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Abstract—Although keyword spotting (KWS) technologies
have been successfully applied to some applications, most KWS
systems have a common problem of noise-robustness when ap-
plied to real-world environments. Audio-visual keyword spotting
(AVKWS) using both acoustic and visual information is a solution
to complementarily solve the problem. Most existing audio-visual
speech recognition (AVSR) systems extract geometric features
as visual features, which heavily rely on accurate and reliable
detection and tracking of facial feature points. To avoid this
defect of geometric features, an appearance-based discriminative
local spatial-temporal descriptor (disCLBP-TOP) is proposed in
this paper, which devotes to extracting robust and discriminative
patterns of interest. Besides, a parallel two-step recognition based
on both acoustic and visual keyword searching and re-scoring
is conducted, which complementarily makes the best of two
modalities under different noisy conditions. Adaptive weights for
decision fusion are generated using a sigmoid function based on
reliabilities of the two modalities, capable of adapting to various
noisy conditions. Experiments show that our proposed parallel
AVKWS strategy based on decision fusion significantly improves
the noise robustness and attains better performance than feature
fusion based audio-visual spotter. Additionally, disCLBP-TOP
shows more competitive performance than CLBP-TOP.

I. INTRODUCTION

Keyword spotting (KWS) [1,2] deals with the identification
of some specific words in unconstrained speech. Compared
with continuous speech recognition (CSR) [3] that performs
a complete transcription of an input utterance, KWS can deal
with situations where various disfluencies and artifacts make
the full-scale speech recognition difficult. Besides, without
entire utterance to decode, KWS also leads to less time
complexity. Therefore, KWS is more suitable for some specific
applications such as dialogue systems and has been widely
researched in the past decades.

Although KWS technologies have achieved significant
progress and have been successfully applied to some well-
defined applications, most KWS systems have the common
problem of noise-robustness when applied to real-world en-
vironment with dramatically changing noises such as back-
ground noises, engine noises and other voice activities. Audio-
visual keyword spotting (AVKWS) using both acoustic and
visual information is a solution to complementarily solve the
problem. Distinguished from acoustic speech, visual speech
won’t be affected by acoustic noise and thus can make up
for the accuracy reduction of audio-only speech recognition in
acoustically noisy conditions.

Audio-visual speech recognition (AVSR) has drawn wide

attention due to the fact that audio-visual integration can en-
hance speech perception [4,5]. AVSR aims at improving ASR
performance by sufficiently utilizing the visual information
of vocal organs during the articulating process, especially in
acoustically noisy conditions. Most research in this field fo-
cuses on audio-visual isolated word recognition and connected
word recognition [6,7], but few works concern about AVKWS.
Additionally, existing AVKWS systems [8,9] are primarily
English oriented, pretty little attention is paid on AVKWS
for mandarin. These motivate us to develop an audio-visual
keyword spotter for Mandarin that can adapt to different noisy
conditions.

For visual front-ends, an appearance-based feature named
local spatiotemporal descriptors (LBP-TOP) was firstly pro-
posed by Guoying Zhao et.al [10] for lipreading and achieved
nice performance. In their later work [11], a new spatiotem-
poral local texture descriptor (CLBP-TOP) was proposed for
differentiating spontaneous from posed facial expressions.
However, CLBP-TOP contains some redundant information
and leads to greater computational complexity. Therefore, an
appearance-based visual feature named discriminative com-
pleted local binary pattern from three orthogonal planes
(disCLBP-TOP) is proposed in our paper by picking out the
most robust and discriminative patterns.

For audio-visual integration, there are two general fusion
strategies: decision and feature fusion. Decision fusion is
applied as modality integration strategy in this paper due to its
advantages. Integrating weights are generated using a sigmoid
function based on reliabilities of the two modalities, which
can adapt to various noisy conditions. As to AVKWS strategy,
a parallel two-step recognition is conducted to make the best
of the two modalities under different noisy conditions. Fig.1
shows the general framework of our AVKWS system.

II. VISUAL FEATURE EXTRACTION

For visual front-ends, the key point is to extract a discrimi-
native feature vector of mouth movements. Generally, geomet-
ric features, appearance features and their combined features
are extracted to represent visual information [12]. Geometry-
based feature extraction commonly relies on accurate and
reliable detection and tracking of fiducial points or extraction
of lip contour, which may be significantly influenced by factors
such as light conditions and head movement. Consequently,
it’s difficult to practice in real environments. Appearance-
based feature extraction rises an alternative way to extract
features directly from pixel-data instead of feature points,



Fig. 1: Overall diagram of our audio-visual KWS system

which overcomes the drawbacks of geometry-based feature
extraction.

However, most appearance-based visual speech recognition
approaches consider features of lip or mouth regions in a global
way, ignoring the local information that describes the local
changes in space and time. Since the local information is of
great significance, completed local binary pattern (CLBP) is
proposed in [13] which extends local binary pattern (LBP)
by adding the local difference of its central pixel intensity
(C) and magnitude (M) besides sign (S). In [11], in order
to derive dynamic information, the purely spatial CLBP was
first extended to spatial-temporal domain by extracting CLBP
features from three orthogonal planes (CLBP-TOP).

Fig. 2: Feature in each block volume (a) Block volumes (b) An
exemplar block (c) CLBP features extracted from the exemplar
block

Conventionally, CLBP-TOP of each block histograms are
computed which are then concatenated to a single one to repre-
sent the appearance and motion of the mouth region sequence,
as shown in Fig.2. However, applying CLBP-TOP directly to
each divided block and then concatenating histograms into a
single one may lead to another problem: the feature vector
will be extremely long and the computational complexity will
be substantially increased consequently. This motivates us to
pick out the most representative and robust patterns to form the
optimal subset of CLBP-TOP patterns. Inspired by the theory
that the subset of effective patterns should be adaptively learnt
from the database [14], we employ a learning model containing
three layers to obtain the optimal subset of CLBP-TOP patterns
[15]. Algorithm 1 shows the learning process of disCLBP-TOP.

Layer 1 searches more robust features with dominant
pattern set, which is defined as the minimum set of pattern
types covering δ (0<δ<1) of all patterns. p denotes the total
number of pattern types in the uth ( u=1: XY , 2: XT , 3: Y T

Algorithm 1: Learning process of disCLBP-TOP
Input: class c with nc examples {S1,S2, ...,Snc}, B is

the number of blocks
Output: extracted feature JGlobal of class c

1 for n = 1 to nc do
2 divide Sn into blocks {Bv|v = 1, ...,B};
3 compute sign dominant pattern JSn

u,v in Bv,
u = 1,2,3;

4 compute magnitude dominant pattern JMn
u,v in Bv,

u = 1,2,3;
5 JSu,v = JSu,v

∩
JSn

u,v;
6 JMu,v = JMu,v

∩
JMn

u,v;
7 end
8 for v = 1 to B and u = 1 to 3 do
9 JSGlobal = JSGlobal

∪
JSu,v;

10 JMGlobal = JMGlobal
∪

JMu,v;
11 end
12 JGlobal = JSGlobal

∪
JMGlobal ;

13 return JGlobal ;

plane ) and Pu,ξ denotes the number of occurrences of pattern
type ξ . The dominant pattern set of each orthogonal plane Ju
can be derived as following:

Ju = argmin
|Ju|

(
∑ξ∈Ju Pu,ξ

∑p
k=1 Pu,k

)≥ δ (1)

where |Ju| denotes the number of elements in Ju. In this
way, the most frequently occurring patterns in each plane are
preserved which tend to be reliable to represent the structure of
the plane. The rarely occurring patterns are removed for they
probably come from interference and may result in a sparse
histogram.

Layer 2 ensures the discriminative power of features. In
order to minimize the within-class scatter, it is desired that
examples belonging to the same class have same patterns.
Therefore, intersection of dominant pattern sets is carried out
across all training examples in the same class. The optimal
subset of CLBP-TOP patterns learned from class c with nc



Fig. 3: The general framework of visual front end

examples can be expressed as:

Jc = {
3∪

u=1

nc∩
n=1

JSn
u}

∪
{

3∪
u=1

nc∩
n=1

JMn
u} (2)

where JSn
u and JMn

u denote the dominant pattern set from
uth plane of nth example with respect to sign and magnitude
component, separately. The central pixel intensity component
is not considered here for it makes less contribution than the
other two components [11,13].

Layer 3 constructs a global dominant patten set. Since
disCLBP-TOP is a local descriptor, global location information
is absent. To overcome the defect, the lip region sequence
is usually equally divided into B blocks in both spatial and
temporal domain. And then the global feature is derived by
concatenating Jc,v together, which is extracted in block Bv,
v = 1,2, ...,B. The trained global feature from different classes
is then put together as the reference for feature extraction of
testing sets.

With the learning model, CLBP-TOP is optimized by
seeking out dominant pattern sets and minimizing the within-
class scatter. To the best knowledge of the authors, it is the
first time CLBP-TOP being optimized and employed for audio-
visual keyword spotting. The general framework of visual front
end is illustrated in Fig.3.

III. ADAPTIVE DECISION FUSION

For AVKWS, the way how acoustic and visual information
is integrated significantly influences the final performance.
Considering the integration level of acoustic and visual in-
formation, feature fusion and decision fusion are two broad
integration strategies. Decision fusion is applied in our AVK-
WS system since it has some advantages over feature fusion
in handling noisy conditions [16]: (1) Feature fusion needs
more training data to ensure adequate probabilistic modeling.
(2) Decision fusion can explicitly model the reliability of
two modalities. (3) Integrating weights are relatively easy to
generate using decision fusion since it independently handles
the two modalities.

In this paper, conventional AVKWS based on HMM-
garbage is adopted, where acoustic HMMs and visual HMMs
are respectively trained. Adaptive integration is performed
by linearly combining acoustic log-likelihoods and visual

log-likelihoods of keyword candidates using the appropriate
weights as follows [17]:

logP(OAV |λi) = γlogP(OA|λ A
i )+(1− γ)logP(OV |λV

i ) (3)

where γ denotes the integration weight (0 to 1). OA and OV
are the acoustic and visual feature sequences of a keyword
candidate while λ A

i and λV
i are the acoustic and visual HMM

of keyword i. logP(OA|λ A
i ) and logP(OV |λV

i ) represent the
corresponding acoustic and visual log-likelihood.

In order to deal with various noise conditions, adaptive
integration weights should be generated to combine the contri-
butions of acoustic and visual modality. A number of reliability
measures have been proposed in the literature. Referring to
prior work [16], we select two reliability measures for each
modality since they have the better recognition performance
under diverse noisy conditions. The two reliability measures
are the average difference against the maximum log-likelihood
proposed by Neti [18] in Eq.(4) and variance of log-likelihoods
proposed by Adjoudani [19] in Eq.(5).

D1 =
1

N −1

N

∑
i=1

(
max

j
L j −Li

)
(4)

D2 =
1

N −1

N

∑
i=1

(Li − L̄)2 (5)

where Li = logP(O|λ i) is the output log-likelihood of the ¯i− th
HMM, L̄ is the mean log-likelihood.

Next, a sigmoid function is used to map the reliability
measures to the stream weights since it is monotonic and
bounded within zero and one. The mapping is defined as
follows:

γ =
1

1+ exp(−∑4
i=1 widi)

(6)

where w = [w1,w2,w3,w4] denotes the vector of sigmoid pa-
rameters and d = [D1,a,D1,v,D2,a,D2,v] denotes the reliability
measure vector. Following prior work [20], the minimum
classification error (MCE) approach is adopted to estimate the
sigmoid parameters.



Fig. 4: Grammar of garbage based KWS

IV. AUDIO-VISUAL KEYWORD SPOTTING
STRATEGY

In this paper, conventional HMM-garbage based KWS [21]
is applied, as depicted in Fig.4. Acoustic and visual keyword
HMMs from left to right are trained based on whole word.
Filler models are based on context independent phoneme or
viseme, which is modeled with a 3-state HMM. Since the
performance of conventional cascade strategy which performs
visual re-scoring on the acoustic hypothesis in acoustic noisy
conditions drops significantly, a parallel strategy is proposed
to complementarily make the best use of two modalities as
illustrated in Fig.5 [22].

Fig. 5: Parallel audio-visual keyword spotting strategy

Acoustic keyword searching and visual keyword searching
is first conducted in parallel, generating acoustic keyword
candidates and visual keyword candidates with correspond-
ing log-likelihoods. For a keyword candidate obtained by
either modality, re-recognition based on the other modality
of the keyword is then performed. For each acoustic and
visual keyword candidate, an acoustic and a visual log-
likelihood as well as corresponding reliability measure vector
[D1,a,D1,v,D2,a,D2,v] (Eq.(4) and Eq.(5)) can be obtained. With

the reliability measure vector available, the integrating weight
can be calculated using the sigmoid function. Then, integrated
scores are generated by linearly combining the acoustic and
visual log-likelihoods using the estimated weights (Eq.(3)).

In order to remove false alarms, rejection based on likeli-
hood ratio [23] (or log likelihood difference) is conducted as
follows:

logP(OAV |λi,Filler) = logP(OAV |λi)− logP(OAV |Filler) (7)

where logP(OAV |λi) and logP(OAV |Filler) denote the integrat-
ed log likelihood of keyword model λi and filler model. The
candidate is accepted as a true keyword when its log likelihood
ratio is greater than a threshold, otherwise it is considered as
a false alarm and rejected.

For the remaining candidates after rejection, whether a-
coustic keyword candidate and visual keyword candidate are
overlapped in time should be determined and specially han-
dled, which may lead to higher detection rates. Therefore, a
criterion carried out to deal with the overlapping situation. For
each acoustic and visual keyword candidates, if the middle
time point of one modality keyword candidate falls within
the time region of the other modality keyword candidate, the
candidate with greater integrated log-likelihoods is determined
as a true keyword while the other is regarded as false alarm.
For other cases, candidates are determined as true keywords.

V. EXPERIMENTS AND DISCUSSIONS

A. Experimental Setup

A new audio-visual database of mandrin recorded by 20
subjects (12 males and 8 females) is establish to conduct
AVKWS experiments since existing audio-visual databases
rarely concern about AVKWS of mandrin. Our database is
collected in an acoustic quiet environment with controlled
normal light conditions. The audio speech is recorded at the
sampling rate of 16 kHz and 16 bits per sample. The video
image is synchronously collected at 20 frames per second with
a resolution of 640 × 480. each subject utters 300 sentences.
We define 30 keywords frequently used in our task of human-
robot interaction (HRI). The total duration is approximately
40 hours. Fig.6 shows some exemplar video frames in our
database.

Commonly used Mel-frequency cepstral coefficients (M-
FCCs) and its delta as well as delta delta are extracted
as the acoustic feature using HTK toolbox [24]. For visual
preprocessing, faces and eyes are first detected automatically
using the trained haar-cascade of OpenCV 2.4.6. According to
the relative location of mouth and eyes, mouth region can be
localized. Video normalization is performed using the approach
in [25] in order to extract finer multi-resolution features in the
following step. For visual feature, disCLBP-TOP is applied
as stated in Section II. To illustrate, both acoustic and visual
keyword HMMs are trained based on whole word, which are
labeled by experts. The number of states of whole-word based
keyword HMMs is in proportion to the number of the phonetic
units in keywords. Figure of merit (FOM) is utilized as our
performance measure.

Our database is divided into three sets to allow speaker-
independent recognition: (1) 2100 clean utterances from 7



Fig. 6: Exemplar video frames in our database

subjects are used to train acoustic and visual HMMs. (2)
300 × 6 × 3 = 5400 utterances from 6 subjects at various
acoustic SNRs (artificially adding white noise at SNR of
20dB, 10dB and 0dB) are utilized to estimate the sigmoid
parameters. (3) 300 × 7 × 2 × 5 = 21000 utterances from 7
subjects with different noises (white and babble noise) and
different SNRs (20dB, 15dB, 10dB, 5dB and 0dB) are used
to test the performance of our AVKWS system under various
noise conditions.

B. Audio-visual Recognition

Table I and II shows the performances of unimodal and
bimodal KWS system respectively using CLBP-TOP and
disCLBP-TOP under white and babble noise.
TABLE I: Audio-only, vision-only and audio-visual perfor-
mances in terms of FOM using CLBP-TOP and disCLBP-TOP
under white noise

SNR(dB) 20 15 10 5 0

Audio 74.7% 57.3% 39.4% 18.6% 6.4%

Vision-CLBP-TOP 30.3% 30.3% 30.3% 30.3% 30.3%

Vision-disCLBP-TOP 32.7% 32.7% 32.7% 32.7% 32.7%

AV-CLBP-TOP 74.8% 63.9% 47.2% 36.5% 31.4%

AV-disCLBP-TOP 75.1% 65.2% 50.3% 38.1% 34.6%

TABLE II: Audio-only, vision-only and audio-visual perfor-
mances in terms of FOM using CLBP-TOP and disCLBP-TOP
under babble noise

SNR(dB) 20 15 10 5 0

Audio 70.0% 49.8% 37.4% 17.2% 6.1%

Vision-CLBP-TOP 30.3% 30.3% 30.3% 30.3% 30.3%

Vision-disCLBP-TOP 32.7% 32.7% 32.7% 32.7% 32.7%

AV-CLBP-TOP 73.1% 63.2% 47.5% 34.7% 30.6%

AV-disCLBP-TOP 74.8% 64.2% 51.9% 37.4% 34.3%

We can observe that for both conditions, as the SNR
decreases, the recognition performances of audio-only K-

WS system degrade significantly. While the performances of
vision-only system remain the same since our database is
collected under controlled normal light conditions. Besides,
performances of bimodal KWS system outperforms the uni-
modal KWS system, owing to the complementary contribution
of acoustic and visual modality. In addition, it can be observed
that our approach works well for untrained noise conditions
including different noise levels as well as noise types. Con-
sidering the vision-only and audio-visual performances using
CLBP-TOP and disCLBP-TOP, we can see that the perfor-
mance of our proposed disCLBP-TOP shows more competitive
performance than CLBP-TOP proposed in [12] since disCLBP-
TOP extracts the most robust and discriminative patterns of
interest.

Then we compare our AVKWS system performance (de-
cision fusion) and the audio-visual keyword spotter (feature
fusion) proposed in [8] on our database. As shown in Table
III, we can see that the performances of bimodal AVKWS
systems using both decision fusion and feature fusion outper-
form unimodal systems from an overall point of view. While
the integrated performance of the feature-based audio-visual
keyword spotter in [8] is worse than vision-only at SNR of
0dB, our bimodal performance is at least equal to or better
than that of unimodality. This phenomenon of the feature-
level fusion approach can be explained that under extreme low
SNR, the audio information introduces harmful cues and may
degrade the overall performance of audio-visual fusion. For our
decision-level fusion method, the contribution of each modality
is combined using optimal weights adaptive to current noise
conditions, which complementarily produces a better overall
performance.

TABLE III: Audio-only, vision-only and audio-visual perfor-
mances in terms of FOM using different fusion methods

SNR(dB) 20 15 10 5 0

Audio-only 74.7% 57.3% 39.4% 18.6% 6.4%

Vision-only 32.7% 32.7% 32.7% 32.7% 32.7%

Feature-level AV 74.3% 64.4% 48.5% 35.7% 29.6%

Decision-level AV 75.1% 65.2% 50.3% 38.1% 34.6%

VI. CONCLUSIONS

This paper develops an audio-visual keyword spotting
(AVKWS) system for mandarin based on decision fusion that
can adapt to various noise conditions. Instead of geometric
features, an appearance-based visual feature disCLBP-TOP is
proposed to extract the robust and discriminative patterns of
interest. Appropriate weights are generated using a sigmoid
function based on reliabilities of the two modalities to combine
acoustic and visual contributions. As to AVKWS strategy, a
parallel two-step recognition is conducted to make the best of
the two modalities to obtain better performance under vari-
ous noisy conditions. Experimental results show that bimodal
performance outperforms unimodal performance especially in
noisy conditions. Our AVKWS system based on adaptive
decision fusion has a better performance the feature fusion
based audio-visual keyword spotter. Additionally, since the
proposed disCLBP-TOP can represent local information more
accurately, performance using disCLBP-TOP outperforms that
of approaches using CLBP-TOP.
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