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Abstract—Cross-modality RGB-infrared (RGB-IR) person re-
identification (Re-ID) is a challenging research topic due to the
heterogeneity of RGB and infrared images. In this paper, we aim
to find some auxiliary modalities, which are homologous with
the visible or infrared modalities, to help reduce the modality
discrepancy caused by heterogeneous images. Accordingly, a
new base-derivative framework is proposed, where base refers
to the original visible and infrared modalities, and derivative
refers to the two auxiliary modalities that are derived from
base. In the proposed framework, the double-modality cross-
modal learning problem is reformulated as a four-modality one.
After that, the images of all the base and derivative modalities
are fed into the feature learning network. With the doubled
input images, the learned person features become more dis-
criminative. Furthermore, the proposed framework is optimized
by the enhanced intra- and cross-modality constraints with the
assistance of two derivative modalities. Experimental results on
two publicly available datasets SYSU-MM01 and RegDB show
that the proposed method outperforms the other state-of-the-art
methods. For instance, we achieve a gain of over 13% in terms
of both Rank-1 and mAP on RegDB dataset.

I. INTRODUCTION

Person re-identification (Re-ID) aims to retrieve a target
person across several non-overlapping cameras [1]. Given the
query images of a person-of-interest, Re-ID targets to search
the gallery set to find the images which own the same identity
with the query. Person Re-ID using RGB images have achieved
great success with the development of deep learning [2], [3],
[4]. It provides favorable performance at good illuminations,
but fails to capture valid appearance information of pedestrians
under poor lighting conditions such as in the dark. Instead,
infrared images can offer better pedestrian information at poor
illuminations. The complementarity of the two modalities is
exploited by RGB-infrared (RGB-IR) Re-ID which matches
the day-time visible images with the night-time infrared im-
ages.

One challenge for RGB-IR person Re-ID is the large
heterogeneity of RGB and IR images. Various methods are
proposed to reduce the modality discrepancy. Similar to Re-
ID using visible images, one-stream RGB-IR Re-ID method
directly changes the inputs from single-modality images to
modality-mixed images [5], and the two heterogeneous images
are sent into a common feature learning network, as shown in
Fig. 1 (a). To further reduce the cross-modality discrepancy, a
two-stream method [6], [7] is proposed to separately model
the modality-sharable and modality-specific information, as
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Fig. 1. Different networks for RGB-IR person Re-ID. Components with
the same name and color are modality-sharing in each subgraph. Our base-
derivative method constructs a generator-sharing network, which is different
from the existing RGB-IR Re-ID methods. More details are in Section II.

shown in Fig. 1 (b). Asymmetric method [8], [9] uses shared
embedding learning network and tries to bridge the two
modalities in the classification subspace, as shown in Fig. 1
(c). Moreover, Hao et al. [10] explored the correlation between
the classification subspace and embedding subspace. Recently,
Generative Adversarial Networks (GAN) [11] based Re-ID
methods have attracted a lot of attention due to its powerful
ability of image generation. Some works [12], [13] generate
heterogeneous images and combine the discriminators with the
Re-ID network, as shown in Fig. 1 (d).

Above all, some methods focus on the embedding and
classification subspaces, however, the discrepancy in image
subspace also exists [14], [15]. The GAN based methods
reduce the modality discrepancy in image subspace by recon-
structing the original RGB and IR images, however, they are
usually devoted to construct heterogeneous images for visi-
ble/infrared modalities. In this paper, we try to construct some
new modalities which are not heterogeneous but homologous
with visible and infrared modalities.

In this paper, a novel lightweight base-derivative framework
is proposed for cross-modality RGB-infrared person Re-ID.
We generate two new auxiliary modalities that are homologous
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Fig. 2. Cross-modality constraints. (a) the general bi-directional cross-
modality loss. (b) the base-derivative framework with an enhanced multi-
directional loss (each modality is restrained by two bi-directional losses).

with the base visible and infrared modalities, which we call
derivative modalities. The main components of the proposed
base-derivative framework are stated as following:
• Base modalities: The visible and infrared modalities.
• Derivative modalities: Totally two.
DV : the homologous modality with visible modality,
which inherits appearance information (such as pose,
clothing category and carrying) from visible modality.
DI : the homologous modality with infrared modality,
which inherits appearance information from infrared
modality.

As shown in Fig. 1 (e), the derivative modalities are con-
structed by a common generator, which introduces guidance
from both base modalities with a lightweight network. With
the help of derivative modalities, more connections between
visible and infrared modalities can be established. Conse-
quently, the general bi-directional cross-modality loss are en-
hanced into multi-directional loss (MDL), which contains three
bi-directional cross-modality losses between visible-infrared,
visible-DI and infrared-DV modalities, as shown in Fig. 2.
With the base and derivative modalities, the RGB-IR person
Re-ID is reformulated as a four-modality cross-modal learning
problem, which becomes easier with the proposed MDL as
demonstrated by Fig. 3. Take the DV as an example, the
cross-modality loss between DV -infrared and visible-infrared
force the positive visible images and DV images to approach
the infrared ones. Experimental results on SYSU-MM01 and
RegDB demonstrate the superiority of the proposed method.

The contributions of our method can be described as fol-
lowing:
• The modality discrepancy is reduced with the assistance

of two generated homologous modalities, instead of using
heterogeneous modalities as in popular methods.

• The double-modality cross-modality learning problem
is reformulated as a four-modality one with a base-
derivative framework, through which the cross-modality
learning becomes easier with a devised multi-directional
loss (MDL).

• The proposed method achieves a significant improve-
ment compared with the state-of-the-arts on two popular
datasets. Especially on the RegDB dataset, it achieves a
gain of over 13%.
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Fig. 3. Cross-modality learning. Different colors represent different modali-
ties. (a) the results of general cross-modality learning. (b) the results of cross-
modality learning with derivative modalities. Samples in dashed circle mean
they are possible to be matched together during prediction (Best viewed in
color).

II. BASE-DERIVATIVE NETWORKS

We assume the cross-modality discrepancy contains two
parts: First is the appearance discrepancy caused by various
viewpoints, poses and illuminations in conventional Re-ID
task. Second is the modality discrepancy originated from dif-
ferent imaging processes of visible and infrared cameras [12].
In this paper, we mainly focus on the modality discrepancy
and try to reduce it in channel dimension as in [16].

The framework of proposed base-derivative method is
shown in Fig. 4. First, two new derivative modalities are
generated from the captured visual and infrared images. Then,
the base and derivative images are fed into a feature learner to
extract more discriminative person features. Finally, the whole
network is trained in an end-to-end manner with designed
multi-directional loss (MDL), multi-mode loss (MML) and
identity (ID) loss.

A. Derivative Modality Generation

Because the appearance information of RGB and IR images
are actually diverse, which makes it difficult to fuse them
together to construct only one new modality. Thus, two
derivative modalities are generated separately with inherited
appearance information from the two base modalities. In this
part, the ‘Generator’ is responsible for introducing assistance
from base modalities and constructing the auxiliary derivative
images. XV , XI , XDV

and XDI
are images of different

modalities.
A two-step benchmark is designed for the generation of

DV and DI , as the green and blue stream shown in Fig. 4.
Firstly, an encoder EV is used to compress three-channel
RGB images into one-channel, which is the same format as
IR images. Secondly, the encoded one-channel RGB images
together with initial IR images are fed into a weight-sharing
generator, which is used to siphon off knowledge from two
base modalities (assistance from the infrared modality to
construct DV images and vice versa). Above all, a mutual-
assistance modality generation network is defined as:

XDV
= GS(EV (XV )),

XDI
= GS(XI),

(1)

7641

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on May 30,2021 at 16:23:22 UTC from IEEE Xplore.  Restrictions apply. 



Feature Learner Derivative modality generationImages Loss

ID Loss

MDL

MML

Weight-sharing
𝑋𝑉

𝑋𝐼

𝑋𝐷𝑉

𝑋𝐷𝐼

Encoder

one-channel images feature vectorsthree-channel images

Base modality

Derivative modality

Derivative modality

Base modality

Deep feature 
learner

Generator

Fig. 4. The overall framework of our base-derivative network. XV , XI , XDV
and XDI

are images of different modalities. The four modalities take different
streams (shown in different colors). The feature learner is divided into two parts: four modality-independent feature learners and a modality-sharing deep
feature learner. The whole network is optimized by three loss functions. (Best viewed in color).

EV only encodes images in the channel level (from three chan-
nels to one), which is achieved by using a simple convolutional
layer with an 1 × 1 kernel and a ReLU activation layer as
in [16]. GS is the weight-sharing generator, which aims to
map the one-channel images (including the infrared images
and encoded visible images) into three-channel images . It
also works in the channel level merely and is achieved by a
convolutional layer with three 1 × 1 kernels. The generation of
DV and DI is a self-supervised process, where XDV

and XDI

still keep the consistent identity with XV and XI (without
additional manual annotations).

B. Feature Learner

The feature learner is split into two parts. One is the
modality-independent feature extractor FI , which aims to learn
the appearance-level information. The other is the modality-
sharing feature extractor FS , which aims to learn the semantic-
level information.

Modality-independent feature extractor. The discrepancy
of different modalities is still obvious in image space, so FI

is customized for each of the four modalities. They take the
original images as input and output the low-level features. The
first several layers of ResNet50 [17] are used to achieve FI ,
that is, a convolutional layer, a BatchNorm layer, a ReLU layer
and a maxpooling layer.

Modality-sharing feature extractor. Images from different
modalities with the same labels should confirm the consistent
distribution in high-level feature space [18]. So a weight-
sharing extractor FS is introduced following FI . FS takes the
low-level modality-independent features as input and encodes
them in semantic-level. It is achieved by the rest part of
ResNet50 except layers in FI .

C. Loss Functions

Three loss functions are used to guide the cross-modal
learning. First is the multi-directional loss (MDL), which is
applied across the four modalities to promote the circulation

of cross-modality information. Second is the proposed multi-
mode loss (MML), which is applied on each modality to
reinforce the convergence of the four modalities. Third is
the identity (ID) loss, which is applied on each modality to
learn more discriminative features. In this part, the symbol
M is used to represent any one of the four modalities,
M ∈ [visible, infrared,DV , DI ].

Multi-directional cross-modality loss (MDL). As shown
in Fig. 2, the proposed MDL can be divided into several bi-
directional losses. Moreover, one bi-directional loss can be
split into two unidirectional cross-modality losses. So MDL
can be defined as:

LMDL =
∑

m1,m2∈M
m1 6=m2

Lm1→m2
+ Lm1←m2

, (2)

here the groups of visible↔ DV and infrared↔ DI are
not taken into consideration because they are homologous
modalities. In addition, the group of DV ↔ DI is also ignored
considering that there are only visible and infrared images
in testing stage. Therefore, main attention is paid to reduce
the discrepancy between visible/infrared modalities and other
modalities. Corresponding discussions are in Section III-E.

The unidirectional cross-modality loss is achieved by an
improved cross-modality triplet loss. Triplet loss [19] treats
images with the same identity as positive pairs, and images
with different identities as negative pairs. We improve the
triplet loss with hard sample mining, which requires the
Euclidean distances of all positive pairs to be smaller than
those of all negative pairs. The step-by-step calculation is
explained in the following. First, a vizard matrix Vm1↔m2

is calculated by :

vi,jm1↔m2
=

{
0, yi 6= yj

1, yi = yj ,
(3)

where vi,jm1↔m2
is the value at row i and column j in Vm1↔m2

.
i ∈ [1, Nm1

], j ∈ [1, Nm2
], and Nm1

and Nm2
are the number
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TABLE I
COMPARISON RESULTS(%) AT RANK r WITH THE STATE-OF-THE-ART CROSS-MODALITY RE-ID

METHODS ON THE SYSU-MM01 DATASET.

Methods All-search Indoor-search
R1 R10 R20 mAP R1 R10 R20 mAP

Zero-Padding [20] ICCV 17 14.8 54.12 71.33 15.95 20.58 68.38 85.79 26.92
HCML [7] AAAI18 14.32 53.16 69.17 16.16 24.52 - - 30.08

D-HSME [10] AAAI19 20.68 62.74 77.95 23.12 - - - -
eBDTR [6] TIFS17 27.82 67.34 81.34 28.42 32.46 77.42 89.62 42.46

cmGAN [24] IJCAI18 26.97 67.51 80.56 27.8 31.63 77.23 89.18 42.19
D2RL [12] CV PR19 28.9 70.60 82.40 29.20 - - - -

MAC [8] MM19 33.26 79.04 90.09 36.22 33.37 82.49 93.69 44.95
MSR [9] TIP19 37.35 83.40 93.34 38.11 39.64 89.29 97.66 50.88

AlignGAN [13] ICCV 19 42.4 85.00 93.70 40.7 45.9 87.6 94.4 54.3
Hi-CMD [23] CV PR20 34.94 77.58 - 35.94 - - - -

JSIA [25] AAAI20 38.10 80.7 89.9 36.9 43.8 86.2 94.2 52.9
Ours 51.05 87.75 94.43 49.63 55.93 91.55 96.95 63.38

(a) SYSU-MM01 (b) RegDB

Fig. 5. Images from the two datasets to
explain why the improvements on RegDB
are more significant. Details are in Section
III-D.

of images from modality m1 and m2 in every batch. yi and yj
are corresponding identity labels. Then Lm1→m2 and Lm2→m1

can be calculated by:

Lm1→m2 =

Nm1∑
i=1

[α2 +maxDi
m1,m2

−minD̃i
m1,m2

]+,

Lm2→m1
=

Nm2∑
i=1

[α2 +maxDi
m2,m1

−minD̃i
m2,m1

]+,

(4)

where

Dm1,m2 = Sm1↔m2 ∗ Vm1↔m2 ,

D̃m1,m2 = Sm1↔m2 ∗ Ṽm1↔m2 ,
(5)

here Ṽm1↔m2
is calculated by reversing the element values

in the Vm1↔m2 , that is, value ‘0’ is reset to ‘1’ and value
‘1’ is reset to ‘0’. i is the row index of matrix Dm1,m2 and
D̃m1,m2 . The ∗ means the dot product between two matrixes.
α2 is a margin parameter and [z]+ = max(z, 0). Sm1↔m2 is
the distance matrix calculated using the Euclidean distance.
The Dm2,m1

and D̃m2,m1
can be calculated using functions

similar to (5).
Multi-mode intra-modality loss (MML). MML enlarges

the general two-mode intra-modality triplet loss into multi-
mode (two base modalities and two derivative modalities) with
an improved strategy of hard example sample mining. The
MML is defined as:

LMML =
∑
M

LM , (6)

where

LM =

B∑
i

[α1 + max
j=1,··· ,B

yi=yj

S(f(Mi), f(Mj))−

min
k=1,··· ,B

yi 6=yk

S(f(Mi), f(Mk))]+,
(7)

S(·) is the Euclidean distance and f(·) is the feature vectors.
i is the index of images from modality M . α1 is a margin
parameter and [z]+ = max(z, 0). B is the batch-size and
i, j, k ∈ [1, B]. yi, yj and yk are the identities of images.

ID loss. In the cross-modality person Re-ID task, each
identity is a distinct class. Based on that, the task can be treated
as an image classification problem and the identity loss can be
used for network optimization. We apply the ID loss on the
four modalities, so the weight and bias vectors of all layers
can be optimized during training. The total ID loss can be
formulated by

Lid = − 1

N

∑
M

N∑
i=1

yMi log(p(yMi |xMi )) (8)

where N is the number of samples in every training batch,
and i is the index of N . yi is the label of image xi.

Overall loss function. Above all, the overall objective loss
function can be formulated as:

Ltotal = αLid + βLMML + γLMDL, (9)

where α, β and γ are weights of corresponding losses. α and
β are both set to 1 for each modality empirically. γ is decided
by grid-search.

III. EXPERIMENTS AND ANALYSIS

A. Datasets

Our experiments are performed on two popular and public
available datasets, SYSU-MM01 [20] and RegDB [21].

SYSU-MM01. It is a challenging and large-scale RGB-IR
Re-ID dataset, which contains 30,071 RGB images and 15,792
IR images from 491 identities captured by four RGB cameras
and two IR cameras. The dataset is divided into a training
set and a testing set. The training set contains 22,580 RGB
images and 11,909 IR images from 395 persons. There are
two test modes for SYSU-MM01, i.e. all-search and indoor-
search. In each mode, there are two settings can be chosen,
i.e. single-shot and multi-shot.
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TABLE II
COMPARISON RESULTS(%) WITH THE STATE-OF-THE-ART

CROSS-MODALITY RE-ID METHODS ON THE REGDB DATASET.

Methods visible2thermal
R1 R10 R20 mAP

Zero-Padding [20] ICCV 17 17.75 34.21 44.35 18.90
HCML [7] AAAI18 24.44 47.53 56.78 20.08
eBDTR [6] TIFS19 34.62 58.96 68.72 33.46

MAC [8] MM19 36.43 62.36 71.63 37.03
D2RL [12] CV PR19 43.4 66.10 76.30 44.1

MSR [9] TIP19 48.43 70.32 79.95 48.67
D-HSME [10] AAAI19 50.85 73.36 81.66 47.00

AlignGAN [13] ICCV 19 57.9 - - 53.6
XIV [16] AAAI20 62.21 83.13 91.72 60.18

Hi-CMD [23] CV PR20 70.93 86.39 - 66.04
Ours 80.67 87.72 90.45 78.83

RegDB. There are totally 412 identities in the dataset, where
each person has 10 RGB images and 10 thermal images. All
the identities are randomly divided into two halves, one for
training and the other for testing. The training set thus has
2,060 visible images and 2,060 thermal images, and the same
goes for the testing set.

B. Evaluation Metrics

In this paper, The Cumulative Matching Characteristics
(CMC) curve and the mean Average Precision (mAP), which
are widely used in cross-modality person Re-ID tasks, are
applied on our experiments. For more stable results, the testing
stage is run ten trials with randomly choosing query and
gallery images every time.

C. Implementation Details

The experiments are implemented with PyTorch. Images are
resized to 288× 144 following [22]. The ResNet50 with pre-
trained parameters on ImageNet is used as the backbone of
the feature extractor. We use the stochastic gradient descent
to optimize the network, and the momentum parameter is set
to 0.9. The training epochs are set to 60 and 80 separately
for the RegDB dataset and SYSU-MM01 dataset. The initial
learning rate is set to 0.01 with a warm-up strategy. The batch
size is set to six and an identity-balanced sampling strategy [6]
is applied at each training step. In experiments, we randomly
select six identities, and then four RGB and four IR images
for each identity in each batch. The two margin parameters in
(4) and (7) are set to 0.5 and 0.3 respectively. In SYSU-MM01
dataset, the trade-off hyperparameters α, β and γ are all set
to 1. In RegDB, the proportion of α, β and γ is set to 1:1:5.

D. Comparison with State-of-the-art Methods

The results over SYSU-MM01 dataset are shown in Table
I. The all-search and indoor-search modes both with single-
shot choice are applied on our experiments. Our method
outperforms the state-of-the-arts by 8.65% and 8.93% with
regard to Rank-1 and mAP scores.

The results over RegDB dataset are shown in Table II.
The visible2thermal mode is applied, which means the visible
images are taken as the query images, and the thermal images

TABLE III
COMPARISON RESULTS(%) WITH THE BASELINE AND THE AGW USING
THE SAME BACK-BONE ON THE SYSU-MM01 AND REGDB DATASETS.

Methods RegDB SYSU-MM01
all-search indoor-search

R1 mAP R1 mAP R1 mAP
Baseline 65.79 64.69 42.83 41.97 47.66 56.50

AGW [22] 2020 70.05 66.37 47.50 47.65 54.17 62.97
Ours 80.67 78.83 51.05 49.63 55.93 63.38

Fig. 6. Performance of baseline and our method with respect to the
hyperparameters over RegDB dataset. Different colors mean the different
proportion of α, β and λ.

form the gallery set. Our method still achieves improvements
of 9.74% and 12.79% compared with the state-of-the-arts with
regard to Rank-1 and mAP scores.

The improvements on RegDB dataset are more significant
than the SYSU-MM01 dataset. For RegDB, RGB and thermal
images of the same person contain appearance information
with high similarity. For SYSU-MM01, it has low similarity,
as shown in Fig. 5. The proposed base-derivative framework
mainly focuses on the channel-level modality discrepancy, thus
it works better on the RegDB dataset, which has images with
a tiny discrepancy in appearance-level.

E. Model Analysis

Ablation study. To further analyze the effectiveness of the
proposed framework, comparisons with the baseline and the
AGW method [22] are performed. The results are shown in
Table III. Here, ‘baseline’ means the network only contains
the visible and infrared modality, and is trained using ID loss,
intra-modality triplet loss and cross-modality triplet loss, just
like the index 1 in Table IV. And ‘AGW’ uses the same
backbone as us. The comparisons illustrate that our base-
derivative framework can significantly improve the perfor-
mance of baseline by 6.88%- 13.88% on Rank-1 and mAP
score. In addition, our method also outperforms the AGW
method with improvements of 10.62% and 12.46% in terms
of Rank-1 and mAP score on RegDB dataset.

Moreover, ablation study about the loss functions are shown
in Table IV. ‘B1’ means the network is only trained with ID
loss and ‘B2’ contains the triplet loss intra- and cross-modality.
Results show that the combination of ID loss and triplet loss
(MDL + MML) is more effective.

Then, more evaluations are performed to verify the effec-
tiveness of the two auxiliary derivative modalities and each
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TABLE IV
ABLATION STUDY ON THE SYSU AND REGDB DATASET. ‘B’ MEANS ‘BASELINE’ AND THE SUPERSCRIPT REPRESENTS DIFFERENT TYPES OF MML AND

MDL LOSS.

Methods Modality Loss RegDB SYSU-MM01

ID MML MDL all-search indoor-search
I V DI DV I,V V,DI I,DV DI ,DV R1 mAP R1 mAP R1 mAP

B1 X X × × X × × 45.34 39.79 33.49 33.69 36.82 47.14
B2 X X × × X X X × × × 65.79 64.69 42.83 41.97 47.66 56.50

Ours
B2+MML+MDL1 X X X × X X X X × × 79.98 77.76 41.58 42.33 46.02 55.11
B2+MML+MDL2 X X × X X X X × X × 75.42 74.17 48.14 47.06 53.97 62.15
B2+MML+MDL3 X X X X X X X X X X 79.21 76.85 50.66 49.64 56.57 64.11
B2+MML+MDL4 X X X X X X X X X × 80.67 78.83 51.05 49.63 55.93 63.38
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Fig. 7. Performance of our method with respect to different values of
hyperparameters λ over SYSU-MM01 dataset. The straight lines in each figure
stand for the performance of baseline.

single bi-directional cross-modality loss of MDL on RegDB
and SYSU-MM01 dataset as in Table IV . For SYSU-MM01
dataset, the experiments are performed with indoor-search and
all-search modes. The experiment with superscript 1 is set
to verify the existence of the DI and its correlative cross-
modality loss. The same goes for superscript 2 and DV .
Results show that either of the derivative modalities bene-
fits the cross-modality learning and the combination of four
modalities achieves the best performance. The experiment with
superscript 4 confirms the settings in our results mentioned
before. The experiment with superscript 3 adds the constraint
between DV and DI . Because in the testing stage, the query
images are RGB or IR, so general operations try to build the
constraints at least containing visible or infrared modalities for
better results. Based on that, the index 5 is set to explore the
effect of constraint between modalities not used in the testing
stage. Results show that the index 5 has close performances to
index 4, which indicates that MDL provides a unified cohesive
force for the four modalities and fundamentally promotes
cross-modal learning.

Parameters analysis. Two experiments are performed to
evaluate the values of α, β and λ in (9) on the two datasets.
First, experiments with four different proportions of weights
are performed on RegDB dataset. Results are shown in Fig. 6,
which prove our method is vastly superior to the baseline.

(a)

Red

Green

Blue

Gray

(b)

identity1 identity2 identity3

(c)

(a)

visible

visible

𝐷𝑉

𝐷𝑉

Fig. 8. Images reference to DV . Different identities are separated by dotted
lines. Group (a) contains the original visible images and generated DV

images. Group (b) contains the single-channel visible (the upper row) and
DV (the lower row) images in R,G,B mode. Group (c) contains the single-
channel visible (the upper row) and DV images (the lower row) in gray mode.
Details are in Section III-E

In addition, the superiority appears more obvious with the
increasing weight of MDL. Second, experiments with six
different weights of MDL under two modes are performed
on SYSU-MM01 dataset. Results are shown in Fig. 7, the
accuracies increase along with the coefficient of MDL, and
the best result appears when the weight is 1. Both R1 and
mAP scores are always better than the baseline no matter in
the indoor-search or the all-search mode.

Discussions. We try to visualize DV and DI on RegDB
dataset. Fig. 8 shows three groups of visualizations. Group
(a) shows that the ‘Red’ channel owns a larger proportion
in generated DV images. Group (b) is set to observe the
color information. Results show that DV images still keep
the similar color information with the RGB ones. In group
(c), single-channel RGB images are shown in gray mode
(best viewed), which aims to contrast the pixel value in three
channels. Darker color means larger value. As we can see, the
three channels of visible images are not exactly the same, and
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Fig. 9. Images reference to DI . There are the original thermal images
(1st column), generated DI images (2nd column), and the single-channel
divergence images in gray mode, which are calculated using subtraction pixel-
by-pixel (3th-5th columns). Details are in Section III-E

differences are more obvious on the images surrounded by a
red frame. But the three channels of DV images are almost
the same.

The visualizations about DI are shown in Fig. 9. For 3th-
5th columns, the darker color means the higher similarity. As
we can see, the DI images show obvious discrepancy with the
IR images especially in the channel 1. The channel 0 and 2
also show the differences mainly in the background.

IV. CONCLUSIONS

This paper proposes a base-derivative framework for cross-
modality person Re-ID. To reduce the discrepancy between
the visible and infrared modalities, two auxiliary derivative
modalities, which inherit the identity information from the
base modalities respectively, are generated using a common
lightweight generator. The derived images are taken as the
input of feature learning network together with base images,
which provide more discriminative information. Accordingly,
multi-mode intra-modality loss and multi-directional cross-
modality loss are designed to promote the reduction of intra-
and cross-modality discrepancy. Experimental results on two
publicly available datasets SYSU-MM01 and RegDB demon-
strate the superiority of the proposed approach.
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