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Abstract—Lip-reading methods and fusion strategy are cru-
cial for audio-visual speech recognition. In recent years, most
approaches involve two separate audio and visual streams with
early or late fusion strategies. Such a single-stage fusion method
may fail to guarantee the integrity and representativeness of
fusion information simultaneously. This paper extends a tradi-
tional single-stage fusion network to a two-step feature fusion
network by adding an audio-visual early feature fusion (AV-
EFF) stream to the baseline model. This method can learn the
fusion information of different stages, preserving the original
features as much as possible and ensuring the independence of
different features. Besides, to capture long-range dependencies
of video information, a non-local block is added to the feature
extraction part of the visual stream (NL-Visual) to obtain the
long-term spatio-temporal features. Experimental results on the
two largest public datasets in English (LRW) and Mandarin
(LRW-1000) demonstrate our method is superior to other state-
of-the-art methods.

Index Terms—speech recognition, feature fusion, non-local

I. INTRODUCTION

Audio-visual speech recognition (AVSR) aims at combining
visual information with the audio information to effectively
improve the recognition accuracy in noisy environment. It
has received increasing attention in recent years due to its
wide applications in human-robot interaction [1], speech data
mining [2], sound localization [3], etc. Common audio-visual
fusion systems consist of two stages: (1) feature extraction
from the image and audio signals, (2) fusion of the fea-
tures for joint classification [4]. In these two stages, lots
of advanced approaches have been proposed and followed.
Despite significant progress, finding how to make better use
of complementary information of audio and visual modalities
for speech recognition is still a research focus [5].

The visual information is particularly important when the
audio information is contaminated severely in a noisy envi-
ronment. Hence, various researchers bend themselves to find
a more effective way of lip-reading in audio-visual speech
recognition tasks. Stavros et al. [6] presented an end-to-end
visual speech recognition system based on Long-Short Mem-
ory (LSTM) networks [7] which is the first model to extract
features directly from the pixels and perform classification.
They then extended their approach to audio-visual fusion
tasks based on residual networks and BGRU (Bidirectional
Gated Recurrent Unit) in [8]. Some papers with the visual
branch as key points have similar improvements [9]–[12], like
replacing the full connection layer used to extract features with
a 3D convolution, and then followed by standard convolutional

layers or residual networks (ResNet), finally, combine LSTMs
or GRUs. A common phenomenon is that most of these
approaches usually extract the spatio-temporal feature of video
sequences by local convolutional operation, which may lose
some information between distant frames. So, how to capture
the long-range dependencies of sequential data is a key point.

The way to fuse the visual and audio information is another
point of audio-visual speech recognition task. There are two
common kinds of fusion strategies, namely early fusion and
late fusion. Early fusion is carried out in the early stage
of the network, which can better preserve lossless features.
While late fusion at the relatively late stage of the network,
makes it better to preserve the characteristics of the different
modalities themselves. Abdelaziz [14] reviewed and compared
the performance of five audio-visual fusion models, and a
complete evaluation of these fusion models makes his study
a common benchmark in large vocabulary continuous speech
recognition (LVCSR) tasks. Guo et al. [15] proposed a feature
fusion method to combine CNN-based features and heuristic-
based discriminative features that are extracted from heuristic
features using deep neural network (DNN). Other papers have
similar modifications [16]–[19], like changing the category or
position of fusion method, designing a new loss function or
improving the attention mechanism. However, most of these
methods only consider the fusion in a single stage of the
network, which may not be able to balance the integrity and
representativeness of audio and visual information.

Considering the above research status and problems, in this
paper, a non-local block [13] is inserted into the visual branch
to capture long-range features of lip frames, and a two-step
feature fusion strategy is proposed to combine audio and visual
information in the diverse stages. The structure of the network
is improved upon [8]. The main differences are the addition
of a branch and the application of a non-local block. Finally,
the competitive performance is obtained on LRW [20] and
LRW-1000 datasets [21].

The main contributions of this paper are summarized as fol-
lows: (1) A non-local block is inserted in the feature extraction
part of the visual stream (NL-Visual) to capture long-range
dependencies by calculating the distance of all positions. (2)
An audio-visual early feature fusion (AV-EFF) stream is added
to form a two-step feature fusion strategy that can guarantee
integrity and representativeness of features simultaneously.
The experimental results show that our method can improve
the fusion performance in strong noise environment greatly.
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Fig. 1: Overall framework of the two-step feature fusion network, which consists of two parts. The first part has three streams
including NL-Visual stream, audio stream, and audio-visual early feature fusion (AV-EFF) stream. The second part is audio-
visual late feature fusion including 2-layer BGRU followed by a softmax layer that is connected with the output word label.

II. THE PROPOSED METHOD

In this section, the overall framework of the two-step
feature fusion network for audio-visual speech recognition is
illustrated in Fig. 1. Description of variables in Fig. 1: Vearly,
Aearly and Fearly denote early visual, audio and audio-visual
features, respectively. Vlate, Alate and Flate denote late visual,
audio and audio-visual features, respectively. Ffinal denotes
the feature obtained after the late feature fusion. Our proposed
network consists of three single streams and a late feature
fusion part. In this section, we introduce the entire network as
follows: we firstly describe GRU based NL-Visual stream and
audio stream respectively. Then, the features in the middle
layer of the NL-Visual and audio stream are extracted and
encoded as the input of the audio-visual early feature fusion
(AV-EFF) stream. After that, the outputs of the BGRU layers
in three independent streams are fed to another 2-layer BGRU
for late feature fusion. Finally, the loss function is mentioned.

A. NL-Visual Stream

The visual stream consists of several steps. Firstly, a 3D
convolution network is used to extract the spatio-temporal
information of the lip frames. Secondly, a non-local block is
inserted to obtain the long-range dependencies of the entire
video information. Thirdly, a 34-layer ResNet followed by a
2-layer BGRU is used for deep feature extraction, and these
features will be used for subsequent early and late fusion to
form a two-step feature fusion strategy. We named this non-
local inserted visual stream as NL-Visual.

For the pre-processing of the video, the lip frames of
each corpus regulated to 29 frames, and data augmentation
technique is used to randomly flip and crop the lip region of
the dataset. Then, a 3D convolutional layer [22] is used to
capture the short-term dynamics of the mouth region and is
proved to be advantageous. It consists of a convolutional layer
with 64 3D kernels of 5 by 7 by 7 size, followed by batch
normalization and rectified linear units. Formally, the output
of the 3D CNN is given by:

vxyzij = tanh

(
bij +

∑
m

Pi�1∑
p=0

Qi�1∑
q=0

Ri�1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)

(i�1)m

)
,

(1)
where the output vxyzij means the value at position (x, y, z)

on the jth feature map in the ith layer, where Ri is the size
of the 3D kernel along the temporal dimension, wpqrijm is the
(p, q, r)th value of the kernel connected to the mth feature
map in the previous layer.

Then, in order to capture long-range dependencies and deal
with occlusion and misalignment, a spatio-temporal non-local
block [13] is inserted here to compute the response at a
position as a weighted sum of the features at all positions.
The generic non-local operation in deep neural networks can
be given by:

yi =
1

C(x)
∑
∀j

f(xi, xj)g(xj), (2)

here i is the index of an output position whose response is to
be computed, and j means index of positions. x is the input
signal, and y is the output signal of the same size as x. f is
a pairwise function which computes a scalar between i and
all j. The unary function g computes a representation of the
input signal at the position j. The response is normalized by a
factor C(x). The difference from the convolutional operation
is that non-local behavior is due to the fact that all positions
(∀j) are considered in the operation.

Another question is about the choice of f and g. The ex-
periments in [13] show that non-local models are not sensitive
to these choices. So, in this paper, we only consider g in the
form of a linear embedding: g(xj) = Wgxj , where Wg is a
weight matrix to be learned. And for the pairwise function f ,
we choose embedded gaussian function:

f(xi, xj) = eθ(xi)
Tφ(xj), (3)

here we set C(x) =
∑
∀j f(xi, xj) in (2). θ(xi) = Wθxi and

φ(xj) =Wφxj are two embeddings.
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Fig. 2: A space-time non-local block. The feature maps are
shown as the shape of their tensors. The shape of the input X is
T (batchsize)×H(height)×W (width)×1024(channel). “⊗” de-
notes matrix multiplication, and “⊕” denotes element-wise
sum. The softmax operation is performed on each row. The
blue boxes denote 1×1×1 convolutions. Here is the embedded
Gaussian version, with a bottleneck of 512 channels.

The non-local operation in (2) can form a non-local block
which can be incorporated into many existing architectures.
The definition of a non-local block is:

zi =Wzyi + xi, (4)

where yi is given in (2) and “+xi” denotes a residual connec-
tion [23]. The residual connection allows the non-local block
to insert into any pre-trained model, without breaking its initial
behavior (e.g., if Wz is initialized as zero). An example space-
time non-local block is illustrated in Fig. 2.

After taking Eq. (2), (3) into (4) and taking the output of
3D CNN: v as input, we can get the output of non-local block:

Outnl =Wz
1∑

∀j f(xi, xj)

∑
∀j

eWθv
T
i WφvjWgvj + vi. (5)

Then, a 34-layer ResNet which is proposed for Ima-
geNet [24] is followed, and the feature extracted here is
called early visual feature Vearly. After the feature transform
through another two-layer BGRU, the late visual feature Vlate
is obtained. These two features can be formulated as:

Vearly = ResNet34(Outnl),

Vlate = BGRU(Vearly),
(6)

where ResNet34(·) denotes the feature extraction operation
through a ResNet-34 network [23], and the specific structure
of this network is shown in Table I. BGRU(·) denotes the
feature transform through a two-layer BGRU. It is composed
of forward GRU and backward GRU, and the resulting tensor
from them is spliced as the final BGRU output. GRU structure
is shown in Fig. 3, which is an evolution of the LSTM, but it

TABLE I: Architectures for ResNet-18, ResNet-34. Building
blocks are shown in brackets, with the numbers of blocks
stacked. Downsampling is performed by conv3 1, conv4 1,
and conv5 1 with a stride of 2.

layer name output size 18-layer 34-layer

conv1 112×112 7×7, 64, stride 2

conv2 x 56×56 3×3 max pool, stride 2[
3× 3, 64
3× 3, 64

]
×2

[
3× 3, 64
3× 3, 64

]
×3

conv3 x 28×28
[
3× 3, 128
3× 3, 128

]
×2

[
3× 3, 128
3× 3 128

]
×4

conv4 x 14×14
[
3× 3, 256
3× 3, 256

]
×2

[
3× 3, 256
3× 3, 256

]
×6

conv5 x 7×7
[
3× 3, 512
3× 3, 512

]
×2

[
3× 3, 512
3× 3, 512

]
×3

out layer 1×1 average pool, 1000-d fc, softmax

differs from the LSTM in many ways. Firstly, GRU removes
the cell state in LSTM and only using a hidden state. Secondly,
the update gate in GRU is used to replace the input gate and
forgotten gate in LSTM. Thirdly, the output gate in LSTM
is canceled, the reset gate is added. The advantages of GRU
are that GRU can achieve similar performance to LSTM with
smaller parameters, lower training costs, and faster speed.

B. Audio Stream

The audio stream architecture is similar to the visual stream.
It can be summarized as the following steps. Firstly, a 1D
convolution network is used to extract the audio features.
Secondly, an 18-layer ResNet followed by a 2-layer BGRU
is used for deeper feature extraction. Similarly, some of the
features extracted in the audio stream process will be used in
the later two-step feature fusion strategy.

In the pre-processing part, the speech signal s(n) is pre-
weighted, framed and windowed to obtain the time domain
signal x(n). And then take the fast fourier transform (FFT) of
x(n) to get the linear spectrum of x(k):

x(k) =

N−1∑
n=0

x(n)e
j2πnk
N , 0 ≤ n,K ≤ n− 1. (7)

After getting the input spectrum, it is important to mention
that data augmentation algorithm is also used in audio stream.
When the audio spectrum is fed into the network, -5 to 20 dB
babble noise will be added randomly to enhance the robustness
of the network architecture to the noise. Then in order to
extract fine-scale spectral information from one-dimensional
sound signal, 1D convolution with a temporal kernel of 5ms
and a stride length of 0.25ms is used here. The output can be
expressed as:

axij = tanh

(
bij +

∑
m

Pi−1∑
p=0

wpijma
(x+p)
(i−1)m

)
, (8)
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Fig. 3: GRU structure diagram. xt is the input feature, yt is
the output feature, ht−1 is the hidden state generated at last
time t-1, ht is the hidden state generated at current time t.

The output axij means the value at position x on the jth feature
map in the ith layer, where Pi is the size of the 1D temporal
kernel, wpijm is the pth value of the kernel connected to the
mth feature map in the previous layer.

Since the audio signal is one-dimensional, we do not add a
non-local block to the audio stream. And similar to the visual
stream, a ResNet-18 network is used to extract deeper sound
feature which named early audio feature Aearly . The output of
the ResNet is divided into 29 frames using average pooling to
ensure the same frame rate as the video. At last, the output of
the ResNet-18 is fed to a 2-layer BGRU to obtain late audio
feature Alate. These two features can be represented as:

Aearly = ResNet18(a),

Alate = BGRU(Aearly),
(9)

where a is the output of the 1D convolution. ResNet18(·)
denotes the feature extraction operation through a ResNet-18
network [23], and the structure is shown in Table I. BGRU(·)
is mentioned above.

C. Audio-Visual Early Feature Fusion Stream

The audio-visual early feature fusion is called AV-EFF for
short, which is the first step in our two-step feature fusion
strategy. It mainly uses the features of the middle layer in
visual and audio streams for fusion. It includes the initial
convolution network, deeper ResNet network, and backend
BGRU layers. The details of each step are described below.

The preprocessing method of image and speech is the same
as that of a single stream. A 3D convolution network connects
a non-local block is used to extract the visual features, a 1D
convolution network is used to extract the audio features. And
then the visual and audio features go through ResNet-34 and
ResNet-18 respectively, a concatenation operation is used to
obtain the early audio-visual feature Fearly . Through the other
2-layer BGRU, late audio-visual feature Flate is obtained:

Fearly = Concat(Vearly, Aearly),

Flate = BGRU(Fearly),
(10)

where Vearly and Aearly denote the early visual feature and
early audio feature just like these two symbols in the single

visual and single audio streams. Concat(·) represents a join
operation of vectors. Because it is the fusion of early features
from two separate branches, we named this stream as an audio-
visual early feature fusion (AV-EFF) stream.

So far, the structures of three single streams are all intro-
duced. It is not difficult to see that each stream can be a
separate classifier. We will discuss their performance in the
experimental section. Next, we hope to integrate the three
streams into a late feature fusion, so that the visual and audio
information can compensate each other, and finally achieve
the robustness of our network in a noisy environment.

D. Audio-Visual Late Feature Fusion

The late feature fusion is another step in the two-step feature
fusion strategy. The input used in this part is a concatenation
of three single streams’ BGRU outputs, these outputs are in
the late stage of three single streams and complementary. As
shown in Fig. 1, the concatenation feature is fed to another 2-
layer BGRU to fuse the information from the audio, visual and
AV-EFF streams and jointly model their temporal dynamics.
the feature obtained here is Ffinal. The formula can be
expressed as:

Ffinal = BGRU(Concat(Vlate, Alate, Flate)), (11)

Concat(·) represents a join operation of Vlate, Alate, Flate.
BGRU(·) is mentioned above.

The output layer is a softmax layer followed an argmax
function which provides a label to each frame. The sequence
is labeled based on the highest average probability. The final
fusion classification result can be obtained:

Lfinal = argmax(softmax(Ffinal))

= argmax
j∈1,...,K

(
eF

j
final∑K

k=1 e
Fkfinal

),
(12)

where Lfinal denotes the recognition category of two-step
feature fusion network. softmax(·) is used to convert the
elements in vector Ffinal to probabilities, and the sum of these
probabilities is 1. argmax(·) represents an operation that takes
the index of the largest value in an array.

Since the fusion location of AV-EFF stream is in the
relatively early stage of the network, while the location of
late feature fusion is in the relatively late stage of the network,
and the training of AV-EFF stream is also earlier than the late
feature fusion. So, we call this fusion method as a two-step
feature fusion strategy.

E. Loss Function

Whether in the single-stream training or the late feature
fusion training, we use the cross-entropy as the loss function:

L(y, l) = −log eyl∑C
i=1 e

yi
, (13)

where y denotes the prediction, l denotes the true label. We
obtain the optimal parameters of the model by minimizing the
cross entropy function.
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Fig. 4: Samples in LRW (left) and LRW-1000 (right) datasets.

III. EXPERIMENTS AND DISCUSSIONS
In this section, we first introduce the LRW and LRW-1000

datasets. Then, the experimental setting and training process
are described in order. Finally, we present the results and
analysis of three experiments: Comparisons with the state of
the art methods, Ablation study, and Evaluation of two-step
feature fusion method.

A. Datasets
LRW dataset Lip Reading in the Wild (LRW) dataset [20]

was released in 2016, which is the largest publicly available
lipreading dataset in English. The dataset consists of short
segments (1.16 seconds) from BBC programs, mainly news
and talk shows. It is a very challenging dataset with more
than 1000 speakers, 500 words, 538766 samples, and large
variation in head pose and illumination. Some example frames
in the LRW dataset are shown in Fig. 4 (left).

LRW-1000 dataset LRW-1000 dataset [21] was released
in 2019, which is a more challenging Naturally-Distributed
Large-Scale dataset in Mandarin and contains 1000 classes
with 718018 samples from more than 2000 individual speak-
ers. Each class corresponds to the syllables of a Mandarin
word composed of one or several Chinese characters. It is
currently the largest word-level lipreading dataset and also
the only public large-scale Mandarin lipreading dataset. This
dataset aims at covering a natural variability over different
speech modes and imaging conditions to incorporate chal-
lenges encountered in practical applications. Some example
frames in the LRW-1000 dataset are shown in Fig. 4 (right).

Compare to many typical datasets [25]–[28] which contain
less than 50 words in lip-reading, The number of words in
LRW and LRWL-1000 far exceeds these datasets. This is
further proof of their difficulty.

Our lip-reading and AVSR experiments in a clean environ-
ment are carried out on both two datasets. And to further verify
the robustness of our method in a noisy environment, we also
carry out AVSR experiment under various SNR conditions on
the LRW dataset.

B. Experimental Setting
Preprocessing For visual input, the first step is to

extract the mouth region of interest (ROI). The size of every

A-Backend

-Conv

A-Backend

-BGRU

Audio

A-Frontend-Conv

AV-Backend-Conv AV-Backend-BGRU

Video

V-Frontend-Conv

Concat

Audio

A-Frontend

-Conv

V-Backend

-Conv

V-Backend

-BGRU

Video

V-Frontend

-Conv

(b) Audio stream(a) Video stream

(c) AV-EFF stream

Fig. 5: The network partition of three streams in a two-step
feature fusion network. The solid line represents the final
classification network structure, and the dotted line represents
the feature extraction network structure during the training.

ROI is 96× 96 and each corpus is sampled to get 29 frames.
When the ROI is fed into the network, it is randomly truncated
to the size of 88×88. These steps generate an input with (32,
29, 88, 88)/(batch, frames, width, heights) dimension to the
visual branch. For audio input, we make the mean of each
segment zero and the standard deviation one to account for
variations in different levels of loudness between the speakers.

Dataset partitioning The video segments in datasets are
already partitioned into three sets. In the LRW dataset, there
are 488766, 25000, and 25000 samples in the training, valida-
tion, and test sets. In the LRW-1000 dataset, there are 590700,
62056, and 50307 samples, respectively.

Implementation details The implementation is derived
from Pytorch toolbox based on NVIDIA GeForce GTX 1080
GPU. For three single streams and the late feature fusion,
the layers of BGRU are set as two, and each BGRU layer
is composed of 1024 GRU neurons. Although they have the
same structure, the training parameters are not shared. The
number of neurons of the FC layer is equal to the number of
word classes. Adam [29] is adapted to train all the networks,
and the initial learning rate is set as 0.001, decreasing with the
increasing of iteration times. The network is trained until there
is no improvement in the classification rate on the validation
set for more than 5 epochs.

C. Training Process

Training is divided into 3 phases: firstly, the audio, visual,
AV-EFF streams are trained independently. And then the late
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feature fusion part is trained separately with other weights
fixed. Finally, the total network is finetuned end-to-end.

Network partitioning For the single stream, each network
can be divided into three parts, which called frontend con-
volution network, backend convolution network and backend
BGRU layers, shown in Fig. 5. The frontend convolution
network includes early feature extraction from the convolution
network to ResNet. The backend convolution network is built
to connect the output of the front convolutional network to
form a classifier during the feature extraction, which makes
the extracted features more representational. It consists of two
convolutional layers with 2×(inputdim) and 4×(inputdim)
1D kernels of 5 size respectively, followed by batch normal-
ization, rectified linear units and max-pooling layer. After the
training of the feature extraction network is completed. The
backend convolution is discarded, and the backend BGRU
layers are connected for the following training. All of the
single branch networks have these parts, with only internal
structural differences.

Single stream training Firstly, the frontend convolution
network is connected to the backend convolution network
for pre-training. After that, the backend convolution network
is discarded and the backend BGRU layers are added. The
backend BGRU layers are firstly trained separately with the
remaining parameters fixed, and then trained end-to-end with
the frontend convolution network. Early stopping is applied
with a delay of 5 epochs.

Muliti stream training Once the single stream has been
trained, then they are used for initializing the corresponding
streams in the multi-stream architecture. Specifically, another
2-layer BGRU is added on top of all streams to fuse the single-
stream outputs. The top BGRU is trained with the weights of
the single-stream fixed firstly. After that, the entire network
is finetuned end to end. Early stopping is also applied with a
delay of 5 epochs.

D. Experimental Results

Comparisons with the state-of-the-art methods Firstly,
we compare the performance of our methods with other state-
of-the-art methods on LRW and LRW-1000 datasets. Since the
contributions of our work lie in the visual branch and fusion
method, we only show the performance of state-of-the-art lip-
reading and AVSR methods in Table II. These experiments are
conducted in a noiseless environment.

For lip-reading experiments on the LRW dataset, as shown
in Table II, we can find that the performance of our method is
superior to other state-of-the-art methods, and can achieve the
best performance among them by adding non-local block to the
baseline ResNet34+BGRU model [8]. On a more challenging
LRW-1000 dataset, our method is better than most state-of-
the-art methods, except for one [21]. The detailed comparison
with the baseline method [8] is present in Ablation study.

For AVSR experiments, there are relatively fewer audio-
visual results on the LRW and LRW-1000 datasets.
MCNN [33] is a method based on a multidimensional convo-
lutional neural network, which does not involve the structure

TABLE II: Comparison of our methods with the state-of-the-
art methods on LRW and LRW-1000 datasets. Clean represents
in a noiseless environment.

Task Method LRW
Accuracy(%)

LRW1000
Accuracy(%)

Lip-reading

LSTM-5 [30] 71.50 25.76
D3D [31] 78.02 34.76

3D+2D [21] 83.00 38.19
Multi-Grained [32] 83.34 36.91

ResNet34+BGRU(Baseline) [8] 82.80 36.72
NL-Visual(Ours) 83.41 37.03

AVSR
(clean)

MCNN [33] 96.98 39.60
ETE-AVSR(Baseline) [8] 97.60 37.52

Two-Step(Ours) 98.26 41.57

of BGRU. For the fairness of comparison, we replace the front
part before fusion in MCNN with our network structure. From
the results in the Table II, we can find that our AVSR method
surpasses other methods in a clean environment on both
datasets. For example, compared to the baseline model [8], our
method improved by 0.66% on the LRW dataset and 4.05%
on the LRW-1000 dataset.

Ablation study To further investigate the robustness of our
AVSR method to noise and explore the contributions of various
parts of our method to performance booming, we run ablation
experiments under varying noise levels on the LRW dataset,
and the results are shown in Table III. The audio signal for
each sequence is corrupted by additive babble noise from the
NOISEX database [34], the SNR varies from -5 to 20 dB.

For Baseline+NL-Visual, the performance improves at each
SNR compared to the baseline [8]. Although the improvement
seems slight in a clean environment, it is more obvious in a
noisy environment, especially at -5 dB, where the performance
increased by 1.55%. That proves the added non-local block
plays a role. A major reason for the performance booming is
that non-local block can obtain relevant information over long
distances. In the case of similar lip shape changes, sometimes
adjacent local information can no longer represent the features
of the whole word, then distant lip frames may bring more
representational features. The compensation of lip information
is more obvious at low SNR condition, which makes the
improvement of AVSR performance more significant in the
strong noise environment.

For Baseline+AV-EFF, the performance improvements are
obvious under all SNR conditions. For example, the perfor-
mance of our method is 0.24% higher than the baseline in a
clean environment, and 3.99% higher at -5 dB. That proves
the effectiveness of AV-EFF. Compared to the baseline model
using only late feature fusion, the added AV-EFF combines
visual and audio features in the early stages of the network,
and captures more integrated features, so that our network can
learn more hidden audio-visual information.

For Baseline+NL-Visual+AV-EFF, which is our proposed
two-step feature fusion strategy, it can achieve higher per-
formance than the cases mentioned above. The improvement
of accuracy increases with the decrease of SNR. In a clean
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TABLE III: Ablation experiments of our two-step feature fusion method under different SNR(dB) conditions.

Baseline [8] NL-Visual AV-EFF -5 0 5 10 15 20 clean

X 86.66 94.13 96.29 96.70 97.00 97.50 97.90
X X 88.21 95.01 97.18 97.22 97.53 97.86 98.10
X X 90.65 95.56 97.28 97.74 98.04 98.08 98.14
X X X 92.10 96.19 97.35 97.86 98.08 98.15 98.26

TABLE IV: Performance of our three single streams and fusion model under different SNR(dB) conditions.

Modality Method -5 0 5 10 15 20 clean

Single
Audio only 71.60 90.55 95.34 96.89 97.32 97.58 97.70
Visual only 83.41 83.41 83.41 83.41 83.41 83.41 83.41

AV-EFF only 87.63 94.68 96.19 96.69 96.96 97.02 97.10

Fusion Two-step(Ours) 92.10 96.19 97.35 97.86 98.08 98.15 98.26

Fig. 6: Confusion matrices of baseline model (left) and our
two-step feature fusion network (right) at -5dB SNR.

environment, our method is 0.36% higher than the baseline
model, 0.16% higher than the NL-Visual added model, and
0.12% higher than the AV-EFF added model. At -5 dB, our
method is 5.44%, 3.89%, and 1.45% higher separately. It
demonstrates that our two-step feature fusion strategy can
capture more information from different stages of the network
than the single-stage fusion strategy, which makes our AVSR
method bring performance booming in all SNR conditions.

Fig. 6 is the confusion matrices of the baseline model and
our two-step feature fusion network at -5dB. We compare 15
words that begin with the letter A. The digits in confusion
matrices represent the number of samples classified into each
category, with the correct number on the diagonal. We can find
that the confused discriminant pairs always appear on both
adjacent sides of the diagonal. This is because the sample
input order in the test set is alphabetized, which makes the
adjacent words have a high similarity. The red boxes in the
confusion matrices indicate three pairs of words that are
seriously confused: ACTION and ACTUALLY, AFRICA and
AFTER, AGAIN, and AGAINST. These pairs have lots of
same letters and sound very similar. In these difficult pairs,
the comparison between two confusion matrices verifies the
superiority of our method.

Evaluation of two-step feature fusion method To demon-
strate the effectiveness of our proposed two-step feature fusion
method, we compare it with single-modality methods and other
fusion methods under different SNR conditions.

Fig. 7: Classification accuracy of different fusion methods
under different SNR(dB). MCNN represents decision fusion.
ETE-AVSR represents late feature fusion of the baseline
model [8]. AV-EFF represents early feature fusion. Two-Step
represents our two-step feature fusion.

For the comparison of different modalities, as shown in
Table IV, we can find that our method has a significant im-
provement over single modality. For example, the performance
of our fusion method is 0.56% higher than the audio-only
modality in a clean environment, and at -5dB, the increase goes
up to 20.5%. That demonstrates our fusion method improves
obviously under the environment of strong noise, and proves
the necessity of using visual information to compensate for
the contaminated audio information in a noisy environment.

The comparison of different fusion methods is shown in
Fig. 7. The first method [33] is decision fusion, which directly
accumulates the output results of the classification layer of
visual and audio streams, and then obtains the final cate-
gory through an argmax function. The second method [8]
is our baseline, which uses a single late-stage feature fusion
strategy to ensure the independence of the audio and visual
features. The third one is the AV-EFF branch that we added,
which contains an early-stage feature fusion to extract more
integrated features. The performance of our two-step feature
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fusion strategy is superior to the other three models at each
SNR. It’s worth noting that our added AV-EFF’s performance
is higher than the baseline model when the SNR is lower
than 10dB, but lower when the SNR is higher than 10dB.
The reason it doesn’t work well when the SNR is high is
that early feature fusion destroys the independent advantage
of the features to some extent. And that’s why we don’t make
decisions directly using AV-EFF stream, but instead use a
combination of early and late feature fusion.

IV. CONCLUSION

This paper presents a two-step feature fusion network for
audio-visual speech recognition. For the visual stream, a non-
local block is inserted to capture long-range dependencies
among the sequential lip frames. For the fusion method, a two-
step feature fusion strategy is proposed to capture the features
of different stages while ensuring the integrity and indepen-
dence of the features. This strategy consists of an audio-visual
early feature fusion (AV-EFF) stream which can obtain more
integrated features in early stage, and a late feature fusion
part which can preserve the properties of different features.
Experimental results on LRW and LRW-1000 datasets show
the effectiveness of the non-local block and our fusion strategy,
demonstrate our proposed method is superior to other state-of-
the-art methods, especially in the environment of strong noise.
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