual BGRU including
two independent BGRU layers with 1024 cells is employed to
model the temporal dynamics. Finally, a softmax output layer
is used to calculate the visual likelihood P (cvi |xv).

C. Audio-Visual Hybrid Fusion Network

The complementarity of audio and video information can
be used to improve the performance of the AVSR system and
audio-visual fusion is generally approached through feature
fusion or decision fusion. In this work, instead of investigating
which approach is better, our key insight is to make the two
paradigms form a strong collaboration. Note that different
from the recent paper [22] that uses a joint CTC/attention
hybrid architecture for AVSR, our work considers a hybrid
fusion architecture that combines feature fusion and decision
fusion to improve the effectiveness and robustness of the
AVSR system, as depicted in Fig. 1.

1) Audio-Visual Feature Fusion: Different from existing
works [19], [23] which directly concatenate the features of the
two modalities into a high-dimensional vector, we introduce a
simple yet effective audio-visual encoder to map audio and
visual features into a shared latent space to capture more
discriminative multi-modal feature. This light-weight encoder,
which contains only two fully-connected layers with batch
normalization, dropout, and Rectified Linear Units (ReLU)
activation function, as well as residual connection, is able to
learn more crucial information and find the internal correlation
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Fig. 2: Top: Example of video frames from Lip Reading in the Wild dataset. Bottom: Mouth ROI sequences for ‘about’ from
two different speakers.

between spatial-temporal information from audio and visual
networks effectively.

The output features from audio and visual BGRU are fed
to an audio-visual encoder in order to fuse the information
from the two modalities and then put into a 2-layer BGRU
which consists of 1024 cells in each layer (using the same
architecture of [19]).

2) Audio-Visual Decision Fusion: Decision fusion is one of
the most promising solutions for audio-visual models in han-
dling different noisy environments [24]. In this work, decision
fusion is employed for inference in order to complementarily
utilize the reliability measures of audio and visual information
and adapt to diverse noisy environments.

To calculate the audio-visual likelihood, a fully-connected
layer is first used to compress the output units to the number
of isolated words. Then, a softmax layer is adopted to get the
likelihood of audio-visual network P (cavi |xav). Finally, the
fusion likelihood from the audio-visual decision fusion module
is calculated as the summation of likelihoods from the audio,
visual and audio-visual network:

P (ci|x) = αP (cai |xa) + βP (cvi |xv) + γP (cavi |xav) , (1)

where P (cai |xa), P (cvi |xv) and P (cavi |xav) denotes the like-
lihood from audio, visual and audio-visual networks (without
decision fusion module), respectively. α, β and γ are hyper-
parameters to control the weighting factor for the audio, visual
and audio-visual information, and satisfy the constraints:

α+ β + γ = 1, 0 ≤ α, β, γ ≤ 1. (2)

The class label inferred by audio-visual fusion network is
obtained through:

z = arg max
i
{P (ci|x)} . (3)

Similarly, the class label of audio-only, visual-only, and audio-
visual networks (without decision fusion module) can be esti-
mated by the maximizing operation for P (cai |xa), P (cvi |xv)
and P (cavi |xav), respectively.

3) Audio-Visual Training: In order to improve the com-
plementation between audio and visual information and learn
the joint representation robustly for the audio-visual model,
the losses of three modalities are combined and each network
produces a cross-entropy loss component as:

Lk = −
C∑
i=1

yi logP
(
cki |xk

)
, (4)

where k ∈ {a, v, av} denotes audio, visual and audio-visual
stream, respectively, y indicates the true class label of each
sequence and C is the number of target isolated words.

In our implementation, we first train the audio network, vi-
sual network, and audio-visual network separately with audio
loss La, visual loss Lv , and audio-visual loss Lav , respectively.
Then, the entire network is fine-tuned in an end-to-end manner
to optimize the total objective, which is a weighted sum of the
following losses:

L = λaLa + λvLv + λavLav, (5)

where λ is the weighting factor, L denotes the combined loss
of the audio-visual network. This loss function ensures that
the model focuses on various modalities and shows its noise-
robustness in learning the joint representation across audio-
visual modalities.

III. EXPERIMENTS AND ANALYSES

A. Dataset

The dataset used in our experiments is the Lip Reading
in the Wild (LRW) dataset [20], which is the largest public
dataset for AVSR in English. The LRW dataset consists of
short video clips with 29 frames (1.16 seconds) from BBC
television as shown in Fig. 2, with more than 1000 speakers
saying 500 different isolated words, such as ”YOUNG”,
”SOCIAL” and ”UNITED”. For each word, there are 800
to 1000 sequences in the training set and 50 sequences in
the validation and test sets, respectively. In this work, we
follow the same training and evaluation protocols used in
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TABLE I: Word accuracy (%) of the audio-only, visual-only
and audio-visual models on the LRW dataset in clean audio
condition.

Modalities Methods Word accuracy (%)

Audio
Petridis et al. [19] 97.70

Stafylakisa et al. [25] 97.96

Visual

Chung et al. [20] 61.10
Chung et al. [12] 76.20
Petridis et al. [19] 82.00

Stafylakis et al. [23] 83.00
Wang et al. [26] 83.34
Zhao et al. [27] 84.41

Audio-Visual
Petridis et al. [19] 98.20

Ours 98.91

[19], [23], training on 488766 examples, validating on 25000
examples, and testing on 25000 examples. Since the mouth
ROIs are already centered, a fixed bounding box of 96 × 96 is
performed to extract them. The audio waveforms are extracted
from the videos at the rate of 16kHz for all examples.

B. Experimental Setting

In this work, our implementation is based on the PyTorch
framework using one GeForce RTX 2080 Ti GPU with CUDA
10.1. The network is trained using Adam optimizer with a
batch size of 32 for all the experiments. An initial learning rate
of 0.0003 is used and decreased by 68.3% every time when the
training loss does not decrease for every 50 iterations. For the
hyper-parameters, we set the α, β and γ as 0.3, 0.3 and 0.4,
respectively, λa = 0.5, λv = 0.5 and λav = 1 by optimizing
on the validation set in our implementation.

Two different noise types from the Noisex92 dataset [28],
namely babble and white noises, are adopted to add to the
original audio waveforms with different signal-to-noise ratios
(SNRs) in order to investigate the robustness of our proposed
audio-visual fusion method in noisy environments. To improve
the adaptability of our model to audio noise, different SNR
levels of noise (between -5 dB to 20 dB, with an interval of 5
dB) is added to the original audio waveforms in training, while
the robustness of our model in noisy conditions is evaluated
by applying additive noises with various SNRs of 20 dB, 15
dB, 10 dB, 5 dB, 0 dB, -5dB and -10 dB to the validation and
test sets.

C. Comparison with the State-of-the-art

Since many previous works only focus on lip reading task
(visual-only) on the LRW dataset as well as there are few
previous audio-only and audio-visual results, we first compare
the performance with these works as shown in Table I and our
audio-visual model improves the word recognition accuracy to
98.91% on the LRW dataset in clean audio condition.

Next, the performance of our audio-visual model is com-
pared with the method in [19] to evaluate the effectiveness and
robustness of our proposed method. Except for babble noise

used in [19], white noise is also added to the original audio
waveforms. Empirically, we observed that the performance of
the audio-only model is very low (only a few percent) when
the SNR ≤ -10 dB, the audio-only model can’t provide useful
information to the audio-visual model, so the noises are added
to the original audio waveforms with different SNR levels of
20 dB, 15 dB, 10 dB, 5 dB, 0 dB, -5 dB and -10 dB for the
validation and test sets. For a fair comparison, the baseline
model is fine-tuned on the same training data which is used
in our experiments.

Results of the audio-only, visual-only, and audio-visual
models are shown in Fig. 3. The accuracy of the visual-only
model remains constant since visual information is not affected
by the addition of audio noise, while the accuracy of the audio-
only model decreases with the existence of stronger noises. It
can be seen that our approach outperforms the state-of-the-art
method under different levels of babble noise and white noise
from -10 dB to 20 dB.

It can be observed that the audio-only model is most affected
by babble noise under high-level SNRs, which gets worse
performance than white noise. The word recognition accuracy
of the audio-visual model is improved from 98.20% to 98.81%
when SNR = 20 dB. This improvement in low levels of noise
condition is limited (0.61%) as expected since the baseline
model is already capable to capture crucial information under
low-level noise. However, compared to the state-of-the-art
method, it should be noted that our method significantly
improves the performance under strong noisy conditions (SNR
≤ 5 dB), results in an absolute improvement of 2.88% at -
5 dB and 6.88% at -10 dB of babble noise. Note that the
baseline model gets worse performance than the visual-only
model at -10 dB, however, our audio-visual model outperforms
the visual-only model under different levels of noises which
indicates that our proposed model is more robust under strong
noisy conditions. This is owing to the effective and robust
combination of audio and visual information through the
proposed hybrid fusion based audio-visual model.

D. Ablation Studies

1) Effect of different components: We study the effect
of introducing the audio-visual encoder, the combined loss,
and the decision fusion module to our proposed audio-visual
model. [19] is used as a baseline which is the state-of-the-art
method on LRW. The baseline with four additional processings
are taken for comparison.

• w/ AV encoder: insert an audio-visual encoder into base-
line.

• w/ combined loss: insert a combined loss into baseline.
• w/ AV decision: insert a decision fusion module into

baseline.
• w/ A+V decision: insert a decision fusion strategy which

used in [24] into our audio and visual networks.
The results are presented in Table II. We report the per-

formance of different components of our audio-visual models
at varying SNR levels of babble noise. It can be seen that
the audio-visual encoder (w/ AV encoder) improves the word
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Fig. 3: Comparisons of the word accuracy (%) with the state-of-the-art method under different levels of babble noise and white
noise on LRW dataset.

TABLE II: Ablation studies on different components of our audio-visual model at varying SNR levels of babble noise. Word
accuracy (%) on the LRW dataset.

SNR(dB) -10 -5 0 5 10 15 20

Baseline [19] 81.27 90.22 95.47 97.20 97.89 98.17 98.20
w/ combined loss 86.08 92.58 96.29 97.50 97.97 98.23 98.29

w/ AV encoder 85.05 91.90 96.34 97.81 98.35 98.52 98.62
w/ AV decision 85.91 92.09 96.32 97.80 98.34 98.55 98.64

w/ A+V decision [24] 84.69 89.48 94.64 96.72 97.59 97.98 98.15
Ours 88.15 93.10 96.79 98.08 98.57 98.75 98.81

TABLE III: Word accuracy (%) for different hyper-parameter values of audio-visual decision module at varying SNR levels
of babble noise on the LRW dataset. The best score for each SNR condition is marked in bold.

α β γ -10 -5 0 5 10 15 20 Average

0.2 0.2 0.6 86.76 92.69 96.59 97.92 98.49 98.67 98.73 95.69
0.3 0.4 0.3 88.48 92.93 96.55 97.90 98.42 98.60 98.67 95.94
0.3 0.3 0.4 88.15 93.10 96.79 98.08 98.57 98.75 98.81 96.04
0.4 0.2 0.4 87.37 92.97 96.84 98.12 98.62 98.80 98.87 95.94
0.4 0.0 0.6 85.26 92.24 96.61 98.06 98.62 98.85 98.88 95.50
0.4 0.1 0.5 86.27 92.66 96.70 98.11 98.65 98.84 98.89 95.73

accuracy significantly in low levels of noise condition, which
achieves an absolute improvement of 0.42% in word accuracy
when SNR = 20 dB compared to state-of-the-art method [19],
but the combined loss (w/ combined loss) mainly obtains
larger gains in strong noisy conditions (SNR ≤ 5 dB). This
is expected since the combined loss makes the system more
robust, and the audio-visual encoder helps resolve issues such
as the effectiveness of combining the information of two
modalities.

In particular, noticing that the result of using the decision
fusion module (w/ A+V decision), the fusion likelihood is
calculated from the audio network and visual network (without

audio-visual network) which is used in [24], only gets better
performance than baseline at -10 dB of babble noise. However,
the decision fusion module (w/ AV decision), outperforms the
baseline in both strong noisy conditions and low levels of
noise condition due to the fact that it can explicitly model
the reliability of each modality. The results show that each
of the modifications including w/ AV encoder, w/ combined
loss, and w/ AV decision can improve the word recognition
accuracy of the AVSR baseline system under different SNR
conditions. Furthermore, it can be seen that our hybrid fusion
architecture can both benefit through their tight collaboration,
which gets better performance than single feature fusion or

7584

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on May 30,2021 at 16:33:48 UTC from IEEE Xplore.  Restrictions apply. 



0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0
Au

di
o 

lik
el

ih
oo

d

Δ 0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Vi
su

al
 li

ke
lih

oo
d

Δ 0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Au
di

o-
vi

su
al

 li
ke

lih
oo

d

Δ 0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Fu
sio

n 
lik

el
ih

oo
d

Δ

0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Au
di

o 
lik

el
ih

oo
d

Δ 0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Vi
su

al
 li

ke
lih

oo
d

Δ 0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Au
di

o-
vi

su
al

 li
ke

lih
oo

d

Δ 0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Fu
sio

n 
lik

el
ih

oo
d

Δ

0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Au
di

o 
lik

el
ih

oo
d

Δ 0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Vi
su

al
 li

ke
lih

oo
d

Δ 0 100 200 300 400 500
class

0.0

0.2

0.4

0.6

0.8

1.0

Au
di

o-
vi

su
al

 li
ke

lih
oo

d
Δ 0 100 200 300 400 500

class
0.0

0.2

0.4

0.6

0.8

1.0

Fu
sio

n 
lik

el
ih

oo
d

Δ

(a) Audio likelihood (b) Visual likelihood (c) Audio-Visual likelihood (d) Fusion likelihood

Fig. 4: Example results of output likelihoods, each row shows a typical case. The fusion likelihood is the final output of our
model and gets the correct results. First row: audio network gets the incorrect word. Second row: visual network gets the
incorrect word. Third row: audio-visual network gets the incorrect word. The true class label is marked with “∆”.

decision fusion strategy.
2) Impact of hyper-parameter values: Table III shows the

word accuracy results of our method with different hyper-
parameter values of the audio-visual decision module. Some
representative hyper-parameters are given, which has the best
performance under a certain SNR condition. It can be seen that
with different hyper-parameter values, our proposed method
obtained different performance at varying SNR levels of
babble noise. Noticing that with α = 0.3, β = 0.4 and
γ = 0.3, the word accuracy gets best score at -10 dB while it
gets worst performance in low levels of noise condition (SNR
= 20 dB). Thus, we need to choose a set of suitable hyper-
parameters to balance the word accuracy between the strong
noisy conditions and low levels of noise condition. α = 0.3,
β = 0.3 and γ = 0.4 is used in our experiments, which has
best average performance at varying SNR levels of babble
noise.

E. Visualization

Fig. 4 visualizes three typical examples of audio, visual,
audio-visual, and fusion likelihoods, where audio network,
visual network, and audio-visual network get incorrect words,
while the final fusion results are correct. The results show that
our proposed hybrid fusion architecture is able to distinguish
words with similar pronunciations, which can reliably handle
the inherent ambiguity in both audio and visual modalities.

IV. CONCLUSIONS

In this work, we present a novel hybrid fusion based method
for AVSR to address the challenge of inherent ambiguity in
noisy environments. In order to find the internal correlation
between spatial and temporal relationships from audio and
visual information, a simple yet effective audio-visual encoder
is proposed to capture more discriminative multi-modal feature
from both modalities. A decision fusion module is designed
in order to complementarily utilize the reliability measures
of audio and visual information. Moreover, we introduce a
combined loss to make the model learn the joint representation
across audio-visual modalities robustly. By making full use of
the information from different levels in a unified framework,
the proposed hybrid fusion architecture can benefit through
the tight collaboration between the feature fusion and decision
fusion strategies, which is able to distinguish words with
similar pronunciations and becomes robust to various noisy
conditions. Experiments on LRW dataset demonstrate that
our method achieves superior performance compared to other
state-of-the-art methods in both clean and noisy conditions.
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