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Abstract— Interaural Intensity Difference (IID) and Inter-
aural Time Difference (ITD) are two improtant cues for
robot acoustic localization both in Artificial Intelligence (AI)
and Human-Robot Interaction (HRI) areas. However, it is
a challenge job to localize a sound source accurately and
swiftly only by two acoustic sensors. In this paper, a time-delay
compensation based two-layer probabilistic model is presented
for binaural sound source localization. In the first layer, a
weighting function of Generalized Cross Correlation (GCC)
named PHAT-ργ is used in low-frequency to obtain the prior
time-delay. And in this layer a crude estimate of azimuth can
also be acquired. At the same time, the probability of all possible
time-delay lags can be achieved from the training data. In the
Second layer, a new improved algorithm of IID based on time-
delay compensation(named IIDστ ) is introduced to refine the
probability of the azimuth and the elevation. Lastly, localization
result is obtained by Bayes-Rule method. Comparing with
three state-of-art algorithms, experimental results show that
the proposed method has higher accuracy and costs less time
for sound source localization.

I. INTRODUCTION
As an important part of AI and HRI, auditory system

introduces a new area of research for robot perception tech-
nologies. In order to realize the capability of accurate sound
localization, algorithms of geometric localization using more
than two acoustic sensors [1][2] are often used. However,
it is more difficult for robots to recognize sound signals
accurately and swiftly only by two acoustic sensors, just as
human and other mammals do. Many fields can benefit from
the capability of pinpointing the sound source swiftly and
accurately. For instance, a predator can precisely locate its
prey in the wild [3] and many other applications such as
[4][5].

There are three important and difficult issues concerning
binaural localization of a robot: Firstly, how to accurately
localize any kind of sound source; Secondly, how to localize
serval different sound sources at the same time; Thirdly,
how to track one or serval moving sound sources. Aiming at
dealing with these problems, the research on sound source
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localization by only two acoustic sensors has already been
studied for several decades.

As early as one hundred years ago, “Duplex Theory”[6],
shows that ITD could be used to localize sound in low
frequency, while IID could be applied to the localization
of sound in high frequency. Most of existing binaural cues
used by ITD were all based on the coincident model pro-
posed by Jeffress[7]. However, “Duplex Theory” neither can
distinguish whether the sound comes from front or rear, nor
can localize the elevation. To solve this problem, researchers
pay more attention to the effects of torso, shoulders, head,
and outer ears or pinnae of human body for sound source
localization. The cochlear model, developed in 1988 by
Lyon [8-10], made it possible to analyze ITD and IID in
different sub-bands. Based on cochlear model, a number of
monaural and binaural cues for evaluating azimuth, elevation
and distance were researched [11-13], which were named
Head-Related Transfer Functions (HRTFs).

Cohen [14] elaborated the different representations of
auditory space in the midbrain and forebrain. A brain-
like neural network for periodic analysis was introduced
by Voutsas [15]. From then on, the computational strategy
introduced in [14,15] has been widely used for binaural
sound source localization. A variety of localization cues were
measured, such as ITD and IID, and they would be trained to
be templates. Those cues obtained from the sound source to
be localized could be grouped together and then be matched
with the templates[16-18], and finally the location of sound
source would be found from the matching templates. An
overview of majority of the binaural localization models
could be found in [19].

However, there are two problems in traditional methods.
Firstly, it is time-consuming to match the characteristic vec-
tor of sound source to all the templates that characterize from
each direction. Secondly, ITD and IID are acquired without
considering the influence between each other. However, with
the influence of ITD, the signals received by two ears have
different starting point on sound source. This difference
will effect the extraction of IID. To address this issue,
several new algorithms were put forward. For instance, Li
[20] introduced a Bayes-Rule based three-layer hierarchical
system for binaural sound source localization. In their work,
ITD, IID, and Spectral Cues were used in three different
layers to acquire the information of the direction. Lower
layer provided upper layer with candidates, and Bayes-Rule
based approach was employed to make the final decision,
which could reduce time consumption effectively. Willert
introduced a probabilistic model [21] for binaural sound
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localization in the frontal azimuthal half-plane. In his paper
the effect of time delay was considered in IID acquisition.
Analysis of signals in short time makes it possible to
reduce computation. Meanwhile, Finger [22] introduced the
approaches and databases for online calibration of binaural
sound localization for robotic heads by two-layer model. The
result of the first layer gives a prior to the second layer.
However, noise would degrade the performance of sound
source localization. Jeub proposed a model [23] for binaural
cues dereverberation preserving. Actually, each of algorithms
above can only solve one of two problems mentioned in the
pervious paragraph. This work will resolve both of them.

A two-layer probabilistic model will be presented in this
paper to reduce the matching time between new features and
templates. Then a new IID based on time-delay compensa-
tion, named IIDστ , will be applied to eliminate the influence
of time-delay to IID.

In the first layer, a weighting function of GCC named
PHAT-ργ [24] is adopted to calculate the crude value of
azimuth which is though as a prior value. However, there
are measurement errors between the prior value with the real
azimuth of source. Therefore, all the possible azimuths will
be achieved by training with a certain probability. The time-
delay for each azimuth can also be obtained through training
in advance. Once a prior value of azimuth is acquired, all the
possible candidate azimuths and time delays can be found in
the database. They will be prepared for the second layer as
time-delay compensation.

In the second layer, the information of time delays and
their possible azimuths will contribute to obtaining IID to
offset the influence of time delay, which is named IIDστ .
After obtaining all possible time delays and their standard
deviations of each candidate direction, IIDστ of the signals
received by two ears will be calculated. As a result, the
new feature vector will be extracted. Since ITD offsets the
influence of time delays, it will be more effective than
traditional IID. Then the probability can be achieved when
IIDστ

real matches the template (IIDστ
mod). At last Bayes-Rule

method is used to make the final decision. The result will
be compared to other state-of-art sound source localization
models[20-22].

The rest of this paper is organized as follows: Section II
gives a real knockdown to the model and the algorithm used
in this paper. Experimental results and analysis are shown in
section III. At last, the conclusions are drawn in Section IV.

II. TWO-LAYER BASED PROBABILISTIC MODEL

Denote the source signal as s(n), and the received signals
as xl(n) and xr(n) on the left and the right ears respectively.
Then it can be described as follows:

xl(n) = hl(θ ,ϕ,r)∗ s(n)+ηl (1)

xr(n) = hr(θ ,ϕ,r)∗ s(n)+ηr (2)

where hl(θ ,ϕ,r) and hr(θ ,ϕ,r) are the transfer functions
of the direct paths from source to the two ears, which rely
heavily on azimuth, elevation and distance. ηl and ηr are

the noises received by left ear and right ear. θ ,ϕ,r are the
azimuth, elevation and distance respectively.

With the effect of the head shadow, it was proved that IID
cues on frequency makes it possible to estimate the distance
to the sound-source for the range going from 1 to 2 meters
from the listener [25]. However, when r is lager than 2m,
hl(θ ,ϕ,r) and hr(θ ,ϕ,r) almost alter indistinctly. In this
paper, the CIPIC database is used, so all sounds used in this
paper share a same distance of 1m. Therefore, there are good
grounds for ignoring the effect of r in this paper. Without
considering r, the task of this work is to obtain the θ and ϕ

from xl(n) and xr(n). Then (1) and (2) can be simplified as
follows:

xl(n) = hl(θ ,ϕ)∗ s(n)+ηl (3)

xr(n) = hr(θ ,ϕ)∗ s(n)+ηr (4)

A. General Structure

The two-layer based probabilistic model for binaural
sound localization presented herewith is composed of three
distinct and consecutive processors :
• Candidate azimuth extracting unit: This unit is used

to process a pair of original signals xl(n) and xr(n)
received by two ears of robots and to extract the
probability of candidate azimuths θi. This work is done
in the first layer and prepares for the next unit;

• Direction refining unit: Its task is to calculate the
probability of the sound source which is located on
a certain elevation ϕ by matching real IIDστ with
template IIDστ

mod in database. This unit works in the
second layer;

• Decision-making unit: In this unit a Bayesian sensor
model is employed to decide the direction where the
sound source is. In the next three subsections, the three
units will be presented in detail.

B. Candidate Azimuth Extracting Unit

The aim of this section is to provide the second layer
with the candidate azimuths θi and their probabilities. In
order to get the candidate azimuth θi, it is necessary to
remove the effect of ϕ . In Fig.1, average lags of time delays
for each 1250 directions (25 azimuths × 50 elevations) are
displayed. There are two obvious phenomenons as following:
First, different elevations with the same azimuth share the
same time delay or lags; Second, the lags of ITDs vary
systematically with the angle of incidence of the sound wave
relative to the interaural axis.

Theoretical evidence shows that the lags are independent
of frequency in previous works [11-19], which is according
to the fact that low-frequency sounds travel more easily
around the head and the time differences or lags are nearly
unaffected by ϕ . Therefore, the lag in each frequency channel
bank is regarded to be equal to the lag in low frequency
channel (< 1500 Hz) approximatively. Accordingly (3) and
(4) can be simplified as follows:

xl(n) = hl(θ)∗ s(n)+ηl (5)
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Fig. 1. Average time delay of 25 different azimuths and 50 different
elevations in 3D space.

xr(n) = hr(θ)∗ s(n)+ηr (6)

In this paper, instead of calculating ITD, Time Delay Of
Arrival (TDOA) is employed to get a priori azimuth Θ. Then
the geometry model becomes very simple. (5) and (6) can
also be described as follows:

xl (n) = als(n− τl)+ηl (7)

xr (n) = ars(n− τr)+ηr (8)

where al and ar denote the attenuation factors from the sound
source to the two acoustic sensors. And ∆τ in (9) is the lag
that needs to be found.

∆τ = τr− τl (9)

In order to obtain ∆τ , a weighting function of Generalized
Cross Correlation (GCC) named PHAT-ργ [24] based on
Time Delay Of Arrival (TDOA) is employed in this unit.
If it is assumed that (7) and (8) can be approximated by
a pure time delay, the cross-correlation between the signals
received by the two ears can be represented as follows:

R(n) =
∫

π

−π

W (ω)Xl (ω)Xr
∗ (ω)e− jωndω (10)

where R(n) is the correlation function of signals between two
ears. W (ω) is the weighting function for sharping the peak
of GCC function. Xl (ω) and Xr (ω) are the power spectrum
function of signals between the two ears.

With high signal to noise ratio, phase transform (PHAT)
weighting factor is always used as W (ω) for accurate sound
source localization.

W (ω) =
1

| G(ω) |
=

1
| Xl (ω)Xr

∗ (ω) | (11)

By using the weighting function W (ω), the cross-power
spectrum of sound source signal can get a robust time
delay result. However, When the signal energy is small, the
denominator of the weighting function will tend to 0 and
the error will increase. In [24], the improvement of PHAT
was proposed. A new parameter ρ is introduced into PHAT ,
whose value is determined by the SNR in actual environment.
The novel method gives the denominator of the weighting

Fig. 2. The upper one show the fitting function between the time-delay lags
with the real azimuths, which the red one stands for the polynomial function
we used and the blue one represents the arcsine function used in traditional
methods. The lower one show the relationship between the time-delay lags
with the real azimuths in actual condition.

function a coherent factor. Not only this factor could reduce
the error, but also it could avoid impacting the cross-power
spectrum. More details about PHAT-ργ can be found in [24].
As a result, the weighting function has been replaced by:

W (ω) =
1

| G(ω) |ρ+ | γ2 (ω) |
0≤ ρ ≤ 1 (12)

Then the lags between two ears can be obtained as:

∆τ = argmax
n

R(n) (13)

Considering the geometrical relationship of time delay
with azimuth, the relationship between ∆τ and θ can be
described as follows:

Θ = sin−1
(

∆d
d

)
= sin−1

(
∆τc
d fs

)
(14)

where c is the speed of sound in air (344 m/s), ∆d is
the distance difference between the sound source and two
ears. Obviously when ∆τc

d fs
is near or over 1, an error result

may be suffered. Therefore, (14) will be rejected and a
quartic polynomial by curve fitting will be employed in this
work. The polynomial function will be different according
to different subjects. In Fig.2, the red curve represents the
polynomial by curve fitting, and the blue one denotes arcsine
function. The lower picture displays the relationship between
the lags and azimuth in each elevations in the ideal state. The
result proves that the polynomial by curve fitting is more
effective to simulate the relationship between the lags and
the azimuths than the arcsine function.

In this paper, azimuth is divided into 25 intervals at first,
with center azimuths being −80o, −65o, −55o,−45o : 5o :
45o, 55o, 65o, 80o. When a new source appears, its azimuth
will be calculated and denoted the nearest center azimuth
Θ. Due to the existence of noise in the environment and
the possibility of error in calculation, azimuth localization
inaccuracy may happen. All possible time delay will be
trained when azimuth is calculated as Θ. Because each lag of
time delay corresponds a only azimuth θi, so the probability
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Fig. 3. All possible time delay is shown when the azimuth is calculated
as Θ

of the azimuth θi by p(θi|Θ) can be trained and stored before
testing with number of different sound signals. In Fig.3, all
possible lags of time delay are shown when the azimuth is
calculated as Θ. For example, Θ is −80o, which in fact the
azimuth of the sound may come from −80o or −65o.

C. The Direction Refining Unit

Because the candidate azimuths are refined in the direction
refining unit, therefore, the performance of a sound source
localization relies heavily on the accuracy of the extraction
of Interaural Intensity Difference. The difficulty in this
context is that binaural intensity differences strongly vary
over frequency and cannot be unambiguously assigned to the
sound source position. The common solution is to decompose
the binaural signals into different frequency channels, and
to obtain IID in each channel respectively. In this paper,
the information of time delay is introduced to compensate
IID, and IIDστ will be acquired, in which τ means the time
delay that needs to be compensated, while σ represents the
deciding factor of the range of τ .

The first stage of the direction refining unit consists of
cochlear and auditory periphery processing, which produces
an auditory image model [26]. The AIM processor imple-
ments a functional model of a cochlea that decomposes
the original signals received by two ears into k frequency
channels with respective frequency centre f m

c and bandwidth
bm

c , m = 1 2 · · · k, where k is the number of the cochlea
filterbank. The filterbank achievement is based on equivalent
rectangular bandwidth (ERB)-filters. The f m

c and bm
c can be

computed by using the Glasberg and Moore parameters [27].
In the second stage, a new algorithm named IIDστ is

introduced. It is an improvement of the algorithms introduced
in [21]. The characteristic IIDστ is extracted on all possible
time-delay lags in all frequency channels.

In order to compensate IID, it is needed to obtain all
possible time delays or lags, and the range of τ should be
determined first. In this research, when the candidate azimuth
θi is obtained in the first layer, all possible τ are tested for
each ϕ . Then the mean value τi and standard deviation σi
are obtained. The available interval is shown as follow:

τ ⊆ (−3σi + τi,3σi + τi) when θ = θi (15)

where τi is the average time lag between two ears on azimuth
θi. τi and σi will change in compliant with θi. In Fig.4 and

Fig. 4. The average time delay on different azimuth

Fig. 5. The standard deviation on different azimuth

Fig.5, τi and σi in different azimuths are shown. The upper-
lower limit of the range of τi will be trained and stored in
the database for each candidate θi respectively.

Then the IIDστ is extracted in each frequency bank. In
this section, a square window W is used to limit the length
of signal, with the length of 128.

In ideal conditions, if the Interaural Intensity Difference is
ignored and it is assumed that ITD is ∆τ in the mth channel,
after time delay compensation, an equation can be achieved
as follows:

W � xm
l (n−∆τ) =W � xm

r (n) (16)

where W � x(n) denotes a element-wise multiplication of
W and x(n). xm

l (n) and xm
r (n) denote the signals that are

decomposed into the mth frequency channels.
In fact, the level difference of the amplitudes can not be

ignored in binaural sound localization. Noise always has a
strong effect on the signals received by two different ears.
With this consideration (16) can be transformed into:

W � xm
l (n−∆τ) = λmW � xm

r (n)+∆η (17)

where λm denotes the real IIDστ in mth channel. And ∆η

represents the difference between the noises received by two

2693



ears. (17) can be rewritten as follows:

∆η = ηr−ηl

=W � xm
l (n−∆τ)−λmW � xm

r (n)
(18)

where ηr and ηl both are zero-mean Gaussian noises, and ∆η

means the disparity between ηr and ηl . Therefore, ∆η is also
a zero-mean Gaussian noise, and its standard deviation can
be described as σ∆η . Since ∆τ compensates the influence of
ITD effectively, ∆η will achieve minimum value. Therefore,
the parameter λm in model can be estimated by maximum
likelihood estimate method as follows:

λ̂m := min
λm
||W � xm

l (n−∆τ)−λmW � xm
r (n)||2 (19)

λ̂m can be obtained by partially differentiating (19) with
respect to λm , setting these partial derivatives to zero and
analytically solving the resulting equations:

0 =
∂

∂λm
||W � xm

l (n−∆τ)−λmW � xm
r (n)||2

=
∂

∂λm
∑
N
(xm

l (n−∆τ)−λmxm
r (n))

2

=
∂

∂λm
∑
N
(xm

l (n−∆τ)2 +(λmxm
r (n))

2−2λmxm
r (n)x

m
l (n−∆τ))

= ∑
N

2λmxm
r (n)

2−∑
N

2xm
r (n)x

m
l (n−∆τ)

= λm ∑
N

2xm
r (n)

2−∑
N

2xm
r (n)x

m
l (n−∆τ)

(20)
The result is shown as follows:

λ̂m =
∑N xm

r (n)x
m
l (n−∆τ)

∑N xm
r (n)2 (21)

where N denotes the length of the window.
In order to make the ratio values in a proper range, the

logarithmic ratio is calculated as final result of the IIDστ .
Then IIDστ can be described as follows when the candidate
azimuth is θi gotten in first layer.

IIDστ(∆τ, fm)|θi = 20log10(λ̂m)|θi

= 20log10
∑N xm

r (n)x
m
l (n−∆τ)

∑N xm
r (n)2 |θi

∆τ ∈ (−3σi + τ i,3σi + τ i)

m⊆ (1,k)

(22)

where k denotes the frequency channels number of the
cochlear filter.

Test on subject 003 in the CIPIC database, the IIDστ with
azimuth −30o, elevation 0o and 61.875o are shown in Fig.6.
It can be found that

{θi,∆τ i,σi}= {−30o,−11,1} (23)

without considering σi, although IID of elevation 0o and
IID of elevation 61.875o are different, there is still a great
similarity. Actually with the help of σi, more information can
be extracted effectively to distinguish different elevations.

Fig. 6. The IIDστ with (θ ,ϕ) ∈ {(−30,0) and (−30,61.875)}

Fig. 7. IIDστ with (θ ,ϕ) ∈ {(65,0) and (65,61.875)}

The IIDστ of azimuth 65o elevation 0o and 61.875o are
displayed in Fig.7. However, the 3σi = 9, which is much
bigger at azimuth 65o than that at azimuth −30o. The reason
of that lies in the sin(t) changes slowly around −90o /90o ,
which leads to error increasing.

D. Decision-Making Unit

In this section, a Bayes-rule based decision-making
approach is employed in this work. A priori azimuth Θ

is calculated by GCC+PHAT-ργ . Firstly, and the candidate
azimuths θi and their probability are obtained. In turn , these
candidate azimuths θi and their probability serve as a priori
for the second step. Based on the information provided by the
first layer, the range of the time delay used to be compensated
will be obtained. Then the location probability is refined by
IIDστ . The process also can be found from Algorithm 1,
and Fig.8. Mathematically, the decision procedure can be
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Fig. 8. Flow chart of the algorithm

expressed as:

p(θ ,ϕ|O) =
p(ϕ,θ ,O)

p(O)
= p(θ |O)p(ϕ|θ ,O)

O = (Θ, IIDστ)

(24)

where O is the characteristic extracted from original signals
received by two ears. Θ denotes the priori azimuth calculated
by GCC+PHAT-ργ . While IIDστ denotes the interaural level
difference after time delay compensation between two ear
signals in different frequency channels. And p(θ ,ϕ|O) is
the probability of the source located at (θ ,ϕ) when charac-
teristic O is observed. p(θ |O) has been stored after training
database.

When a new sound source appears in the environment,
the IIDστ

real can be calculated by the algorithm described in
section B. In an ideal condition, it is expected to match with a
certain template IIDστ

mod |θi,ϕ j , which represents the direction
of the sound source. However, with the effect of noise, the
relation between IIDστ

real and IIDστ
mod |θi,ϕ j can be described

as
IIDστ

real = IIDστ
mod |θi,ϕ j +η

′
θi,ϕ j

(25)

In this paper, experiment with Gaussian noise is test. So
η ′

θi,ϕ j
is Gaussian noise with standard deviation ση ′

θi ,ϕ j
. When

the environment is stable, η ′
θiϕ j

and ση ′
θi ,ϕ j

can be obtained
by training data. And they may change with azimuth and
elevate changing.

The probability for the direction of θi and ϕ j can be
obtained as follows:

p(ϕ j|θi,O)∼ 1
ση ′

θi ,ϕ j

√
2π

e

− 1
2σ2

η ′
θi ,ϕ j

||IIDστ
real−IIDστ

mod |θi ,ϕ j ||
2

(26)

The decision rule therefore is

(θ ,ϕ) = argmax
θi,ϕ j

p(ϕ j,θi|O) = argmax
θi,ϕ j

p(θi|O)p(ϕ j|θi,O)

(27)
After finding the max probability of all the possible

direction, the result(θ , ϕ) will be obtained accurately.

Algorithm 1: PSEUDO CODE OF ALGORITHM
Input: xl(n) and xr(n)
Output: azimuth:θ and elevate:ψ

1 Require: cochlear filter, probability p(θi|Θ) , ∆τ i , σi
and IIDστ

mod η ′
θi,ϕ j

, ση ′
θi ,ϕ j

;

2 if xl(n) and xr(n) available then
3 Get azimuth Θ by GCC+PHAT-ργ;
4 Return θi and p(θi|Θ) ;
5 end
6 if θi exists then
7 find ∆τ i , σi from database;
8 for ∆τ ⊆ (−3σi +∆τ i,3σi +∆τ i);
9 get IIDστ

real Match IIDστ
real with IIDστ

mod ;
10 return p(ϕ j|θi,O);
11 end
12 (θ ,ϕ) = argmaxθi,ϕ j p(θi|O)p(ϕ j|θi,O);
13 return (θ ,ϕ)

III. EXPERIMENTS AND DISCUSSIONS

The CIPIC database of head-related impulse responses
(HRIRs) [28] is used in our experiments. The database
is measured by the U.C.Davis CIPIC Interface Laboratory,
which includes head-relate impulse responses for 45 different
subjects (including 27 males, 16 females, and KENAR with
large and small pinna). And the HRIRs is tested in 1m
distance with 25 different azimuths, 50 different elevations,
totally 1250 directions for each subject. It is a commonly
used database in sound source localization experiments.

In this work, 20 groups of sounds(10 for human voice
and 10 for music) is used to train the standard templates.
The parameter p(θi|Θ), σi , τ i can be get after statistics
of azimuth results. And IIDστ is obtained after time delay
compensated for each sound. The template IIDστ will be
acquired by EM algorithm for each direction. And 100
groups of real sound signals (50 for human voice and 50
for music) are considered for each direction. The duration of
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TABLE I
THE ACCURACY OF θ LOCALIZATION IN TWO DIFFERENT EXPERIMENTAL ENVIRONMENTS

Environment without noise Environment with 20DB noise
= 0o ≤ 5o ≤ 10o = 0o ≤ 5o ≤ 10o

Probabilistic Model 92.72% 98.64% 100% 75.94% 83.96% 87.74%
T DC 90.28% 98.48% 99.84% 87.56% 97.56% 98.96%

OnlineCalibration 89.12% 96.76% 99.24% 84.26% 95.92% 98.24%
Hierarchical System 93.90% 98.70% 100% 85.64% 97.21% 98.72%

each signal is 2 seconds. There will be 100×45×25×50 =
5625000 groups of signals used in the experiment. The
sampling frequency is 44100Hz. The result will be compared
with the methods of Probabilistic Model [21], Hierarchical
System [20] and Online Calibration [22]. The method based
on Time Delay Compensation proposed in this paper is short
for TDC.

A. Results of experiments

In this paper, the results for test sets are based on different
signal parts at 45×1250×100×128, which means 45 sub-
jects, 1250 directions, 100 sound signals are processed over
128 sample points which is also the length of the window.
Two different experimental environments are considered, one
for ideal condition without noise, the other for condition
with SNR 20 dB (the additive white Gaussian noise environ-
ment). The result is obtained with different error tolerance,
(0o, 5o and 10o) for θ and (0o, 5.625o, 11.25o,and 25o )
for ϕ .

There are three tables shown as follows. They display the
result of θ and ϕ localization in two different experimental
environments. TABLE I shows the accuracy of θ localization
in the environment both without noise and 20 DB white
Gaussian noise by different algorithms. While TABLE II
shows the accuracy of ϕ localization in the two experimental
environments. The space complexity and the time complexity
needed in four algorithms are shown in TABLE III and
TABLE IV.

B. Analysis of results

As shown in TABLE I, for θ localization, the perfor-
mances between these four algorithms have small gaps
with each other in the experimental environment without
noise. All the accuracies of θ localization are over 89%
with the error tolerance 0o, and over 99% with the error
tolerance 10o. It can be found that Hierarchical System has
the best performance while Online Calibration has the worst
performance, which is probably due to the different cues
used in different algorithms. In Probabilistic Model, ITD and
IID are processed as a whole, which will reduce the effect
from each other; In our method, TDOA is used in first layer;
and IIDστ is used in second layer. ITD and IID are used in
two different layers in Online Calibration model; Except for
ITD and IID, spectral cues are also used as the third layer in
Hierarchical System. Our algorithm is an improvement of IID
used in Probabilistic Model. The redundant information is
discarded which decreases the computing complexity heavily
with a little accuracy dropping.

With the effect of noise, the performances of all these four
algorithms drop rapidly for azimuth localization. However, it
can also be found that our algorithm is more robust than other
algorithms. The reason is that the PHAT-ργ used in the first
layer has been proved more robust. Without an accurate prior
information, Probabilistic Model gets a worse result than our
method. Comparing with IIDστ of our algorithm, IID has
lager measurement error for Hierarchical System duo to the
effect of time delay, in addition, the noise affect spectral cues
heavily. Online Calibration has a similar first and second
layer with Hierarchical System. The difference is that ITDs
are considered in each frequency channel, which has weak
improvement on localization.

TABLE II shows that the accuracies of elevation localiza-
tion is lower than that of azimuth localization. ITD/ TDOA
offers little help for elevation localization. Therefore, the
accuracies of elevation localization will depend crucially on
IID algorithm. Time delay is introduced to improve IID in
Probabilistic Model and our method, which is suitable for
any kind of sound. Because all possible lags were taken into
account in Probabilistic Model, it got the best performance.
Spectral cues make Hierarchical System work better than
Online Calibration system.

It can also be found in TABLE II that the performance
of elevation localization decline dramatically with the effect
of noise. There are two reasons for this phenomenon. First,
cumulative error has a certain effect on the accuracy of
localization, which means the elevation location performance
depend on the localization accuracy of azimuth. Second,
elevation is so sensitive to the error of IID, that the elevation
localization error will be lager than azimuth. In multi-layer
structural system, the lower layer can provide candidates for
the upper layer, which can reduce the influence of neighbor
azimuth on a same elevation. Although three-layer model is
used in Hierarchical System, there is an insignificant increase
compared to Online Calibration system, which is due to the
fact that spectral cue is not steady in noise environment. Our
method can get the most robust result in noise environment.

TABLE III shows that the space complexity and the
time complexity used for matching with templates of four
algorithms. Here na,ne and nc denote the number of azimuth,
elevation and the channels of the filterbank. In this work,
IIDστ is needed for each direction It is concluded that the
algorithm used in this paper can get a better performance
with less storage space and computing cost.
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TABLE II
THE ACCURACY OF ϕ LOCALIZATION IN TWO DIFFERENT EXPERIMENTAL ENVIRONMENTS

Environment without noise Environment with 20DB noise
= 0o ≤ 5.625o ≤ 11.25o ≤ 22.5o = 0o ≤ 5.625o ≤ 11.25o ≤ 22.5o

Probabilistic Model 73.28% 95.15% 97.67% 98.68% 12.39% 25.28% 48.57% 64.37%
T DC 70.48% 93.13% 96.65% 98.08% 20.38% 45.96% 61.05% 77.07%

OnlineCalibration 63.61% 90.25% 95.82% 97.63% 17.22% 39.49% 56.92% 70.53%
Hierarchical System 64.77% 92.47% 96.23% 97.79% 20.34% 43.62% 60.92% 75.73%

TABLE III
THE SPACE COMPLEXITY AND THE TIME COMPLEXITY NEEDED IN FOUR

ALGORITHMS

storage time
Probabilistic Model O(n2

anenc) bad O(nane) bad
T DC O(nanenc) good O(ne) good

OnlineCalibration O(nanenc) good O(ne) good
Hierarchical System O(nanenc) good O(nane) bad

IV. CONCLUSIONS

In this paper, a time-delay compensation based two-
layer probabilistic model for binaural sound localization is
presented. At first, a weighting function of GCC named
PHAT-ργ is used in first layer for the candidate azimuth θi.
With the information of candidate azimuth θi, the range of
time delay τ needed to be compensated will be obtained. In
the second layer, a new Interaural Intensity Difference cue
after time-delay compensation named IIDστ is introduced
to refine the information of azimuth θ and elevation ϕ .
Comparation is made with Probabilistic Model(one-layer
model), Online Calibration (two-layer model) and Hierar-
chical System (three-layer model). The experimental results
show that the proposed method has higher accuracy and
needs less processing time for sound source localization.
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