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Abstract—Various surface defects will inevitably occur in
the production process of mobile phones, which have a huge
impact on the enterprise. Therefore, precise defect detection is
of great significance in the production of mobile phones. However,
traditional manual inspection and machine vision inspection
have low efficiency and accuracy respectively which cannot
meet the rapid production needs of modern enterprises. In
this paper, we proposed a mobile phone surface defect (MPSD)
detection model based on deep learning, which greatly reduces
the requirement of a large dataset and improves detection
performance. First, Boundary Equilibrium Generative Adver-
sarial Networks (BEGAN) is used to generate and augment the
defect data. Then, based on the Faster R-CNN model, Feature
Pyramid Network (FPN) and ResNet 101 are combined as feature
extraction network to get more small target defect features.
Further, replacing the ROI pooling layer with an ROI Align layer
reduces the quantization deviation during the pooling process.
Finally, we train and evaluate our model on our own dataset.
The experimental results indicate that compared with some
traditional methods based on handcrafted feature extraction
and the traditional Faster R-CNN, the improved Faster R-CNN
achieves 99.43% mAP, which is more effective in the field of
MPSD defect detection.

Keywords—Surface defect detection, BEGAN, Faster R-CNN,
FPN, RoI Align

I. INTRODUCTION

Mobile phone surface defect (MPSD) is an inevitable factor
in the production process of mobile phones. Efficient defect
detection can provide enterprises with production information
in time to improve production technology. At present, manual
detection is still the main method in the production process
of mobile phones. Due to human body fatigue, slow detection
speed, and other factors of manual detection, it cannot meet the
rapid production needs of current enterprises. Therefore, the
surface defect detection technology based on machine vision
stands out in order to solve the problems of manual inspection.
Vision-based detection technology uses a visual sensor instead
of the human eye to acquire the detected object image and uses
detection algorithms to extract information from the image to
determine whether there exists a defect in the collected image.

At present, a large number of defect detection researches
are based on traditional machine vision. Jian et al. [1] studied
the defect discrimination method and proposed a joint defect
discrimination method based on difference projection and an
improved fuzzy C-means clustering (IFCM) algorithm. The
former eliminates the influence of external light changes on

the gray-scale of the image to be measured, and the latter
removes the defect of the blurred gray border in the noise
image of the mobile phone screen. However, the defect de-
tection is very dependent on the template image. Jie Zhao
et al. [2] proposed a new method to detect and identify
glass defects in low-resolution images, that is, using binary
feature histograms (BFH) to describe the characteristics of
glass defects, compared with the local binary pattern (LBP)
[3], the accuracy and speed have been improved. Zhang [4] et
al. introduced a discrete Fourier transform (DFT) and optimal
threshold into defect detection determined the position of
the defect and highlighted it through the spectral residual
method in DFT, and finally determined the optimal threshold
for defect region segmentation through multiple iterations.
Huang et al. [5] proposed a complete Mobile phone Panel
Surface Defect Detection framework based on machine vision,
which is composed of different feature extraction operators and
support vector machine (SVM) [6] classifiers. These methods
meet the requirements in terms of accuracy and speed, so they
have been applied in the actual production process. However,
these methods deeply rely on hand-crafted features, which
require experienced experts, and these features are highly
targeted. The traditional algorithm’s feature extraction ability
will greatly decrease if the product materials or production
environment change.

Over the recent years, deep learning technology has devel-
oped rapidly, and the neural network model in deep learning
has been successfully applied and achieved good results in the
fields of target classification, target recognition, target tracking,
and autonomous driving [7], [8], [9], [10]. A significant
advantage of deep learning technology is automatic feature
extraction, which can eliminate the tedious image processing
and overcome the shortcomings of traditional machine vision
detection methods. Many researchers have begun to use deep
learning methods to solve the problem of defect detection.
Zhang et al. [11] proposed a convolutional neural network
(CNN)-based method to detect printed circuit board (PCB)
defects, which achieves high detection performance compared
with traditional detection methods. Xu et al. [12] proposed
an improved deep convolutional network to detect railway
subgrade defects. Compared with the traditional HOG+SVM
method, improved deep convolutional networks can achieve
better performance. Titov et al. [13] embedded the YOLO
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algorithm into the unmanned aerial vehicle (UAV) to de-
tect the defects of power lines. He et al. [14] proposed a
regression and classification based framework for industrial
surface defect detection, and finally achieved the state-of-
the-art performance. In summary, the deep learning method
has been introduced in the defect detection field and it also
achieves great performance. However, it is rarely expanded
into the field of MPSD detection.

The purpose of this paper is to explore the possibility of
deep learning method in surface defects of mobile phones,
especially with limited data samples. In this study, we propose
a scheme of applying Faster R-CNN [15] for surface defects
of mobile phone. The main contributions of this article are as
follows:

First, it is difficult to obtain samples of mobile phone
surface defects, so we use BEGAN to augment the dataset,
making the data more diverse while ensuring quality. Then, in
order to solve the problem of small target defect detection on
the mobile phone surface, FPN network [16] and ResNet101
[17] feature extraction network are combined to obtain more
powerful feature extraction capabilities. Further, ROI Align
layer [18] replaces the original ROI Pooling layer to reduce
pixel loss due to quantization. At last, a set of comparative
experiments are made with traditional Faster R-CNN. In
addition, traditional methods based on feature descriptors(e. g.
SIFT [19], LBP [3] and HOG [20]) and SVM are also taken
as a reference. The experimental results verify the validity of
the proposed scheme.

II. MPSD DETECTION WITH IMPROVED FASTER R-CNN

A. Faster R-CNN

Faster R-CNN is an object detection and recognition al-
gorithm proposed by Ren et al [15]. This algorithm is the
final improved version of the region-convolutional neural
network (R-CNN) series of algorithms. Its most prominent
contribution is the proposal of a regional proposal network
(RPN), compared with the selective search algorithm in the
previous generations of R-CNN algorithms, the speed has been
improved by nearly 200 times, and the accuracy has also been
greatly improved. Faster R-CNN is mainly composed of three
parts: feature extraction network, regional suggestion network,
and classification regression network. These three parts have
different functions and cooperate with each other to achieve
the detection task.

The main task of the feature extraction network is to use
the convolutional neural network to obtain the feature maps
of the input image, which contains rich semantic information.
Traditional Faster R-CNN uses VGG16 [21] as a feature
extraction network. When the picture is input to the network,
the 13-layer learnable convolution kernel performs feature
extraction on the image.

The RPN network accepts the feature maps obtained by the
feature extraction network for preliminary feature selection.
The RPN network has two branches (i.e. rpn−cls, rpn−reg).
rpn− reg is the regression branch of the bounding box. The
main function of rpn−reg branch is to distribute the generated

boxes near the actual target box through the regression and
transfer coordinate of generated boxes to the classification
regression network. rpn − cls is a branch of the bounding
box classification. This branch will perform a preliminary
two-class classification through softmax. Because the RPN
network involves both classification and regression tasks, its
loss function is determined by the classification loss and the
regression loss. Loss functions are composed of two parts:

Lcls(Pi, P
∗
i ) = −log[PiP

∗
i + (1− P ∗i )(1− Pi)] (1)

Lreg(ti, t
∗
i ) =

∑
i∈(x,y,w,h)

SmoothL1(ti − t∗i ) (2)

SmoothL1(x) =

{
0.5x2 |x| < 1
|x| − 0.5 otherwise

(3)

L(Pi, P
∗
i ) =

1

Ncls

∑
i

Lcls(Pi, P
∗
i )

+λ
1

Nreg

∑
i

P ∗i Lreg(ti, t
∗
i )

(4)

where Ncls is the batch size of the input image, Nreg is the
total number of anchor boxes participating in the training, λ
is defined as the batch size divided by the total number of
anchor boxes, which is used to balance the batch size and the
number of anchor boxes, ti is a 4-dimensional vector, which
is the location information of the bounding box predicted by
the RPN network, t∗i is the position information of the relevant
real target box, Pi is the probability that the initial suggestion
box is predicted by the RPN network as a prospect, P ∗i is the
label value of the foreground.

Ultimately, the classification regression network performs
accurate target classification and target positioning. The struc-
ture diagram of Faster R-CNN is shown in Figure 1.

B. The Overall Architecture of the Proposed Method

The Faster R-CNN method directly applied to the detection
of surface defects of mobile phones cannot achieve the ideal
detection effect. The main reasons are as follow:
• The similarity between the defect target and the detection

background is very high
• The size of the defects are often small
• The shape of defects are diverse
• The ratio of positive and negative samples is unbalanced
• The data sample is limited
Therefore, to deal with the problems in the detection of

MPSD, this article has improved several parts of the original
Faster R-CNN. The architecture diagram of the improved
network is shown in Figure 2.

As shown in Figure 2, this paper mainly improves the
original Faster R-CNN from the following three aspects:
• The VGG16 will be replaced by the ResNet-101 as a

feature extraction network to extract high-quality feature
information.

• Feature Pyramid network (FPN) is embedded in Faster
R-CNN to enhance the detection ability of small targets.
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Fig. 1. The architecture of Faster R-CNN.

• The RoI Pooling layer is replaced by the RoI Align layer
to reduce the detection capability degradation caused by
quantization loss.

• Some common data augmentation measures have been
implemented. At the same time, BEGAN is also used
to generate high-quality and diverse data to reduce the
impact of few samples on training.

C. Base Network

We adopt Resnet101 as a feature extraction network for our
model. There are 5 convolutional blocks in total. The first
convolution block is composed of a 7×7 convolutional layer
with a stride of 2 and a 3×3 maximum pooling layer with a
stride of 2. Each remaining convolutional block is composed
of several bottlenecks Block composition. The network has a
total of 101 layers of convolutions, and the output after each
convolutional layer will be activated by batch normalization
[22]. The ResNet model is pre-trained on ImageNet to classify
1.2 million pictures. However, there are only a few thousand
datasets in this paper. Using such a deep network may lead to
overfitting. Therefore, this paper uses the method of transfer
learning and data augmentation to avoid overfitting. A pre-
trained model is used to extract features from the augmented
data, which reduces requirements on image quantity.

D. Feature Pyramid Network

The original Faster R-CNN uses the last single feature map
of the feature extraction network for classification and regres-
sion, whereas its resolution is greatly lost in the convolution
process. Therefore, the original Faster R-CNN detection ca-
pability cannot reach the expected performance. We analyzed
the defect dataset and calculated the proportion of defects in
each defect picture. A statistics of the dataset we made show
that 58% of the defects are very small, accounting for only
0.5% of the image size. So we introduce the FPN network
to cope with this hard problem. T. Lin [16] et al. proposed
a multi-scale feature fusion method called feature pyramid
network (FPN). FPN constructed a network structure with

strong semantic expression capabilities at all scales, whose
specific implementation is shown in Figure 2. FPN consists of
three parts, a bottom-up structure, a top-down structure, and
a lateral connection structure. This article uses ResNet101 as
a feature extraction network. Four output layers in ResNet101
are defined as C2, C3, C4, C5, which constitutes the bottom-
up network structure. The P5 layer is obtained by convolution
of C5, and the feature map with the same size as the C4 layer
can be obtained after the nearest neighbor upsampling of the
P5 layer. Then, the C4 layer and the P5 layer are added to
obtain the P4 layer. By analogy, the P2, P3, P4, P5 top-down
structure will be generated. The function of lateral connection
is to change the channels through a 1×1 convolution kernel
to match the dimensions of the previous layer.

The embedding of the FPN network makes the output of
the RPN network multi-scale, and its ROI area is also multi-
scale. Therefore, ROIs of different scales need to use different
feature layers as input to the ROI pooling layer. The specific
distribution method of the feature layer is as follows:

k = k0 + log2(

√
wh

224
) (5)

where k0 is the reference value, which is generally set to 5,
w and h are the width and height of the ROI area, 244 is the
size of the pre-training image based on ImageNet, k is the
assigned layer Serial number.

E. RoI Align

ROI Align is a method proposed by the Facebook AI Re-
search Department. Compared with the ROI pooling method,
the ROI Align method cancels all quantization operations.
Four sampling points are set in each bin, and the pixel value
of the feature map is obtained by the method of bilinear
interpolation, thereby avoiding the loss of accuracy caused by
the quantization process. The operation process of RoI Align
is as follows:
• First, each proposal region is traversed, keeping the

floating-point boundary not quantized.
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Fig. 2. The architecture of proposed method.

• Then the proposal region is divided into several rectangu-
lar bins, and the boundaries of each bin are not quantized.

• Further, four sampling points are set up in each bin and
their coordinate positions are obtained. The pixel values
of these four sampling points are calculated by bilinear
interpolation. Finally, the maximum pooling operation is
performed to fix the feature size.

F. BEGAN

Despite the dataset can be increased through image flipping,
rotation and color jitter, the data sample is still very small
and the defect feature information has not changed much.
Therefore, BEGAN [23] network is applied to generate a large
number of images, which have completely new defect features.
These rich feature information can help the algorithm to adapt
to the real production scenario to a certain extent. BEGAN
network is different from other GANs, the discriminator here
uses the auto-encoder structure, which makes a very simple
network. Even without adding some training tricks such as BN,
mini-batch, and SELU activation function, it can also achieve
very good training results. Unlike typical GANs whose data
distribution generated by the generator is as close as possible
to the distribution of real data, BEGAN aims to match the
auto-encoder loss distribution and the error loss distribution
derived from the Wasserstein distance. Besides, A hyper-
parameter γ is provided, this hyper-parameter can balance the
diversity of the image and the quality of the generation. By
controlling the hyper-parameter, a variety of defect features
can be obtained, which is why we use BEGAN. The generator
and discriminator of BEGAN are shown in Figure 3.

(a) Decoder (b) Encoder

Fig. 3. The architecture of BEGAN

III. EXPERIMENT

A. Building Defect Dataset

Mobile phone surface defects include mobile phone screen
defects and mobile phone shell defects. This paper collects
50 defective screens and 30 defective mobile phone cases.
The samples are taken at different angles and light sources. A
total of 1250 defective pictures are taken. At the same time,
in order to quickly process defective pictures, this article fixed
the size of the picture to 280×500 or 500×280. This paper
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divides the surface defect pictures of mobile phones into four
categories, screen scratches, edge defects, point defects, and
stripe dents, as shown in Figure 4.

(a) Point defect (b) Edge defect

(c) Screen scratch (d) Stripe dent

Fig. 4. Samples of MPSD

B. Data Augmentation

Obviously limited by objective factors, the number of pic-
tures taken is limited and the number of samples in each
category is not balanced. In order to improve the detection
and generalization ability of the model, the data of the mobile
phone defect image is first augmented. Common methods of
data augmentation include flipping, rotation, and color jitter.
After the above data augmentation, 2495 samples are obtained.
Then BEGAN is used to augment data, As shown in Table I,
after expanding the data through BEGAN, the total sample
size increased by 2258. Then, the obtained data is divided
into training set, validation set, and test set. 70% of data are
randomly divided into the training set, 15% are randomly
divided into the verification set, and the remaining part is
divided into the test set.

C. Evaluation Metrics

In order to effectively evaluate the performance of the
algorithm, three evaluation indicators [24] are used, which are
average precision (AP), mean average precision (mAP), and
inference time. The above indicators are defined as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =

∫ 1

0

P (R)dR (8)

mAP =

∑N
i=1APi

N
(9)

where the definition of TP is the number of actual defect
samples predicted as defects; FP is the number of is the
number of non-defective samples predicted as defects; FN is
the number of non-defective samples predicted as non-defects;
N is the number of detection categories.

D. Experimental Environment and Training Detail

In order to speed up the training of the network, this paper
uses a single GPU (GTX1080Ti) to improve the calculation
efficiency. Python is used to implement the training and
testing of improved Faster R-CNN. The whole experiment
was implemented by using the open-source deep learning
framework Tensorflow.

In order to obtain more diverse data, we need to train
BEGAN. The size of the collected picture is 280×500, the
first is to find the defect in the picture and crop the picture
to 64×64. The kernel of each layer is the same size 3×3.
Adam algorithm is chosen as the optimization algorithm, the
learning rate of generator and discriminator are both set to
0.00008, and the beta1 is 0.5; the hyper-parameter γ is set to
0.5; The number of training steps is set to 10000.

Figure 5 shows some defect image samples generated by
BEGAN. It can be seen from the figure that the generated
defect image can well represent the real defect, and at the
same time it has a certain diversity in geometric shape.

After obtained enough data, the proposed method is trained
by using the Adaptive Moment Estimation (Adam) optimiza-
tion algorithm [25] with momentum of 0.9, weight decay of
0.0001, beta1 of 0.9, and betal2 of 0.999. The number of
iterations is set to 40,000. The learning rate is 0.001. The
training batch size is set to 16 to avoid local minimum value.

(a) Input samples

(b) Output samples

Fig. 5. Some samples generated by BEGAN

E. Contrast Experiment and Ablation Experiment

Figure 6 shows some samples of MPSD by using the
proposed method. Each predicted defect is marked through a
rectangular box. The model we proposed successfully detected
defects with extremely high accuracy. In order to evaluate
the effectiveness of the improved algorithm proposed in this
paper, a comparative experiment and an ablation experiment
are designed. We list the AP and mAP in Table II to compare
our method with other algorithms. From Table II, we can
see that the proposed method obtains the highest mAP at
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TABLE I
DATASET DETAIL

Dataset Point defect Edge defect Screen scratch Stripe dent Total

Original number 560 560 670 705 2495

Augment number 523 536 583 616 2258

Total 1083 1096 1253 1321 4753

TABLE II
COMPARED WITH TRADITIONAL METHODS

Method mAP Point defect Edge defect Screen scratch Stripe dent Inference time

HOG+SVM 63.45% 73.88% 62.33 % 48.52% 69.06% –

LBP+SVM 72.39% 77.52% 75.21% 61.80% 75.03% –

Faster R-CNN(VGG16) 90.84% 90.81% 90.96% 91.44% 90.15% 0.111s

Faster R-CNN(ResNet101) 93.92% 95.75% 93.61% 93.97% 92.35% 0.197s

SSD-300 90.47% 90.82% 89.58% 90.17% 91.31% 0.016s

Yolov3(Darknet-53) 92.47% 94.36% 88.63% 92.23% 94.45% 0.029s

Our method 99.43% 99.39% 99.99% 99.45% 98.89% 0.208s

TABLE III
ABLATION EXPERIMENT

Method FPN RoI Align Data Augmentation mAP

Faster R-CNN(ResNet101)

# # # 93.92%

! # # 96.43%

! ! # 97.36%

! ! ! 99.43%

Fig. 6. Samples of detection results.

99.43%. Compared with the previous two traditional Faster R-
CNN, the improved algorithm improves the detection accuracy
by 8.59% and 5.51% respectively. Compared with one-stage
methods(e.g. SSD, Yolov3), the mAP of our method can

improve the mAP by 9.04% and 6.96% respectively. Compared
with the traditional algorithm combining feature descriptors
and SVM, the deep learning-based method has increased at
least 18% on mAP. As can be seen from the table, the
mAP based on the HOG method is only 63.45%, and the
mAP based on the LBP method reaches 72.39%. The deep
network in this article can reach 99.43%. The significant
performance improvement indicates the greater performance
of deep learning.

To verify the effectiveness of the improved module, the abla-
tion experiment was designed with the following experimental
schemes:

• Faster R-CNN based on ResNet101 was trained and
tested on the dataset without augmentation.

• Faster R-CNN based on FPN+ResNet101 is trained and
tested on the dataset without augmentation.

• Faster R-CNN based on FPN+ResNet101+RoI Align is
trained and tested on the data set without augmentation.

• Faster R-CNN based on FPN+ResNet101+RoI Align is
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trained and tested on the augmented dataset.
As we can see from Table III, the second scheme can increase
the mAP of the original Faster R-CNN model by 2.51%, the
third scheme can increase the mAP of the original Faster R-
CNN model by 3.44%, and the last scheme can increase the
mAP of the original Faster R-CNN model by 5.51%.

CONCLUSION

In this study, a mobile phone surface defect detection
method based on improved Faster R-CNN is proposed. In
order to solve the problem of small samples, we used the
BEGAN method to expand the dataset. At the same time,
the FPN structure is embedded in the traditional Faster R-
CNN structure to achieve high-quality feature extraction for
small size mobile phone defects, and the RoI Pooling layer is
replaced by the RoI Align layer to prevent the regression of the
bounding box of small size defects from being affected by the
quantization operation. The contrast experiments and ablation
experiments of improved strategies indicate that the BEGAN
augmentation, FPN, and RoI Align can effectively improve
the performance of the model. Finally, the proposed model
can achieve 99.43% mAP on the mobile phone surface defect
dataset, which outperforms the traditional Faster R-CNN and
other traditional vision methods based on handcrafted feature
extraction. The proposed method has two strengths: (i) Small
samples can be easily augmented and the augmented data are
more diverse. (ii) The method has a complex feature extraction
network, so it is able to be used in other diverse small defect
detection.

Although the performance of the proposed method is high
enough, there are still some aspects that need to be improved:
(i) The Inference speed of the proposed method is about
0.208s. Compared with the one-stage algorithm, its speed is
not very ideal. Next, we will simplify the model to speed up
the model while ensuring performance. (ii) The resolution of
the dataset is low and only the local regions of mobile phones
are used for training and detection. Maybe we will build a full
view of high-resolution mobile phone surface defect dataset.
(iii) At present, only the type and location of defects are
detected. In production, some defects within a certain error
range are acceptable. Therefore, in future work, we will focus
on how to quantify and define the severity of defects.
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